Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.163
Filter
1.
Front Genet ; 15: 1438375, 2024.
Article in English | MEDLINE | ID: mdl-39350767

ABSTRACT

Introduction: Male pattern baldness (MPB), also known as androgenetic alopecia, represents the most prevalent form of progressive hair loss in humans. It is characterized by a distinctive pattern of hair loss progression from the scalp; however, its underlying mechanism remains elusive and is influenced by hereditary, immune, and environmental factors. Genome-wide association studies (GWASs) have uncovered numerous risk genes/loci among European individuals with MPB. However, the validation of these susceptibility genes/loci within Han Chinese men remains largely unexplored. The aim of this study was to investigate whether the 71 susceptibility loci identified in a recent GWAS among European men also confer risk for MPB in Chinese men. Methods: Forty-seven single nucleotide polymorphisms (SNPs) previously reported in GWASs of MPB were selected and genotyped in independent individuals comprising 499 Han Chinese cases and 1,489 controls using the Sequenom MassArray system. After stringent quality control measures, 25 SNPs were subjected to statistical analyses. Cochran-Armitage trend test was used to evaluate the association between SNPs and disease susceptibility. To address multiple tests, Bonferroni correction was conducted, setting the threshold for statistical significance at a p-value <2 × 10-3 (0.05/25). Results: The rs13405699 SNP located at 2q31.1 exhibited a significant association with MPB in Han Chinese men (p = 4.84 × 10-5, OR = 1.37, 95% CI: 1.18-1.59). Moreover, the difference in rs13405699 genotype distribution between MPB cases and controls was statistically significant (p = 7.00 × 10-5). Genotype-based association analysis suggested that the recessive model provided the best fit for the rs13405699 polymorphism. Conclusion: This study represents the first confirmation of the association between the rs13405699 SNP at 2q31.1 and MPB within the Han Chinese population, thereby enhancing our understanding of the genetic underpinnings of MPB.

2.
PeerJ ; 12: e18144, 2024.
Article in English | MEDLINE | ID: mdl-39351366

ABSTRACT

Background: Dyslipidemia plays a very important role in the occurrence and development of cardiovascular disease (CVD). Genetic factors, including single nucleotide polymorphisms (SNPs), are one of the main risks of dyslipidemia. 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) is not only the rate-limiting enzyme step of endogenous cholesterol production, but also the therapeutic target of statins. Methods: We investigated 405 Han Chinese and 373 Uyghur people who took statins for a period of time, recorded their blood lipid levels and baseline data before and after oral statin administration, and extracted DNA from each subject for SNP typing of HMGCR rs17671591 and rs3761740. The effects of HMGCR rs17671591 and rs3761740 on lipid levels and the effect of statins on lipid lowering in Han Chinese and Uyghur ethnic groups were studied. Results: In this study, for rs17671591, the CC vs. TT+CT model was significantly correlated with the level of LDL-C before oral statin in the Uyghur population, but there were no correlations between rs17671591 and the level of blood lipid before oral statin in the Han population. The CC vs. TT+CT and CT vs. CC+TT models were significantly correlated with the level of LDL-C after oral statin in the Uyghur population. There was no significant correlation between rs3761740 with blood lipids before and after oral statin in the Han population. For rs3761740, before oral statin, the CC vs. AA+CA model was significantly correlated with the level of LDL-C, and the CA vs. CC+AA model was significantly correlated with the level of total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and non-high density lipoprotein cholesterol (HDL-C) in the Uyghur population. After oral statin, the CC vs. AA+CA and CA vs. CC+AA models were significantly correlated with the level of TC, LDL-C, and apolipoprotein (APOB), and the C vs. A model was significantly correlated with the level of TC, triglyceride (TG), LDL-C, and APOB in the Uyghur population. Particularly, the CT vs. CC+TT model of rs17671591 was significantly correlated with the changes of LDL-C after oral statin in the Uyghur population. In this study, we also explored the association of rs17671591 and rs3761740 with the rate of dyslipidemia as a reference. Conclusion: We found that HMGCR rs3761740 was correlated with the levels of TC, LDL-C, and non-HDL-C before and after oral statin in Uyghurs, but not with blood lipid levels in the Han population. In the Uyghur population, HMGCR rs17671591 was associated with the level of LDL-C before and after oral statin, and also affected the changes of LDL-C after oral statin.


Subject(s)
Asian People , Hydroxymethylglutaryl CoA Reductases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Polymorphism, Single Nucleotide , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Male , Female , Middle Aged , Asian People/genetics , China/ethnology , Cholesterol, LDL/blood , Aged , Adult , Dyslipidemias/drug therapy , Dyslipidemias/genetics , Dyslipidemias/blood , Dyslipidemias/ethnology , Lipids/blood , Hyperlipidemias/drug therapy , Hyperlipidemias/genetics , Hyperlipidemias/blood , Hyperlipidemias/ethnology , East Asian People , Central Asian People
3.
Front Immunol ; 15: 1422834, 2024.
Article in English | MEDLINE | ID: mdl-39355248

ABSTRACT

Variation within the non-coding genome may influence the regulation and expression of important genes involved in immune control such as the human leukocyte antigen (HLA) system. Class I and Class II HLA molecules are essential for peptide presentation which is required for T lymphocyte activation. Single nucleotide polymorphisms within non-coding regions of HLA Class I and Class II genes may influence the expression of these genes by affecting the binding of transcription factors and chromatin modeling molecules. Furthermore, an interplay between genetic and epigenetic factors may also influence HLA expression. Epigenetic factors such as DNA methylation and non-coding RNA, regulate gene expression without changing the DNA sequence. However, genetic variation may promote or allow genes to escape regulation by epigenetic factors, resulting in altered expression. The HLA system is central to most diseases, therefore, understanding the role of genetics and epigenetics on HLA regulation will tremendously impact healthcare. The knowledge gained from these studies may lead to novel and cost-effective diagnostic approaches and therapeutic interventions. This review discusses the role of non-coding variants on HLA regulation. Furthermore, we discuss the interplay between genetic and epigenetic factors on the regulation of HLA by evaluating literature based on polymorphisms within DNA methylation and miRNA regulatory sites within class I and Class II HLA genes. We also provide insight into the importance of the HLA non-coding genome on disease, discuss ethnic-specific differences across the HLA region and provide guidelines for future HLA studies.


Subject(s)
DNA Methylation , Epigenesis, Genetic , HLA Antigens , Humans , HLA Antigens/genetics , Gene Expression Regulation , Polymorphism, Single Nucleotide , Genetic Variation , RNA, Untranslated/genetics , MicroRNAs/genetics
4.
ACS Infect Dis ; 10(10): 3699-3711, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39360674

ABSTRACT

The nonproton pumping type II NADH dehydrogenase in Mycobacterium tuberculosis is essential for meeting the energy needs in terms of ATP under normal aerobic and stressful hypoxic environmental states. Type II NADH dehydrogenase conduits electrons into the electron transport chain in Mycobacterium tuberculosis, which results in ATP synthesis. Therefore, the inhibition of NDH-2 ensures the abolishment of the entire ATP synthesis machinery. Also, type II NADH dehydrogenase is absent in the mammalian genome, thus making it a potential target for antituberculosis drug discovery. Herein, we have screened a commercially available library of drug-like molecules and have identified a hit having a benzimidazole core moiety (6, H37Rv mc26230; minimum inhibitory concentration (MIC) = 16 µg/mL and ATP IC50 = 0.23 µg/mL) interfering with the oxidative phosphorylation pathway. Extensive medicinal chemistry optimization resulted in analogue 8, with MIC = 4 µg/mL and ATP IC50 = 0.05 µg/mL against the H37Rv mc26230 strain of Mycobacterium tuberculosis. Compounds 6 and 8 were found to be active against mono- and multidrug-resistant mycobacterium strains and demonstrated a bactericidal response. The Peredox-mCherry experiment and identification of single-nucleotide polymorphisms in mutants of CBR-5992 (a known type II NADH dehydrogenase inhibitor) were used to confirm the molecules as inhibitors of the type II NADH dehydrogenase enzyme. The safety index >10 for the test active molecules revealed the safety of test molecules.


Subject(s)
Antitubercular Agents , Benzimidazoles , Microbial Sensitivity Tests , Mycobacterium tuberculosis , NADH Dehydrogenase , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , NADH Dehydrogenase/antagonists & inhibitors , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Structure-Activity Relationship , Humans
5.
Article in English | MEDLINE | ID: mdl-39369809

ABSTRACT

Major Depressive Disorder (MDD) is one of the most prevalent neurobiological disorders globally. Antidepressant medications are the first-line treatment for managing symptoms. However, over time, pharmacotherapy has been linked to several challenges, primarily due to the wide array of side effects that often reduce patient adherence to treatment. The literature suggests that these side effects may be influenced by polymorphisms in genes related to the pharmacokinetics and pharmacodynamics of antidepressants. Thus, this systematic review aimed to identify studies that investigated the association between genetic variants and side effects resulting from antidepressant treatment in individuals with MDD. Original articles indexed in the electronic databases Cochrane Library, EMBASE, MEDLINE via PubMed, and Scopus were identified. A total of 55 studies were included in the review, and data regarding the outcomes of interest were extracted. Due to the exploratory nature of the review, a narrative/descriptive synthesis of the results was performed. The risk of bias was evaluated using the Joanna Briggs Institute's tools, tailored to the design of each study. Polymorphisms in 35 genes were statistically associated with the development of side effects. A subsequent Protein-Protein Interaction Network analysis helped elucidate the key biological pathways involved in antidepressant side effects, with a view toward exploring the potential application of pharmacogenetic markers in clinical practice.

6.
BMC Cancer ; 24(1): 1261, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39390542

ABSTRACT

BACKGROUND: Chronic inflammation is associated with the etiology of various cancers. However, there is a lack of systematic research in urologic cancers. This study aims to use a two-sample Mendelian randomization (MR) approach to evaluate the role of circulating cytokines in the development of urologic cancers. METHODS: We obtained the summary-level data for bladder cancer (373,295 cases and 372,016 controls), prostate cancer (462,933 cases and 459,664 controls), and kidney cancer (463,010 cases and 461,896 controls) from the UK Biobank. Genetic variations linked to 41 circulating cytokines were used as instrumental variables (IVs) in meta-analyses of genome-wide association studies (GWASs) involving 8,293 individuals from Finland. We primarily used the inverse-variance weighted (IVW) method to assess the potential associations between the 41 cytokines and the risk of 3 common urologic cancers. Weighted-median method, weighted mode and simple-median method were used to assess the sensitivity. Heterogeneity and pleiotropic outlier were evaluated by Cochran's Q test and MR-Egger regression. Genetic correlation, colocalization analysis and multivariable MR analysis were used to further validate the potential pleiotropy. RESULTS: After the Bonferroni correction, there was an observed association between elevated genetically predicted levels of CCL27 and a heightened risk for bladder cancer. Conversely, IL-12p70 levels were found to have a protective association against the risk of bladder cancer. Sensitivity analyses utilizing various IV sets and MR approach remained robust. Furthermore, we found potential associations of 7 cytokines with urologic cancers (4.07 × 10-4 ≤ P < 0.05). CONCLUSION: Our study supported causal associations between CCL27, IL-12p70 and bladder cancer risk and potential associations of 7 cytokines with the risk of urologic cancers, helping us to further understand the pathogenesis of urologic cancers and providing clues for improving diagnostic accuracy and therapies.


Subject(s)
Cytokines , Genome-Wide Association Study , Mendelian Randomization Analysis , Prostatic Neoplasms , Urinary Bladder Neoplasms , Urologic Neoplasms , Humans , Cytokines/blood , Cytokines/genetics , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/blood , Prostatic Neoplasms/epidemiology , Urologic Neoplasms/genetics , Urologic Neoplasms/blood , Urologic Neoplasms/epidemiology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/blood , Urinary Bladder Neoplasms/epidemiology , Polymorphism, Single Nucleotide , Kidney Neoplasms/genetics , Kidney Neoplasms/blood , Kidney Neoplasms/epidemiology , Risk Factors , Genetic Predisposition to Disease , Finland/epidemiology , Case-Control Studies , Female
7.
Chin Med ; 19(1): 138, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39380014

ABSTRACT

BACKGROUND: Fritillariae Cirrhosae Bulbus (FCB) is frequently adulterated with its closely related species due to personal or non-man made factors, leading to alterations in the composition of its constituents and compromising the efficacy of its products. METHODS: The specific single nucleotide polymorphisms (SNPs) were screened by comparing candidate barcodes of Fritillaria and verified by amplification and sequencing. Herb molecular quantification (Herb-Q) was established by detecting specific SNPs, and the methodological validation was performed. Quantitative standard curves were established for FCB mixed with each adulterated species, and the quantitative validity of this method was verified based on external standard substance. In addition, eight commercial Shedan Chuanbei capsules (SDCBs) randomly selected were detected. RESULTS: FCB and its five adulterants can be distinguished based on the ITS 341 site. The methodological investigation of Herb-Q shows optimal accuracy, and repeatability, which exhibited good linearity with an R2 of 0.9997 (> 0.99). An average bias in quantitative validity was 5.973% between the measured and actual values. Four of eight commercial SDCBs were adulterated with F. ussuriensis or F. thunbergia with adulteration levels ranging from 9 to 15% of the total weight. CONCLUSION: This study confirmed that Herb-Q can quantitatively detect both the mixed herbs and Chinese patent medicines (CPMs) containing FCB with high reproducibility and accuracy. This method provides technical support for market regulation and helps safeguard patient rights.

8.
Front Pain Res (Lausanne) ; 5: 1370704, 2024.
Article in English | MEDLINE | ID: mdl-39385756

ABSTRACT

Background: There is an urgent need to confirm biomarkers reflecting the pathogenesis and targeted drugs of lower back pain or/and sciatica in clinical practice. This study aimed to conduct a two sample bidirectional Mendelian randomization (MR) analysis to explore the causal link between 486 serum metabolites and lower back pain or/and sciatica. Methods: All data come from two public shared databases of European ancestry and single nucleotide polymorphisms (SNPs) for lower back pain or/and sciatica acted as instrumental variables. The traditional inverse variance weighting (IVW) method, weighted-median method, MR-Egger methodand other methods were used to estimate causality. The horizontal pleiotropy, heterogeneities were also verified through the MR-Egger intercept test, Cochran's Q test, MR-PRESSO test and the leave-one-out sensitivity analysis. Reverse MR analysis was employed to evaluate the direct impact of metabolites on lower back pain or/and sciatica. Additionally, we conducted the colocalization analysis to reflect the causality deeply. Furthermore, metabolic pathway analysis was performed. Results: 28 metabolites (18 known metabolites, 1 identified metabolites and 9 unknown metabolites) relevant to the risk of sciatica or/and lower back pain after using genetic variants as probes at PIVW < 0.05 were identifed. Among them, 8 serum metabolites decreased risk of sciatica or/and lower back pain significantly (P < 0.05), and 14 serum metabolites increased risk of sciatica or/and lower back pain significantly (P < 0.05). No reverse causal association was found between 28 metabolites and sciatica or/and lower back pain. Colocalization analysis results showed that the associations between sciatica or/and lower back pain and the 28 identified metabolites were not due to shared causal variant sites. Moreover, pathway enrichment analysis identifed 11 signifcant metabolic pathways, which are mainly involved in the pathological mechanism of sciatica or/and lower back pain (P < 0.05). There was no horizontal pleiotropy or heterogeneity in the other analyses. Conclusion: Our analyses provided robust evidence of causal associations between blood metabolites on sciatica or/and lower back pain. However, the underlying mechanisms remain to be further investigated.

9.
Front Med (Lausanne) ; 11: 1396036, 2024.
Article in English | MEDLINE | ID: mdl-39386745

ABSTRACT

Background: Although previous studies have indicated an association between low-density lipoprotein (LDL) and skin diseases, their causal effects remain inconclusive. This study aimed to assess the causal relationship between genetically proxied lipid-lowering drugs and skin cancers and psoriasis. Methods: Two-sample Mendelian randomization (MR) analysis was performed using single-nucleotide polymorphisms (SNPs) from genome-wide association studies (GWAS). The inverse-variance weighted (IVW) method was used to determine causal relationships. The "leave-one-out" sensitivity test, Cochran's Q-statistic and MR-Egger intercept were used to assess heterogeneity and horizontal pleiotropy. Results: We identified 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and proprotein convertase subtilisin-kexin type 9 (PCSK9) as genetically proxied lipid-lowering drugs. Genetically proxied inhibition of HMGCR (stains) was causally associated with reduced risk of nonmelanoma skin cancer (OR 0.982, 95% CI 0.967-0.997, p = 0.016 by weighted median; OR 0.977, 95% CI 0.966-0.989, p < 0.001 by IVW) and psoriasis (OR 0.585, 95% CI 0.378-0.905, p = 0.016 by IVW), while PCSK9 inhibition (alirocumab) was causally associated with reduced risk of psoriasis (OR 0.560, 95% CI 0.413-0.761 by weighted median; OR 0.564, 95% CI 0.447-0.712 by IVW; p < 0.001) in the ieu-b-5089 dataset. Similar results were observed in the ieu-b-110 dataset for HMGCR and PCSK9. Sensitivity analysis revealed no evidence of heterogeneity or horizontal pleiotropy. Conclusion: This study revealed the existing HMGCR inhibitors (stains) might be protective for reducing nonmelanoma skin cancer risk, and HMGCR inhibitors (stains) and PCSK9 inhibitor (alirocumab) might be promising for reducing psoriasis risk in the European population.

10.
Diabetol Metab Syndr ; 16(1): 243, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375805

ABSTRACT

BACKGROUND: By 2045, it is expected that 693 million individuals worldwide will have diabetes and with greater risk of morbidity, mortality, loss of vision, renal failure, and a decreased quality of life due to the devastating effects of macro- and microvascular complications. As such, clinical variables and glycemic control alone cannot predict the onset of vascular problems. An increasing body of research points to the importance of genetic predisposition in the onset of both diabetes and diabetic vascular complications. OBJECTIVES: Purpose of this article is to review these approaches and narrow down genetic findings for Diabetic Mellitus and its consequences, highlighting the gaps in the literature necessary to further genomic discovery. MATERIAL AND METHODS: In the past, studies looking for genetic risk factors for diabetes complications relied on methods such as candidate gene studies, which were rife with false positives, and underpowered genome-wide association studies, which were constrained by small sample sizes. RESULTS: The number of genetic findings for diabetes and diabetic complications has over doubled due to the discovery of novel genomics data, including bioinformatics and the aggregation of global cohort studies. Using genetic analysis to determine whether diabetes individuals are at the most risk for developing diabetic vascular complications (DVC) might lead to the development of more accurate early diagnostic biomarkers and the customization of care plans. CONCLUSIONS: A newer method that uses extensive evaluation of single nucleotide polymorphisms (SNP) in big datasets is Genome-Wide Association Studies (GWAS).

11.
Vet World ; 17(8): 1778-1788, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39328439

ABSTRACT

Brucellosis is an infectious disease of animals that can infect humans. The disease causes significant economic losses and threatens human health. A timely and accurate disease diagnosis plays a vital role in the identification of brucellosis. In addition to traditional diagnostic methods, molecular methods allow diagnosis and typing of the causative agent of brucellosis. This review will discuss various methods, such as Bruce-ladder, Suiladder, high-resolution melt analysis, restriction fragment length polymorphism, multilocus sequence typing, multilocus variable-number tandem repeat analysis, and whole-genome sequencing single-nucleotide polymorphism, for the molecular typing of Brucella and discuss their advantages and disadvantages.

12.
Biomolecules ; 14(9)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39334862

ABSTRACT

Pelvic organ prolapse (POP) is a benign disease characterized by the descent of pelvic organs due to weakened pelvic floor muscles and fascial tissues. Primarily affecting elderly women, POP can lead to various urinary and gastrointestinal tract symptoms, significantly impacting their quality of life. The pathogenesis of POP predominantly involves nerve-muscle damage and disorders in the extracellular matrix metabolism within the pelvic floor. Recent studies have indicated that genetic factors may play a crucial role in this condition. Focusing on linkage analyses, single-nucleotide polymorphisms, genome-wide association studies, and whole exome sequencing studies, this review consolidates current research on the genetic predisposition to POP. Advances in epigenetics are also summarized and highlighted, aiming to provide theoretical recommendations for risk assessments, diagnoses, and the personalized treatment for patients with POP.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Pelvic Organ Prolapse , Polymorphism, Single Nucleotide , Humans , Pelvic Organ Prolapse/genetics , Female , Polymorphism, Single Nucleotide/genetics , Epigenesis, Genetic
13.
Diagnostics (Basel) ; 14(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39335717

ABSTRACT

Sjögren's syndrome (SS) is a chronic autoimmune disorder characterised by lymphocytic infiltration of the exocrine glands, which leads to dryness of the eyes and mouth; systemic manifestations such as arthritis, vasculitis, and interstitial lung disease; and increased risks of lymphoma and cardiovascular diseases. SS predominantly affects women, with a strong genetic component linked to sex chromosomes. Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with primary SS (pSS), revealing insights into its pathogenesis. The adaptive and innate immune systems are crucial to SS's development, with viral infections implicated as environmental triggers that exacerbate autoimmune responses in genetically susceptible individuals. Moreover, recent research has highlighted the role of vitamin D in modulating immune responses in pSS patients, suggesting its potential therapeutic implications. In this review, we focus on the recently identified SNPs in genes like OAS1, NUDT15, LINC00243, TNXB, and THBS1, which have been associated with increased risks of developing more severe symptoms and other diseases such as fatigue, lymphoma, neuromyelitis optica spectrum disorder (NMOSD), dry eye syndrome (DES), and adverse drug reactions. Future studies should focus on larger, multi-ethnic cohorts with standardised protocols to validate findings and identify new associations. Integrating genetic testing into clinical practise holds promise for improving SS management and treatment strategies, enabling personalised interventions based on comprehensive genetic profiles. By focusing on specific SNPs, vitamin D, and their implications, future research can lead to more effective and personalised approaches for managing pSS and its complications.

14.
Genes (Basel) ; 15(9)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39336724

ABSTRACT

Short Tandem Repeat (STR) testing via capillary electrophoresis is undoubtedly the most popular forensic genetic testing method. However, its low multiplexing capabilities and limited performance with challenging samples are among the factors pushing scientists towards new technologies. Next-generation sequencing (NGS) methods overcome some of these limitations while also enabling the testing of Single-Nucleotide Polymorphisms (SNPs). Nonetheless, these methods are still under optimization, and their adoption into practice is limited. Among the available kits, Thermo Fisher Scientific (Waltham, MA, USA) produces three Precision ID Panels: GlobalFiler NGS STR, Identity, and Ancestry. A clear review of these kits, providing information useful for the promotion of their use, is, however, lacking. To close the gap, a literature review was performed to investigate the popularity, applications, and performance of these kits. Following the PRISMA guidelines, 89 publications produced since 2015 were identified. China was the most active country in the field, and the Identity Panel was the most researched. All kits appeared robust and useful for low-quality and low-quantity samples, while performance with mixtures varied. The need for more population data was highlighted, as well as further research surrounding variables affecting the quality of the sequencing results.


Subject(s)
Forensic Genetics , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Humans , High-Throughput Nucleotide Sequencing/methods , Forensic Genetics/methods , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards
15.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337523

ABSTRACT

The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In this study, 100 individuals (45 resistant and 55 susceptible) were sequenced and evaluated for resistance to LMBV and a total of 2,579,770 variant sites (SNPs-single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels)) were identified. A total of 2348 SNPs-InDels and 1018 putative candidate genes associated with LMBV resistance were identified by genome-wide association analyses (GWAS). Furthermore, GO and KEGG analyses revealed that the 10 candidate genes (MHC II, p38 MAPK, AMPK, SGK1, FOXO3, FOXO6, S1PR1, IL7R, RBL2, and GADD45) were related to intestinal immune network for IgA production pathway and FoxO signaling pathway. The acquisition of candidate genes related to resistance will help to explore the molecular mechanism of resistance to LMBV in largemouth bass. The potential polymorphic markers identified in this study are important molecular markers for disease resistance breeding in largemouth bass.


Subject(s)
Bass , DNA Virus Infections , Disease Resistance , Fish Diseases , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Ranavirus , Animals , Bass/genetics , Bass/virology , Bass/immunology , Ranavirus/physiology , Fish Diseases/virology , Fish Diseases/genetics , Fish Diseases/immunology , Disease Resistance/genetics , DNA Virus Infections/veterinary , DNA Virus Infections/virology , DNA Virus Infections/immunology , DNA Virus Infections/genetics , INDEL Mutation
16.
Life (Basel) ; 14(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39337893

ABSTRACT

The aim of this study was to identify single-nucleotide polymorphisms (SNPs) in bone remodeling-related genes associated with disease severity and bone mineral density (BMD) in early arthritis (EA) patients. For this purpose, the genotyping of 552 SNPs located in gene regions of semaphorins 4b, 4d, 4f, DKK1, 2 and 3, sclerostin, OPG, RANK and RANKL was performed using Immunochip from Illumina Inc. in 268 patients from the Princesa Early Arthritis Register Longitudinal (PEARL) study. Measurements of BMD and disease activity were chosen as outcome variables to select SNPs of interest. The relationships of SNPs with the BMD of the forearm, lumbar spine and hip (Hologic-4500 QDR) were analyzed by linear regression adjusted for age, sex, body mass index and presence of anti-citrullinated peptide antibodies (ACPAs). The association of each SNP with activity variables was analyzed by linear regression, logistic regression or ordered logistic regression according to the variable, and multivariate models were adjusted for potentially confounding variables, such as age, sex and presence of ACPAs. These analyses showed that four SNPs located in the genes coding for RANK (TNFRSF11A) and OPG (TNFRSF11B) were significantly associated with clinical variables of severity. SNP rs1805034 located in exon 6 of TNFRSF11A, which causes a non-synonymous (A/V) mutation, showed significant association with BMD and therefore may be considered as a possible biomarker of severity in RA patients. SNPs in the OPG gene showed an association with serum OPG levels and predicted disease activity after two years of follow-up.

17.
Article in English | MEDLINE | ID: mdl-39318216

ABSTRACT

BACKGROUND: The relationship between uterine fibroids and keloid/hypertrophic scars has been contradictory. Our research employs a bidirectional Mendelian Randomization (MR) approach to establish a clearer understanding of this potential causal link. OBJECTIVE: This study aimed to determine the effect of uterine fibroids on keloid/hypertrophic scars and the effect of keloid/hypertrophic scars on uterine fibroids. PURPOSE: We aimed to demonstrate the relationship between uterine fibroids and keloid/ hypertrophic scars. METHOD: Our bidirectional MR study utilized summarized data from genome-wide association studies (GWAS) focused on European populations. Our primary tool for establishing causality was the Inverse-Variance Weighted (IVW) method. To reinforce the IVW findings, we also applied four alternative MR methods: MR-Egger, Maximum Likelihood, Weighted Mode, and Weighted Median. RESULT: The IVW method indicated a significant causal link, with uterine fibroids greatly raising the likelihood of developing keloids (Odds Ratio [OR] = 1.202, 95% Confidence Interval [CI]: 1.045-1.381; P=0.010) and hypertrophic scars (OR = 1.256, 95% CI: 1.039-1.519; P=0.018). Parallel results were observed with the MR-Egger, Maximum Likelihood, Weighted Mode, and Weighted Median methods. Sensitivity analyses indicated robustness in these findings, with no evidence of heterogeneity or horizontal pleiotropy. Conversely, the reverse MR analysis did not demonstrate an increased risk of uterine fibroids due to keloids or hypertrophic scars. CONCLUSION: This study elucidates a significant causal effect of uterine fibroids on the development of keloid and hypertrophic scars, offering valuable insights into their pathogenesis and potential therapeutic targets.

18.
Trop Life Sci Res ; 35(1): 277-295, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39262864

ABSTRACT

This study aims to analyse the genetic diversity of Siganus canaliculatus in the Inner Ambon Bay (IAB) waters. DNA of S. canaliculatus specimens collected from IAB was extracted from tissues using a Tissue Genomic DNA Mini Kit, and partial CO1 genes were amplified using pair of universal primers. Genetic distances were determined by Kimura 2-parameter, and phylogenetic trees were constructed using the neighbour-joining method in MEGA 10.2.2 software. Arlequin software was used to analyse Fixation Index (Fst) and Analysis of Molecular Variance (AMOVA). There are three SNPs of S. canaliculatus from IAB that distinguish GenBank sequence data from S. canaliculatus. In Tanjung Tiram population group, contained three specific 677 (A), 679 (G), 703 (T) sites and two 693 (G), 714 (A) sites for the Nania population. Haplotype and nucleotide diversity of each population range from 0.000 to 1,000 and 0.000 to 0.004. Intra- and inter-population genetic differentiation were 21.19% dan 78.81%, respectively. Intra- and inter-population genetic distances were in range of 0.40-1.13 and 0.00-0.37, respectively. The pattern and direction of tidal currents as a link or barrier to spatial distribution and connectivity of S. canaliculatus larvae between seagrass habitats, as well as the presence of different anthropogenic pressures in each seagrass habitat, are thought to influence the genetic characteristics (genetic diversity, genetic variation, genetic differentiation and genetic distance) of S. canaliculatus populations in IAB waters. The results of this study provide information about the urgency of habitat-based fisheries management to support sustainable utiliation.s.

19.
Front Immunol ; 15: 1444469, 2024.
Article in English | MEDLINE | ID: mdl-39301021

ABSTRACT

Currently, despite advancements in diagnostic and therapeutic modalities, osteomyelitis and prosthetic joint infection (PJI) continue to pose significant challenges for orthopaedic surgeons. These challenges are primarily attributed to the high degree of heterogeneity exhibited by these disorders, which are influenced by a combination of environmental and host factors. Recent research efforts have delved into the pathogenesis of osteomyelitis and PJI by investigating single nucleotide polymorphisms (SNPs). This review comprehensively summarizes the current evidence regarding the associations between SNPs and the predisposition to osteomyelitis and PJI across diverse populations. The findings suggest potential linkages between SNPs in genes such as IL-1, IL-6, IFN-γ, TNF-α, VDR, tPA, CTSG, COX-2, MMP1, SLC11A1, Bax, NOS2, and NLRP3 with the development of osteomyelitis. Furthermore, SNPs in genes like IL-1, IL-6, TNF-α, MBL, OPG, RANK, and GCSFR are implicated in susceptibility to PJI. However, it is noted that most of these studies are single-center reports, lacking in-depth mechanistic research. To gain a more profound understanding of the roles played by various SNPs in the development of osteomyelitis and PJI, future multi-center studies and fundamental investigations are deemed necessary.


Subject(s)
Genetic Predisposition to Disease , Osteomyelitis , Polymorphism, Single Nucleotide , Prosthesis-Related Infections , Humans , Osteomyelitis/genetics , Prosthesis-Related Infections/genetics , Animals
20.
Sex Med ; 12(4): qfae056, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39301522

ABSTRACT

Background: Recent genetic association studies focusing on central pathways have been performed to investigate the correlation between susceptibility alleles and the risk of lifelong premature ejaculation (LPE). However, there remains a dearth of documented genes associated with peripheral pathways. Objective: In this study we aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) associated with the peripheral genes CYP19A1, CYP1A1, and CYP1A2 and the risk of LPE. Methods: From August 2017 to August 2020, a total of 511 participants (139 LPE patients and 372 controls) were recruited. Trained medical professionals diagnosed LPE according to the standard definition set by the International Society for Sexual Medicine. Nine candidate SNPs were chosen and genotyped using the MassARRAY system. Allele and genotype frequencies of the SNPs among patients and controls were compared using the χ2 test. Logistic regression analysis, adjusted for age, was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs) using PLINK version 1.9. Haploview software was employed to analyze linkage disequilibrium and haplotype distribution. The interaction among candidate SNPs concerning LPE risk was evaluated using multifactor dimensionality reduction. The relationship between selected polymorphisms and specific features was assessed using analysis of variance. Outcome: Heterozygous SNPs located in the CYP19A1 (rs4646, rs17601876), CYP1A1 (rs1048943), and CYP1A2 (rs762551, rs2470890) genes showed significant correlations with the risk of LPE. Results: The findings of this study confirmed that heterozygous SNPs in the CYP19A1 (rs4646 AC vs CC: OR, 1.84; CI, 1.10-3.09; rs17601876 AG vs GG: OR, 1.80; CI, 1.06-3.05) and CYP1A1 genes (rs1048943 CT vs TT: OR, 1.71; CI, 1.02-2.87), respectively, can significantly increase the LPE risk. Participant scores for the Premature Ejaculation Diagnostic Tool (P =.002) and International Index of Erectile Function-5 (P =.020) differed significantly by genotype for the different genotypes of CYP1A1-rs1048943. Haplotype analysis revealed strong linkage disequilibrium under CYP1A2_rs762551-rs2470890 (D' = 1.00). Clinical Implications: The findings of this and other investigations of genetic determinants and potential pathogenic mechanisms of LPE may advance diagnostic and therapeutic opportunities in LPE patients. Strengths and Limitations: In this study of LPE in men with CYP gene variants we addressed a current research gap. However, data on risk factors such as smoking and drinking were incomplete in both the case and control groups. In future studies we will expand the sample size and enhance data on risk factors for more precise assessments. Conclusion: In summary, polymorphisms in the peripheral genes CYP19A1, CYP1A1, and CYP1A2 may play a role in LPE among Chinese men of the Han population.

SELECTION OF CITATIONS
SEARCH DETAIL