Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters








Database
Language
Publication year range
1.
J Pept Sci ; 29(3): e3452, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36136053

ABSTRACT

Based on small-scale synthesis (0.3 g), a 100-g scale-up synthesis of crude [Aib8 , Arg34 ]-glucagon-like peptide-1 (GLP-1) (7-37) was completed. The crude [Aib8 , Arg34 ]-GLP-1 (7-37) was purified using a dynamic axial compression column 200 (DAC-200). Approximately 61 g of [Aib8 , Arg34 ]-GLP-1 (7-37) with a purity of >99% was obtained through one-step reverse-phase chromatography. The purification yield was approximately 92%. The yield from the total reaction was approximately 60%. In summary, we developed an economical and environmentally friendly route to the synthesis and purification of crude [Aib8 , Arg34 ]-GLP-1 (7-37), laying a foundation for subsequent industrial production.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Humans , Peptide Fragments , Glucagon-Like Peptide-1 Receptor , Hypoglycemic Agents
2.
Front Chem ; 10: 874675, 2022.
Article in English | MEDLINE | ID: mdl-35494639

ABSTRACT

Large-scale synthesis of graphene-based nanomaterials in stirred tank reactor (STR) often results in serious agglomeration because of the poor control during micromixing process. In this work, reactive impingement mixing is conducted in a two-stage impinging jet microreactor (TS-IJMR) for the controllable and scale-up synthesis of nickel-cobalt boride@borate core-shell nanostructures on RGO flakes (NCBO/RGO). Benefiting from the good process control and improved micromixing efficiency of TS-IJMR, NCBO/RGO nanosheet provides a large BET surface area, abundant of suitable mesopores (2-5 nm), fast ion diffusion, and facile electron transfer within the whole electrode. Therefore, NCBO/RGO electrode exhibits a high specific capacitance of 2383 F g-1 at 1 A g-1, and still retains 1650 F g-1 when the current density is increased to 20 A g-1, much higher than those of nickel boride@borate/RGO (NBO/RGO) and cobalt boride@borate/RGO (CBO/RGO) synthesized in TS-IJMR, as well as NCBO/RGO-S synthesized in STR. In addition, an asymmetric supercapacitor (NCBO/RGO//AC) is constructed with NCBO/RGO and activated carbon (AC), which displays a high energy density of 53.3 W h kg-1 and long cyclic lifespan with 91.8% capacitance retention after 5000 charge-discharge cycles. Finally, NCBO/RGO is used as OER electrocatalyst to possess a low overpotential of 309 mV at a current density of 10 mA cm-2 and delivers a good long-term durability for 10 h. This study opens up the potential of controllable and scale-up synthesis of NCBO/RGO nanosheets for high-performance supercapacitor electrode materials and OER catalysts.

3.
Methods Enzymol ; 668: 125-136, 2022.
Article in English | MEDLINE | ID: mdl-35589191

ABSTRACT

Cobamides (Cbas) are the largest coenzymes known and are used by cells in all domains of life. These molecules are characterized by a central cobalt-containing tetrapyrrole ring with two opposing axial ligands on the α and ß faces of the ring. All biologically active forms of Cbas have a 5'-deoxyadenosyl group as the upper (Coß) ligand that is covalently attached to the cobalt ion of the ring. In contrast, the lower ligand is a nucleobase of diverse chemical structure; however, nucleobases are usually derivatives of benzimidazole or purine. Phenol and p-cresol can also serve as the nucleobase, but they cannot form a coordination bond with the cobalt ion of the ring because they lack a free pair of electrons. The Cba incorporating 5,6-dimethylbenzimidazole (DMB) is known as cobalamin (Cbl), and the coenzymic form of cobalamin is known as adenosylcobalamin (AdoCbl). A common vitamer of cobalamin has a cyano group as the upper ligand. This vitamer is known as cyanocobalamin (CNCbl), which is commercially marketed as vitamin B12. Here, we describe a combination of chemical hydrolysis of cobalamin with the enzymatic dephosphorylation of the resulting α-R-3'-phosphate to yield α-R, which we enzymically convert to the pathway intermediate α-R-5'-phosphate (α-RP). The methods describe herein can be readily scaled up to generate large amounts of α-RP.


Subject(s)
Phosphates , Vitamin B 12 , Cobalt/chemistry , Cobamides/chemistry , Cobamides/metabolism , Coenzymes , Ligands , Ribonucleosides , Vitamin B 12/metabolism , Vitamins
4.
Chemistry ; 27(39): 9967-9987, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-33955075

ABSTRACT

Zirconium-based metal-organic framework materials (Zr-MOFs) have more practical usage over most conventional benchmark porous materials and even many other MOFs due to the excellent structural stability, rich coordination forms, and various active sites. However, their mass-production and application are restricted by the high-cost raw materials, complex synthesis procedures, harsh reaction conditions, and unexpected environmental impact. Based on the principles of "Green Chemistry", considerable efforts have been done for breaking through the limitations, and significant progress has been made in the sustainable synthesis of Zr-MOFs over the past decade. In this review, the advancements of green raw materials and green synthesis methods in the synthesis of Zr-MOFs are reviewed, along with the corresponding drawbacks. The challenges and prospects are discussed and outlooked, expecting to provide guidance for the acceleration of the industrialization and commercialization of Zr-MOFs.

5.
Tetrahedron Lett ; 852021 Nov 23.
Article in English | MEDLINE | ID: mdl-35153339

ABSTRACT

The revival of peptide-based drugs has led to the increasing demand for the development of large-scale synthesis of these complex molecules. To meet this demand, the use of mercapto-functionalized polyhedral oligomeric silsesquioxane (POSS-SH) as a soluble support for the synthesis of a model pentapeptide POSS-thioester is reported. The synthetic process provided a total yield of 62% for the pentapeptide POSS-thioester and the 1H NMR spectra validated the high purity of the products. The successful synthesis of the pentapeptide POSS-thioester with high yield and purity provides a promising way to the scale-up chemical synthesis of peptide thioesters, peptides, peptide amides, cyclic peptides, and even proteins.

6.
ACS Appl Mater Interfaces ; 11(42): 39068-39076, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31564089

ABSTRACT

Gold nanoparticles offer unique optoelectronic properties relevant for a wide range of processes and products, in biology and medicine (therapeutic agents, diagnostic, drug delivery), as well as in electronics, photovoltaics, and catalysis. So far, various synthesis methods proposed have led to rather limited concentration and purity of the colloidal suspensions, severely hindering their use. Here, we present a simple and versatile procedure for the synthesis of gold pentatwinned nanostructures, including nanobipyramids based on a seed-mediated growth process that overcomes the concentration limitations of current methods by 2 orders of magnitude. Moreover, our novel process offers quantitative yields while easily allowing a fine control of the particles' shape, size (with a high monodispersity), and plasmonic properties. Finally, we demonstrate that our method can be easily upscaled to produce large amounts of nanostructures, up to the gram scale, with minimal waste and postprocessing, thus facilitating their use for further applications and industrial developments.

7.
Pharmaceutics ; 11(8)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374932

ABSTRACT

Previously, we synthesized curcumin and a succinate ester prodrug of curcumin namely curcumin diethyl disuccinate (CurDD) in the lab scale, which yielded hundred milligrams to few grams of the compounds. CurDD was found to be more stable in a phosphate buffer pH 7.4 and exhibited better cytotoxicity against Caco-2 cells than curcumin. Here, the one-pot syntheses of curcumin and CurDD were scaled up to afford multigram quantities of both compounds for preclinical studies using a 10-L chemical reactor. The key steps for the synthesis of curcumin were the formation of boron-acetylacetone complex and the decomplexation of boron-curcumin complex. The synthesis of CurDD could be achieved via a one-step esterification between curcumin and succinic acid monoethyl ester chloride using 4-(N,N-dimethylamino)pyridine as a catalyst. The synthesized curcumin and CurDD were then investigated and compared for an anti-tumor activity in HepG2-xenograft mice. CurDD could reduce the tumor growth in HepG2-xenograft mice better than curcumin. CurDD also exerted the stronger inhibition on VEGF secretion, COX-2 and Bcl-2 expression and induced higher Bax expression in comparison with curcumin. The results suggest that CurDD is a promising prodrug of curcumin and has a potential to be further developed as a therapeutic agent or an adjuvant for the treatment of hepatocellular carcinoma.

8.
Beilstein J Org Chem ; 15: 703-709, 2019.
Article in English | MEDLINE | ID: mdl-30992717

ABSTRACT

A highly efficient and convenient protocol was developed to access 2-amino-4H-benzothiopyran-4-ones through a process of conjugated addition-elimination. The sulfinyl group was proved to be the optimum leaving group by thorough investigations on the elimination of sulfide, sulfinyl, and sulfonyl groups at the 2-position of benzothiopyranone. Most 2-aminobenzothiopyranones were obtained in good to excellent yields under refluxing in isopropanol within 36 h. This method is base-free and the substrate scope in terms of electronic properties of the substituents of the benzothiopyranone is broad. The ten grams scale-up synthesis of the representative compounds 4a and 4d was implemented to show the practical application of this reaction, which afforded the corresponding compounds in good yields and excellent chemical purity without requiring column chromatographical purification.

9.
ACS Appl Mater Interfaces ; 9(31): 26363-26371, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28714667

ABSTRACT

The extremely large optical extinction coefficient of gold nanorods (Au-NRs) enables their use in a diverse array of technologies, rnging from plasmonic imaging, therapeutics and sensors, to large area coatings, filters, and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective, large volume production. This is due in part to the low reactant concentration required for symmetry breaking in conventional seed-mediated synthesis. Direct scale up of laboratory procedures has limited viability because of excessive solvent volume, exhaustive postsynthesis purification processes, and the generation of large amounts of waste (e.g., hexadecyltrimethylammonium bromide(CTAB)). Following recent insights into the growth mechanism of Au-NRs and the role of seed development, we modify the classic seed-mediated synthesis via temporal control of seed and reactant concentration to demonstrate production of Au-NRs at more than 100-times the conventional concentration, while maintaining independent control and narrow distribution of nanoparticle dimensions, aspect ratio, and volume. Thus, gram scale synthesis of Au-NRs with prescribed aspect ratio and volume is feasible in a 100 mL reactor with 1/100th of organic waste relative to conventional approaches. Such scale-up techniques are crucial to cost-effectively meet the increased demand for large quantities of Au-NRs in emerging applications.

SELECTION OF CITATIONS
SEARCH DETAIL