Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.372
Filter
1.
Arq. bras. oftalmol ; Arq. bras. oftalmol;88(1): e2023, 2025. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1568843

ABSTRACT

ABSTRACT Purpose: This study aimed to compare the safety and effectiveness of intraocular pressure reduction between micropulse transscleral cyclophotocoagulation and "slow cook" transscleral cyclophotocoagulation in patients with refractory primary open-angle glaucoma. Methods: We included patients with primary open angle glaucoma with at least 12 months of follow-up. We collected and analyzed data on the preoperative characteristics and postoperative outcomes. The primary outcomes were a reduction of ≥20% of the baseline value (criterion A) and/or intraocular pressure between 6 and 21 mmHg (criterion B). Results: We included 128 eyes with primary open-angle glaucoma. The preoperative mean intraocular pressure was 25.53 ± 6.40 and 35.02 ± 12.57 mmHg in the micropulse- and "slow cook" transscleral cyclophotocoagulation groups, respectively (p<0.001). The mean intraocular pressure was reduced significantly to 14.33 ± 3.40 and 15.37 ± 5.85 mmHg in the micropulse- and "slow cook" transscleral cyclophotocoagulation groups at the last follow-up, respectively (p=0.110). The mean intraocular pressure reduction at 12 months was 11.20 ± 11.46 and 19.65 ± 13.22 mmHg in the micropulse- and "slow cook" transscleral cyclophotocoagulation groups, respectively (p<0.001). The median preoperative logMAR visual acuity was 0.52 ± 0.69 and 1.75 ± 1.04 in the micropulse- and "slow cook" transscleral cyclophotocoagulation groups, respectively (p<0.001). The mean visual acuity variation was −0.10 ± 0.35 and −0.074 ± 0.16 in the micropulse- and "slow cook" transscleral cyclophotocoagulation, respectively (p=0.510). Preoperatively, the mean eye drops were 3.44 ± 1.38 and 2.89 ± 0.68 drugs in the micropulse- and "slow cook" transscleral cyclophotocoagulation groups, respectively (p=0.017), but those were 2.06 ± 1.42 and 1.02 ± 1.46 at the end of the study in the "slow cook" and micropulse transscleral cyclophotocoagulation groups, respectively (p<0.001). The success of criterion A was not significant between both groups. Compared with 11 eyes (17.74%) in the "slow cook" transscleral cyclophotocoagulation group, 19 eyes (28.78%) in the micropulse transscleral cyclophotocoagulation group showed complete success (p=0.171). For criterion B, 28 (42.42%) and 2 eyes (3.22%) showed complete success after micropulse- and "slow cook" transscleral cyclophotocoagulation, respectively (p<0.001). Conclusion: Both techniques reduced intraocular pressure effectively.

2.
ACS Nano ; 18(39): 26911-26919, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39350686

ABSTRACT

Two-dimensional van der Waals semiconductors are promising for future nanoelectronics. However, integrating high-k gate dielectrics for device applications is challenging as the inert van der Waals material surfaces hinder uniform dielectric growth. Here, we report a liquid metal oxide-assisted approach to integrate ultrathin, high-k HfO2 dielectric on 2D semiconductors with atomically smooth interfaces. Using this approach, we fabricated 2D WS2 top-gated transistors with subthreshold swings down to 74.5 mV/dec, gate leakage current density below 10-6 A/cm2, and negligible hysteresis. We further demonstrate a one-step van der Waals integration of contacts and dielectrics on graphene. This can offer a scalable approach toward integrating entire prefabricated device stack arrays with 2D materials. Our work provides a scalable solution to address the crucial dielectric engineering challenge for 2D semiconductor-based electronics.

3.
Small ; : e2405459, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358931

ABSTRACT

A van der Waals (vdW) α-In2Se3 ferroelectric semiconductor channel-based field-effect transistor (FeS-FET) has emerged as a next-generation electronic device owing to its versatility in various fields, including neuromorphic computing, nonvolatile memory, and optoelectronics. However, screening charges cause by the imperfect surface morphology of vdW α-In2Se3 inhibiting electrical polarization remain an unresolved issue. In this study, for the first time, a method is elucidated to recover the inherent electric polarization in both in- and out-of-plane directions of the α-In2Se3 channel based on post-exfoliation annealing (PEA) and improve the electrical performance of vdW FeS-FETs. Following PEA, an ultra-thin In2Se3-3xO3x layer formed on the top surface of the α-In2Se3 channel is demonstrated to passivate surface defects and enhance the electrical performance of FeS-FETs. The on/off current ratio of the α-In2Se3 FeS-FET has increased from 5.99 to 1.84 × 106, and the magnitude of ferroelectric resistance switching has increased from 1.20 to 26.01. Moreover, the gate-modulated artificial synaptic operation of the α-In2Se3 FeS-FET is demonstrated and illustrate the significance of the engineered interface in the vdW FeS-FET for its application to multifunctional devices. The proposed α-In2Se3 FeS-FET is expected to provide a significant breakthrough for advanced memory devices and neuromorphic computing.

4.
Article in English | MEDLINE | ID: mdl-39361144

ABSTRACT

Improving the transmission and separation efficiency of light carriers is considered an effective method to enhance the catalytic performance of semiconductor photocatalysis. Herein, we report the synthesis and application of g-C3N4/Bi2WO6 heterostructure nanosheets for the photocatalytic coupling of thiols to disulfides under visible light irradiation. The heterojunction exhibits significant photocatalytic performance compared to the bare catalyst, which dramatically enhances the separation and transfer of photogenerated charge carriers due to the remarkable hole-trapping ability of g-C3N4. Various functional symmetrical and asymmetrical disulfides have been effectively prepared by employing this heterostructure photocatalytic system, which features excellent photocatalytic activity and cycling stability. The outstanding photocatalytic activity of the semiconductor heterojunction catalyst provides an economical, sustainable, and thus green process for producing disulfides.

5.
Nanotechnology ; 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39389091

ABSTRACT

CoFe and NiFe are used in the construction of Si-based MS-type photodiodes. Thin film layers are sputtered onto the p-Si surface where Al metal contacts are deposited by thermal evaporation technique. Film characteristics of the layers are investigated in terms of crystalline structure and surface morphology. Their electrical and optical properties are investigated by dark and illuminated current-voltage measurements. When these two diodes are compared, Al/NiFe/p-Si shows better rectification properties than Al/CoFe/p-Si diode. It has also a high barrier height where these values for both diodes increase with illumination. According to current-voltage analysis, the existence of an interlayer causes a deviation in diode ideality. In addition, the response to bias voltage and derivation of electrical parameters, the light sensitivity of diodes are evaluated by current-voltage measurements under different illumination intensities and also transient photosensitive characteristics.

6.
Angew Chem Int Ed Engl ; : e202416684, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382047

ABSTRACT

Selective CO2 photoreduction into high-energy-density and high-value-added C2 products is an ideal strategy to achieve carbon neutrality and energy shortage, but it is still highly challenging due to the large energy barrier of the C-C coupling step and severe exciton annihilation in photocatalysts. Herein, strong and localized charge polarization is successfully induced on the surface of melon-based organic semiconductors by creating dual active sites with a large charge asymmetry. Confirmed by multiscale characterization and theoretical simulations, such asymmetric charge distribution, originated from the oxygen dopants and nitrogen vacancies over melon-based organic semiconductors, reduces exciton binding energy and boosts exciton dissociation. The as-formed charge polarization sites not only donate electrons to CO2 molecules but also accelerate the coupling of asymmetric *CO*CO intermediates for CO2 photoreduction into ethanol by lowering the energy barrier of this process. Consequently, an exceptionally high selectivity of up to 97% for C2H5OH and C2H5OH yield of 0.80 mmol g-1 h-1 have been achieved on this dual active sites organic semiconductor. This work, with its potential applicability to a variety of non-metal multi-site catalysts, represents a versatile strategy for the development of advanced catalysts tailored for CO2 photoreduction reactions.

7.
Sci Bull (Beijing) ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39366827

ABSTRACT

Metal-semiconductor contacts play a pivotal role in controlling carrier transport in the fabrication of modern electronic devices. The exploration of van der Waals (vdW) metal contacts in semiconductor devices can potentially mitigate Fermi-level pinning at the metal-semiconductor interface, with particular success in two-dimensional layered semiconductors, triggering unprecedented electrical and optical characteristics. In this work, for the first time, we report the direct integration of vdW metal contacts with bulk wide bandgap gallium nitride (GaN) by employing a dry transfer technique. High-angle annular dark-field scanning transmission electron microscopy explicitly illustrates the existence of a vdW gap between the metal electrode and GaN. Strikingly, compared with devices fabricated with electron beam-evaporated metal contacts, the vdW contact device exhibits a responsivity two orders of magnitude higher with a significantly suppressed dark current in the nanoampere range. Furthermore, by leveraging the high responsivity and persistent photoconductivity obtained from vdW contact devices, we demonstrate imaging, wireless optical communication, and neuromorphic computing functionality. The integration of vdW contacts with bulk semiconductors offers a promising architecture to overcome device fabrication challenges, forming nearly ideal metal-semiconductor contacts for future integrated electronics and optoelectronics.

8.
ACS Nano ; 18(41): 28170-28177, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39352885

ABSTRACT

Accurate tuning of the electronic and photophysical properties of quantum dots is required to maximize the light conversion efficiencies in semiconductor-assisted processes. Herein, we report a facile synthetic procedure for AgIn(SxSe1-x)2 quantum dots with S content (x) ranging from 1 to 0. This simple approach allowed us to tune the bandgap (2.6-1.9 eV) and extend the absorption of AgIn(SxSe1-x)2 quantum dots to lower photon energies (near-IR) while maintaining a small QD size (∼5 nm). Ultraviolet spectroscopy studies revealed that the change in the bandgap is modulated by the electronic shifts in both the valence band and the conduction band positions. The negative overall charge of the as-synthesized quantum dots enabled us to make films of quantum dots on mesoscopic TiO2. Excited state studies of the AgIn(SxSe1-x)2 quantum dot films demonstrated a fast charge injection to TiO2, and the electron transfer rate constant was found to be 1.5-3.5 × 1011 s-1. The results of this work present AgIn(SxSe1-x)2 quantum dots synthesized by the one-step method as a potential candidate for designing light-harvesting assemblies.

9.
Sensors (Basel) ; 24(19)2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39409443

ABSTRACT

An all-optical crosstalk suppression scheme is desirable for wavelength and space division multiplexing optical networks by improving the performance of the corresponding nodes. We put forward a scheme comprising double-stage semiconductor optical amplifiers (SOAs) for wavelength-preserving crosstalk suppression. The wavelength position of the degenerate pump in the optical phase conjugation (OPC) is optimized for signal-to-crosstalk ratio (SXR) improvement. The crosstalk suppression performance of the double-stage SOA scheme for 20 Gb/s quadrature phase shift keying (QPSK) signals is investigated by means of simulations, including the input SXR range and the crosstalk wavelength deviation. For the case with identical-frequency crosstalk, the double-stage SOA scheme can achieve equivalent SXR improvement of 1.5 dB for an input SXR of 10 dB. Thus, the double-stage SOA scheme proposed here is more suitable for few-mode fiber systems and networks.

10.
Materials (Basel) ; 17(19)2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39410332

ABSTRACT

Understanding the mechanism of stress concentration effects on the surface of semiconductor substrate materials-silicon wafers-in Double-Sided Polishing (DSP) is particularly important for improving polishing quality. In this study, a two-dimensional finite element model is established to study the effect of contact state and stress concentration during polishing on edge roll-off (ERO) and polishing rate uniformity. The variation in this contact state is influenced by changes in wafer thickness and the gap between it and the carrier. The model is validated by experiments and helps to further analyze and interpret the experimental results, identifying six stages of contact states during the polishing process. The research indicates that the phenomenon of stress concentration at the edge of a wafer is caused by the pads creating a large amount of compression at the edge of the wafer. Additionally, there appears to be a threshold value during the polishing process, below which the stress concentration on the wafer changes, thereby altering the magnitude of edge roll-off and, ultimately, affecting overall flatness. This study provides a basis for optimizing the process design.

11.
Materials (Basel) ; 17(19)2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39410499

ABSTRACT

Doping divalent metal cations into Ga2O3 films plays a key role in adjusting the conductive behavior of the film. N-type high-resistivity ß-Ga2O3:Mg films were prepared using electron beam evaporation and subsequent postannealing processing. Various characterization methods (X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence, etc.) revealed that the Mg content plays an important role in affecting the film quality. Specifically, when the Mg content in the film is 3.6%, the S2 film's resistivity, carrier content, and carrier mobility are 59655.5 Ω·cm, 1.95 × 1014 cm3/C, and 0.53682 cm2/Vs. Also, the film exhibits a smoother surface, more refined grains, and higher self-trapped exciton emission efficiency. The Mg cation mainly substitutes the Ga+ cation at a tetrahedral site, acting as a trap for self-trapped holes.

12.
J Dent (Shiraz) ; 25(3): 215-222, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39371960

ABSTRACT

Statement of the Problem: Healing of the inferior alveolar nerve injury during dental procedures is one of the biggest concerns of dentists. There are still debates on different treatment modalities. Purpose: This study aimed to compare the effect of 940nm and 810nm diode lasers on the repair of the inferior alveolar sensory nerve. Materials and Method: In this single-blinded randomized clinical trial, 39 patients with inferior alveolar nerve injury were divided into three groups: 1. 810nm laser irradiated, 2. 940nm laser irradiated, and 3. No laser irradiation (control group). All patients were treated in 12 sessions (3 days per week) and evaluated using a complete clinical neurosensory test (CNT), including brushstroke, 2-point discrimination, pinprick nociception, and thermal discrimination before and after treatment. Results: The mean dysesthesia of the patient treated with 810nm diode laser was significantly lower than the control group in all sessions (the 1st (p= 0.003), 3rd (p= 0.008), 7th (p= 0.006), and 12th sessions (p= 0.005)). The 810nm laser resulted in more satisfaction in patients than the control group in almost all sessions (1st (p< 0.001), 7th (p= 0.028), and 12th (p= 0.006)). More patient satisfaction was seen in the 1st and 3rd sessions in the 810nm laser than in the 980nm laser (p< 0.001 and p= 0.003, respectively). Conclusion: 810nm diode laser can be better than 940nm in repairing inferior alveolar sensory nerve damage.

13.
ACS Appl Mater Interfaces ; 16(39): 53153-53162, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358896

ABSTRACT

Understanding and predicting interface diffusion phenomena in materials is crucial for various industrial applications, including semiconductor manufacturing, battery technology, and catalysis. In this study, we propose a novel approach utilizing Graph Neural Networks (GNNs) to investigate and model material interface diffusion. We begin by collecting experimental and simulated data on diffusion coefficients, concentration gradients, and other relevant parameters from diverse material systems. The data are preprocessed, and key features influencing interface diffusion are extracted. Subsequently, we construct a GNN model tailored to the diffusion problem, with a graph representation capturing the atomic structure of materials. The model architecture includes multiple graph convolutional layers for feature aggregation and update, as well as optional graph attention layers to capture complex relationships between atoms. We train and validate the GNN model using the preprocessed data, achieving accurate predictions of diffusion coefficients, diffusion rates, concentration profiles, and potential diffusion pathways. Our approach offers insights into the underlying mechanisms of interface diffusion and provides a valuable tool for optimizing material design and engineering. Additionally, our method offers possible strategies to solve the longstanding problems related to materials interface diffusion.

14.
Small ; : e2405434, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39377370

ABSTRACT

2D dilute magnetic semiconductors (DMS) based on transition metal dichalcogenides (TMD) offer an innovative pathway for advancing spintronic technologies, including the potential to exploit phenomena such as the valley Zeeman effect. However, the impact of magnetic ordering on the valley degeneracy breaking and on the enhancement of the optical transitions g-factors of these materials remains an open question. Here, a giant effective g-factors ranging between ≈-27 and -69 for the bound exciton at 4 K in vanadium-doped WSe2 monolayers, obtained through magneto-photoluminescence (PL) experiments is reported. This giant g-factor disappears at room temperature, suggesting that this response is associated with a magnetic ordering of the vanadium impurity states at low temperatures. Ab initio calculations for the vanadium-doped WSe2 monolayer confirm the existence of magnetic ordering of the vanadium states, which leads to degeneracy breaking of the valence bands at K and K'. A phenomenological analysis is employed to correlate this splitting with the measured enhanced effective g-factor. The findings shed light on the potential of defect engineering of 2D materials for spintronic applications.

15.
Photoacoustics ; 40: 100649, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39347465

ABSTRACT

In this study, we demonstrate the potential of the bornite crystal structure (Cu5FeS4) of copper iron sulfide as a second near infrared (NIR-II) photoacoustic (PA) contrast agent. Bornite exhibits comparable dose-dependent biocompatibility to copper sulfide nanoparticles in a cell viability study with HepG2 cells, while exhibiting a 10-fold increase in PA amplitude. In comparison to other benchmark contrast agents at similar mass concentrations, bornite demonstrated a 10× increase in PA amplitude compared to indocyanine green (ICG) and a 5× increase compared to gold nanorods (AuNRs). PA signal was detectable with a light pathlength greater than 5 cm in porcine tissue phantoms at bornite concentrations where in vitro cell viability was maintained. In vivo imaging of mice vasculature resulted in a 2× increase in PA amplitude compared to AuNRs. In summary, bornite is a promising NIR-II contrast agent for deep tissue PA imaging.

16.
Nanomicro Lett ; 17(1): 13, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325255

ABSTRACT

The development of low-temperature solid oxide fuel cells (LT-SOFCs) is of significant importance for realizing the widespread application of SOFCs. This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs. In this context, for the first time, a dielectric material, CaCu3Ti4O12 (CCTO) is designed for LT-SOFCs electrolyte application in this study. Both individual CCTO and its heterostructure materials with a p-type Ni0.8Co0.15Al0.05LiO2-δ (NCAL) semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450-550 °C. The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm-2 and an open-circuit voltage (OCV) of 0.95 V at 550 °C, while the cell with the CCTO-NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm-2 along with a higher OCV over 1.0 V, which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk. It is found that these promising outcomes are due to the interplay of the dielectric material, its structure, and overall properties that led to improve electrochemical mechanism in CCTO-NCAL. Furthermore, density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO-NCAL. Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs.

17.
Nano Lett ; 24(39): 12285-12291, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39311511

ABSTRACT

The transfer and migration process of the photogenerated charge carriers in plasmonic metal/semiconductor heterostructures not only affects their photocatalytic performance but also triggers some captivating phenomena. Here, a reversible photochromic behavior is observed on the Au/CdS heterostructures when they are investigated as photocatalysts for hydrogen production. The photochromism takes place upon excitation of the CdS component, in which the photogenerated holes are rapidly consumed by ethanol, while the electrons are transferred and stored on the Au cores, resulting in the blue shift of their localized surface plasmon resonance. The colloidal solution can restore its initial color after pumping with air, and the photochromic behavior can be cycled five times without obvious degradation. The finding represents great progress toward the photochromic mechanism of metal/semiconductor heterostructures and also reveals the importance of understanding the dynamic process of the photogenerated charge carriers in these heterostructures.

18.
ACS Appl Mater Interfaces ; 16(39): 52674-52681, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39315615

ABSTRACT

The difficulties in asymmetrical doping of wide band gap materials, especially for the n-type diamond challenge, hamper their application in electronic devices. Here, we propose doping diamond polytypes with reasonable band structures to solve this problem. Various elements are doped into six diamond polytypes, and their doping behaviors are investigated. The results show that pure hexagonal (2H) diamond has the band gap with a value of 4.42 eV and the smallest carrier effective masses among six calculated diamond polytypes, exhibiting high electron mobility and hole mobility up to 4250 and 5840 cm2·V-1·s-1, respectively. Compared to cubic (3C) diamond, the impurity formation energy in 2H-diamond is reduced, which is attributed to its C3v symmetry. More importantly, 2H-diamond exhibits favorable doping symmetry with a donor level of 0.14 eV for phosphorus and an acceptor level of 0.19 eV for boron, respectively, which originate from smaller effective masses and stronger delocalization at the band edge in 2H-diamond. These ionization energies are smaller than those in 3C-diamond of 0.32 and 0.58 eV, respectively. This reveals that phosphorus and boron in 2H-diamond are more easily excited at room temperature, producing good n- and p-type conductivities. All of these make 2H-diamond a potential candidate for the replacement of 3C-diamond as a wide band gap material theoretically. These provide a way to realize high-quality n-type diamond, giving significant insights into the realization of diamond-based electronic devices. This also supplies a solution for the difficulties in asymmetric doping of other wide band gap materials.

19.
Materials (Basel) ; 17(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39336195

ABSTRACT

Thin film lithium niobate (TFLN) has become a promising material platform for large scale photonic integrated circuits (PICs). As an indispensable component in PICs, on-chip electrically tunable narrow-linewidth lasers have attracted widespread attention in recent years due to their significant applications in high-speed optical communication, coherent detection, precision metrology, laser cooling, coherent transmission systems, light detection and ranging (LiDAR). However, research on electrically driven, high-power, and narrow-linewidth laser sources on TFLN platforms is still in its infancy. This review summarizes the recent progress on the narrow-linewidth compact laser sources boosted by hybrid TFLN/III-V semiconductor integration techniques, which will offer an alternative solution for on-chip high performance lasers for the future TFLN PIC industry and cutting-edge sciences. The review begins with a brief introduction of the current status of compact external cavity semiconductor lasers (ECSLs) and recently developed TFLN photonics. The following section presents various ECSLs based on TFLN photonic chips with different photonic structures to construct external cavity for on-chip optical feedback. Some conclusions and future perspectives are provided.

20.
Materials (Basel) ; 17(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39336243

ABSTRACT

This work reports on the possibility of sustaining a stable operation of polarization-doped InGaN light emitters over a particularly broad temperature range. We obtained efficient emission from InGaN light-emitting diodes between 20 K and 295 K and from laser diodes between 77 K and 295 K under continuous wave operation. The main part of the p-type layers was fabricated from composition-graded AlGaN. To optimize injection efficiency and improve contact resistance, we introduced thin Mg-doped layers of GaN (subcontact) and AlGaN (electron blocking layer in the case of laser diodes). In the case of LEDs, the optical emission efficiency at low temperatures seems to be limited by electron overshooting through the quantum wells. For laser diodes, a limiting factor is the freeze-out of the magnesium-doped electron blocking layer for temperatures below 160 K. The GaN:Mg subcontact layer works satisfyingly even at the lowest operating temperature (20 K).

SELECTION OF CITATIONS
SEARCH DETAIL