Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Article in English | MEDLINE | ID: mdl-39292403

ABSTRACT

The study objective was to examine the mental health of children during a time period that included the COVID-19 Lockdown. The sample included a cross-section of children aged 2 to 17 years (2019; n = 4, 194; 2020; n = 5,172), from the National Health Interview Survey. In multivariate models, survey years 2020 and 2019 were compared for significant changes in anxiety, depression, and social behaviors in children after adjustment for sociodemographic variables. Bivariate analysis also examined sociodemographic characteristics, health care utilization by anxiety, depression, and social behaviors, and examined differences in anxiety and depression from 2019 to 2020. In multivariate models, there was an increased risk of anxiety ((AOR = 1.3(1.0, 1.6)), depression ((AOR = 1.2 (1.0, 1.4)) and difficult social behaviors (AOR = 1.2 (1.0, 1.4) in children from 2019 to 2020. Girls were at increased risk compared to boys for anxiety and depression ((anxiety; AOR = 1.4 (1.2, 1.8), depression; AOR = 1.2 (1.0, 1.3)), however, girls were at decreased risk compared to boys for uncontrolled social behaviors (AOR = 0.51 (0.43, 0.61)). White children were at increased risk for anxiety and depression compared to all other race and ethnic groups. High rates of anxiety, depression and difficult social behaviors that preexisted the Covid-19 Lock Down, continued or increased during the Lockdown. Effective public health interventions could prevent further declines in mental health, and a potential trajectory into adulthood of poor physical and mental health.

2.
Autism Res ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39234879

ABSTRACT

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene and characterized by early-onset epilepsy, intellectual disability, and autistic features. To date, the etiological mechanisms underlying CDD are largely unknown and no effective therapies are available. The Cdkl5 knock-out (KO) mouse has been broadly employed in preclinical studies on CDD; Cdkl5-KO mice display neurobehavioral abnormalities recapitulating most CDD symptoms, including alterations in motor, sensory, cognitive, and social abilities. However, most available preclinical studies have been carried out on adult Cdkl5-KO mice, so little is known about the phenotypic characteristics of this model earlier during development. Furthermore, major autistic-relevant phenotypes, for example, social and communication deficits, have been poorly investigated and mostly in male mutants. Here, we assessed the autistic-relevant behavioral phenotypes of Cdkl5-KO mice during the first three post-natal weeks and in adulthood. Males and females were tested, the latter including both heterozygous and homozygous mutants. Cdkl5 mutant pups showed qualitative and quantitative alterations in ultrasonic communication, detected first at 2 weeks of age and confirmed later in adulthood. Increased levels of anxiety-like behaviors were observed in mutants at 3 weeks and in adulthood, when stereotypies, reduced social interaction and memory deficits were also observed. These behavioral effects of the mutation were evident in both sexes, being more marked and varied in homozygous than heterozygous females. These findings provide novel evidence for the autistic-relevant behavioral profile of the Cdkl5 mouse model, thus supporting its use in future preclinical studies investigating CDD pathology and autism spectrum disorders.

4.
Psychiatry Res Neuroimaging ; 344: 111877, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232266

ABSTRACT

Many psychopathologies tied to internalizing symptomatology emerge during adolescence, therefore identifying neural markers of internalizing behavior in childhood may allow for early intervention. We utilized data from the Adolescent Brain and Cognitive Development (ABCD) Study® to evaluate associations between cortico-amygdalar functional connectivity, polygenic risk for depression (PRSD), traumatic events experienced, internalizing behavior, and internalizing subscales: withdrawn/depressed behavior, somatic complaints, and anxious/depressed behaviors. Data from 6371 children (ages 9-11) were used to analyze amygdala resting-state fMRI connectivity to Gordon parcellation based whole-brain regions of interest (ROIs). Internalizing behaviors were measured using the parent-reported Child Behavior Checklist. Linear mixed-effects models were used to identify patterns of cortico-amygdalar connectivity associated with internalizing behaviors. Results indicated left amygdala connections to auditory, frontoparietal network (FPN), and dorsal attention network (DAN) ROIs were significantly associated with withdrawn/depressed symptomatology. Connections relevant for withdrawn/depressed behavior were linked to social behaviors. Specifically, amygdala connections to DAN were associated with social anxiety, social impairment, and social problems. Additionally, an amygdala connection to the FPN ROI and the auditory network ROI was associated with social anxiety and social problems, respectively. Therefore, it may be important to account for social behaviors when looking for brain correlates of depression.


Subject(s)
Amygdala , Depression , Magnetic Resonance Imaging , Humans , Amygdala/diagnostic imaging , Amygdala/physiopathology , Child , Male , Female , Depression/diagnostic imaging , Depression/physiopathology , Depression/psychology , Adolescent , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Neural Pathways/growth & development
5.
J Neural Eng ; 21(3)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38861996

ABSTRACT

Objective.Distributed hypothalamic-midbrain neural circuits help orchestrate complex behavioral responses during social interactions. Given rapid advances in optical imaging, it is a fundamental question how population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. This paper aims to investigate the correspondence between MFP data and social behaviors.Approach:We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include a continuous-state linear dynamical system and a discrete-state hidden semi-Markov model. We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively.Main results:Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states, and produce interpretable latent states. Our approach is also validated in computer simulations in the presence of known ground truth.Significance:Overall, these analysis approaches provide a state-space framework to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.


Subject(s)
Photometry , Social Behavior , Animals , Mice , Photometry/methods , Male , Female , Mice, Inbred C57BL , Nerve Net/physiology , Computer Simulation , Sexual Behavior, Animal/physiology , Aggression/physiology , Models, Neurological
6.
Cell Rep ; 43(5): 114231, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38733588

ABSTRACT

Mutations in the SRCAP gene are among the genetic alterations identified in autism spectrum disorders (ASD). However, the pathogenic mechanisms remain unclear. In this study, we demonstrate that Srcap+/- mice manifest deficits in social novelty response, as well as increased repetitive behaviors, anxiety, and impairments in learning and memory. Notably, a reduction in parvalbumin-positive neurons is observed in the retrosplenial cortex (RSC) and dentate gyrus (DG) of these mice. Through RNA sequencing, we identify dysregulation in 27 ASD-related genes in Srcap+/- mice. Specifically, we find that Srcap regulates expression of Satb2 via H2A.z in the promoter. Therapeutic intervention via retro-orbital injection of adeno-associated virus (AAV)-Satb2 in neonatal Srcap+/- mice leads to amelioration of the neurodevelopmental and ASD-like abnormalities. Furthermore, the expression of Satb2 only in the RSC of adolescent mice rectifies social novelty impairments. These results underscore the pivotal role of Srcap in neurodevelopment, by regulating Satb2, providing valuable insights for the pathophysiology of ASD.


Subject(s)
Haploinsufficiency , Matrix Attachment Region Binding Proteins , Transcription Factors , Animals , Mice , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Behavior, Animal , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Mice, Inbred C57BL , Neurons/metabolism , Social Behavior , Transcription Factors/metabolism , Transcription Factors/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism
7.
Zool Res ; 45(3): 663-678, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766748

ABSTRACT

A growing number of studies have demonstrated that repeated exposure to sevoflurane during development results in persistent social abnormalities and cognitive impairment. Davunetide, an active fragment of the activity-dependent neuroprotective protein (ADNP), has been implicated in social and cognitive protection. However, the potential of davunetide to attenuate social deficits following sevoflurane exposure and the underlying developmental mechanisms remain poorly understood. In this study, ribosome and proteome profiles were analyzed to investigate the molecular basis of sevoflurane-induced social deficits in neonatal mice. The neuropathological basis was also explored using Golgi staining, morphological analysis, western blotting, electrophysiological analysis, and behavioral analysis. Results indicated that ADNP was significantly down-regulated following developmental exposure to sevoflurane. In adulthood, anterior cingulate cortex (ACC) neurons exposed to sevoflurane exhibited a decrease in dendrite number, total dendrite length, and spine density. Furthermore, the expression levels of Homer, PSD95, synaptophysin, and vglut2 were significantly reduced in the sevoflurane group. Patch-clamp recordings indicated reductions in both the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). Notably, davunetide significantly ameliorated the synaptic defects, social behavior deficits, and cognitive impairments induced by sevoflurane. Mechanistic analysis revealed that loss of ADNP led to dysregulation of Ca 2+ activity via the Wnt/ß-catenin signaling, resulting in decreased expression of synaptic proteins. Suppression of Wnt signaling was restored in the davunetide-treated group. Thus, ADNP was identified as a promising therapeutic target for the prevention and treatment of neurodevelopmental toxicity caused by general anesthetics. This study provides important insights into the mechanisms underlying social and cognitive disturbances caused by sevoflurane exposure in neonatal mice and elucidates the regulatory pathways involved.


Subject(s)
Cognitive Dysfunction , Nerve Tissue Proteins , Proteome , Ribosomes , Sevoflurane , Social Behavior , Animals , Male , Mice , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/toxicity , Anesthetics, Inhalation/pharmacology , Animals, Newborn , Behavior, Animal/drug effects , Cognitive Dysfunction/chemically induced , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Ribosomes/drug effects , Ribosomes/metabolism
8.
Biol Sex Differ ; 15(1): 40, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750585

ABSTRACT

BACKGROUND: Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS: We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS: Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION: This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.


Subject(s)
Benzhydryl Compounds , Phenols , Prefrontal Cortex , Prenatal Exposure Delayed Effects , Sex Characteristics , Social Behavior , Animals , Female , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Phenols/toxicity , Phenols/adverse effects , Male , Benzhydryl Compounds/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Autistic Disorder/genetics , Autistic Disorder/chemically induced , Rats, Sprague-Dawley , Rats , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/genetics
9.
Cerebellum ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780757

ABSTRACT

Evidence from clinical and preclinical studies has shown that the cerebellum contributes to cognitive functions, including social behaviors. Now that the cerebellum's role in a wider range of behaviors has been confirmed, the question arises whether the cerebellum contributes to social behaviors via the same mechanisms with which it modulates movements. This review seeks to answer whether the cerebellum guides motor and social behaviors through identical pathways. It focuses on studies in which cerebellar cells, synapses, or genes are manipulated in a cell-type specific manner followed by testing of the effects on social and motor behaviors. These studies show that both anatomically restricted and cerebellar cortex-wide manipulations can lead to social impairments without abnormal motor control, and vice versa. These studies suggest that the cerebellum employs different cellular, synaptic, and molecular pathways for social and motor behaviors. Future studies warrant a focus on the diverging mechanisms by which the cerebellum contributes to a wide range of neural functions.

10.
Neurobiol Stress ; 30: 100635, 2024 May.
Article in English | MEDLINE | ID: mdl-38645599

ABSTRACT

Rodents are sensitive to the emotional state of conspecifics. While the presence of affiliative social partners mitigates the physiological response to stressors (buffering), the partners of stressed individuals show behavioral and endocrine changes indicating that stress parameters can be transmitted across the group members (contagion). In this study, we investigated the social contagion/buffering phenomena in behavior and neuroendocrine mechanisms after exposure to chronic stress, in groups of rats living in the PhenoWorld (PhW). Three groups were tested (8 stressed rats, 8 unstressed rats, and a mixed group with 4 and 4) and these were analyzed under 4 conditions: stressed (pure stress group, n = 8), unstressed (naive control group, n = 8), stressed from mixed group (stressed companion group, n = 8), unstressed from mixed group (unstressed companion group, n = 8. While naive control animals remained undisturbed, pure stress group animals were all exposed to stress. Half of the animals under the mixed-treatment condition were exposed to stress (stressed companion group) and cohabitated with their unstressed partners (unstressed companion group). We confirmed the well-established chronic unpredictable stress (CUS) effects in physiological, behavioral, and neuroendocrine endpoints; body weight gain, open arm entries and time in EPM, and oxytocin receptor expression levels in the amygdala decreased by stress exposure, whereas adrenal weight was increased by stress. Furthermore, we found that playing, rearing and solitary resting behaviors decreased, whereas huddling behavior increased by CUS. In addition, we detected significant increases (stress-buffering) in body weight gain and huddling behaviors between pure stress and stress companion animals, and significant stress contagion effects in emotional behavior and oxytocin receptor expression levels between naive control and control companion groups. Hence, we demonstrate buffering and contagion effects were evident in physiological parameters, emotional behaviors, and social home-cage behaviors of rats and we suggest a possible mediation of these effects by oxytocin neurotransmission. In conclusion, the results herein suggest that the stress status of animals living in the same housing environment influences the behavior of the group.

11.
Neuron ; 112(9): 1498-1517.e8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38430912

ABSTRACT

Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.


Subject(s)
Empathy , Sex Characteristics , Animals , Male , Female , Mice , Empathy/physiology , Piriform Cortex/physiology , Piriform Cortex/metabolism , Cues , Mice, Inbred C57BL , Affect/physiology , Neurons/physiology , Neurons/metabolism , Behavior, Animal/physiology
12.
Insects ; 15(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38392549

ABSTRACT

Eusocial insects have evolved specific defensive strategies to protect their colonies. In termite colonies, soldiers perform a colony-level defense by displaying mechanical biting, head-banging and mandible opening-closing behaviors. However, few studies have been reported on the factors modulating defensive behaviors in termites. Owing to JH (juvenile hormone) being involved in soldier differentiation, JH was speculated to affect defensive behaviors in termite soldiers. To determine the effect of JH on the defensive behaviors of termite soldiers, we performed a JHA-feeding and RaSsp1-silencing experiment and then tested the changes in defense-related behaviors, alarm pheromones and key JH signaling genes. The observed result was that after feeding workers with JHA, soldiers displayed the following: (1) decreased biting events and increased head-banging events; (2) a reduced expression of RaSsp1 and increased expression of Met (methoprene-tolerant, the nuclear receptor of JH) and Kr-h1 (the JH-inducible transcription factor Krüppel homolog 1); and (3) a decreased concentration of alarm pheromones, including α-pinene, ß-pinene and limonene (+, -). Further study showed that soldiers silenced for RaSsp1 also exhibited (1) decreased biting events and increased head-banging events and (2) increased expression of Met and Kr-h1. In addition, soldiers stimulated by the alarm pheromone limonene displayed an increase in the frequency of mandible opening-closing and biting behavior. All of these results show that JHA influenced the defensive behaviors of termite soldiers, possibly via downregulating RaSsp1 expression, up-regulating Met and Kr-h1 and stimulating the secretion of alarm pheromones, suggesting that the JH pathway plays important roles in modulating social behaviors in termite colonies.

13.
Neurosci Bull ; 40(7): 887-904, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38321347

ABSTRACT

Synapse organizers are essential for the development, transmission, and plasticity of synapses. Acting as rare synapse suppressors, the MAM domain containing glycosylphosphatidylinositol anchor (MDGA) proteins contributes to synapse organization by inhibiting the formation of the synaptogenic neuroligin-neurexin complex. A previous analysis of MDGA2 mice lacking a single copy of Mdga2 revealed upregulated glutamatergic synapses and behaviors consistent with autism. However, MDGA2 is expressed in diverse cell types and is localized to both excitatory and inhibitory synapses. Differentiating the network versus cell-specific effects of MDGA2 loss-of-function requires a cell-type and brain region-selective strategy. To address this, we generated mice harboring a conditional knockout of Mdga2 restricted to CA1 pyramidal neurons. Here we report that MDGA2 suppresses the density and function of excitatory synapses selectively on pyramidal neurons in the mature hippocampus. Conditional deletion of Mdga2 in CA1 pyramidal neurons of adult mice upregulated miniature and spontaneous excitatory postsynaptic potentials, vesicular glutamate transporter 1 intensity, and neuronal excitability. These effects were limited to glutamatergic synapses as no changes were detected in miniature and spontaneous inhibitory postsynaptic potential properties or vesicular GABA transporter intensity. Functionally, evoked basal synaptic transmission and AMPAR receptor currents were enhanced at glutamatergic inputs. At a behavioral level, memory appeared to be compromised in Mdga2 cKO mice as both novel object recognition and contextual fear conditioning performance were impaired, consistent with deficits in long-term potentiation in the CA3-CA1 pathway. Social affiliation, a behavioral analog of social deficits in autism, was similarly compromised. These results demonstrate that MDGA2 confines the properties of excitatory synapses to CA1 neurons in mature hippocampal circuits, thereby optimizing this network for plasticity, cognition, and social behaviors.


Subject(s)
CA1 Region, Hippocampal , Neuronal Plasticity , Pyramidal Cells , Social Behavior , Synapses , Animals , Male , Mice , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiology , Excitatory Postsynaptic Potentials/physiology , Glutamic Acid/metabolism , Memory/physiology , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Pyramidal Cells/metabolism , Synapses/metabolism , Synapses/physiology
14.
bioRxiv ; 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38234793

ABSTRACT

Distributed hypothalamic-midbrain neural circuits orchestrate complex behavioral responses during social interactions. How population-averaged neural activity measured by multi-fiber photometry (MFP) for calcium fluorescence signals correlates with social behaviors is a fundamental question. We propose a state-space analysis framework to characterize mouse MFP data based on dynamic latent variable models, which include continuous-state linear dynamical system (LDS) and discrete-state hidden semi-Markov model (HSMM). We validate these models on extensive MFP recordings during aggressive and mating behaviors in male-male and male-female interactions, respectively. Our results show that these models are capable of capturing both temporal behavioral structure and associated neural states. Overall, these analysis approaches provide an unbiased strategy to examine neural dynamics underlying social behaviors and reveals mechanistic insights into the relevant networks.

15.
Fish Physiol Biochem ; 50(2): 653-666, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38214794

ABSTRACT

Low temperature is one of the most common abiotic stresses for aquatic ectotherms. Ambient low temperatures reduce the metabolic rate of teleosts, therefore, teleosts have developed strategies to modulate their physiological status for energy saving in response to cold stress, including behaviors, circulatory system, respiratory function, and metabolic adjustments. Many teleosts are social animals and they can live in large schools to serve a variety of functions, including predator avoidance, foraging efficiency, and reproduction. However, the impacts of acute cold stress on social behaviors of fish remain unclear. In the present study, we test the hypothesis that zebrafish alter their social behaviors for energy saving as a strategy in response to acute cold stress. We found that acute cold stress increased shoaling behavior that reflected a save-energy strategy for fish to forage and escape from the predators under cold stress. The aggressive levels measured by fighting behavior tests and mirror fighting tests were reduced by cold treatment. In addition, we also found that acute cold stress impaired the learning ability but did not affect memory. Our findings provided evidence that acute cold stress alters the social behaviors of aquatic ectotherms for energy saving; knowledge of their responses to cold is essential for their conservation and management.


Subject(s)
Cold-Shock Response , Zebrafish , Animals , Zebrafish/physiology , Cold Temperature , Aggression , Behavior, Animal/physiology
16.
Int J Aging Hum Dev ; 98(3): 373-394, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37735920

ABSTRACT

This study examined whether social contact, social participation, and social support during the COVID-19 pandemic were associated with depression and anxiety. Data were taken from the 2020 COVID-19 Supplement of the National Health and Aging Trends Study (N = 2,778). Depression and anxiety were regressed on social contact frequency, social participation, and social support. Path analyses were also performed. The results showed that in-person contact was related to lower levels of depression, while in-person contact and attending religious services were related to lower levels of anxiety. Giving and receiving support were associated with higher levels of depression and anxiety. Giving support mediated the link between virtual contact, volunteering, and depression, while receiving support mediated the link between virtual contact and depression. Receiving and giving support mediated the association between virtual social contact, volunteering, and anxiety. During the pandemic, being socially connected provided some benefits in terms of emotional well-being, but in some cases being socially connected did not provide salubrious effects.


Subject(s)
COVID-19 , Pandemics , Humans , Aged , Social Participation , COVID-19/epidemiology , Emotions , Anxiety/epidemiology , Social Support , Depression/epidemiology
17.
Cell Rep ; 42(12): 113533, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38048226

ABSTRACT

Cerebellar dysfunction has been linked to autism spectrum disorders (ASDs). Although cerebellar pathology has been observed in individuals with fragile X syndrome (FXS) and in mouse models of the disorder, a cerebellar functional contribution to ASD-relevant behaviors in FXS has yet to be fully characterized. In this study, we demonstrate a critical cerebellar role for Fmr1 (fragile X messenger ribonucleoprotein 1) in ASD-relevant behaviors. First, we identify reduced social behaviors, sensory hypersensitivity, and cerebellar dysfunction, with loss of cerebellar Fmr1. We then demonstrate that cerebellar-specific expression of Fmr1 is sufficient to impact social, sensory, cerebellar dysfunction, and cerebro-cortical hyperexcitability phenotypes observed in global Fmr1 mutants. Moreover, we demonstrate that targeting the ASD-implicated cerebellar region Crus1 ameliorates behaviors in both cerebellar-specific and global Fmr1 mutants. Together, these results demonstrate a critical role for the cerebellar contribution to FXS-related behaviors, with implications for future therapeutic strategies.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Cerebellar Diseases , Fragile X Syndrome , Animals , Mice , Fragile X Syndrome/metabolism , Autistic Disorder/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Disease Models, Animal , Mice, Knockout
18.
Biol Sex Differ ; 14(1): 81, 2023 11 11.
Article in English | MEDLINE | ID: mdl-37951901

ABSTRACT

BACKGROUND: Gestational sleep apnea is a hypoxic sleep disorder that affects 8-26% of pregnancies and increases the risk for central nervous system dysfunction in offspring. Specifically, there are sex differences in the sensitivity of the fetal hippocampus to hypoxic insults, and hippocampal impairments are associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. Yet, it is unclear whether gestational sleep apnea impacts these hippocampal-associated functions and if sex and age modify these effects. To examine the relationship between gestational sleep apnea and hippocampal-associated behaviors, we used chronic intermittent hypoxia (CIH) to model late gestational sleep apnea in pregnant rats. We hypothesized that late gestational CIH would produce sex- and age-specific social, anxiety-like, repetitive, and cognitive impairments in offspring. METHODS: Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine gestational hypoxia-induced behavioral phenotypes, we quantified hippocampal-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal neuronal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, early growth response protein 1, and doublecortin), and circulating hormones in offspring. RESULTS: Late gestational CIH induced sex- and age-specific differences in social, repetitive, and memory functions in offspring. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and elevated circulating corticosterone levels but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH on social behaviors were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed in anxiety-like behaviors, hippocampal neuronal activity, or circulating testosterone and estradiol levels, regardless of sex or age of offspring. CONCLUSIONS: Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for behavioral and physiological outcomes in offspring, such as social dysfunction, repetitive behaviors, and cognitive impairment, that are dependent on sex and age.


Sleep apnea during late pregnancy is a common pregnancy complication that can impact the brain development of children born to mothers with sleep apnea. Children with impaired brain development may present with decreased social skills, memory issues, anxiety, and compulsivity. It is unclear if there is a cause and effect relationship between sleep apnea during late pregnancy and behavioral changes in offspring. Additionally, it is unknown whether male or female sex or age of the offspring affects these relationships. In this study, we exposed pregnant rats to a model of sleep apnea called chronic intermittent hypoxia (CIH) within late gestation and examined the behavior of the offspring and brain activity during puberty and young adulthood. We found that CIH during late pregnancy had long-term effects in the offspring that were different in males and females. Notably, female offspring displayed social impairments in response to late gestation CIH, whereas male offspring displayed cognitive dysfunction.


Subject(s)
Corticosterone , Sleep Apnea Syndromes , Rats , Pregnancy , Female , Animals , Male , Rats, Long-Evans , Hypoxia/complications , Cognition , Sleep Apnea Syndromes/complications
19.
J Med Internet Res ; 25: e47563, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37906219

ABSTRACT

BACKGROUND: During the initial phases of the vaccination campaign worldwide, nonpharmaceutical interventions (NPIs) remained pivotal in the fight against the COVID-19 pandemic. In this context, it is important to understand how the arrival of vaccines affected the adoption of NPIs. Indeed, some individuals might have seen the start of mass vaccination campaigns as the end of the emergency and, as a result, relaxed their COVID-safe behaviors, facilitating the spread of the virus in a delicate epidemic phase such as the initial rollout. OBJECTIVE: The aim of this study was to collect information about the possible relaxation of protective behaviors following key events of the vaccination campaign in four countries and to analyze possible associations of these behavioral tendencies with the sociodemographic characteristics of participants. METHODS: We developed an online survey named "COVID-19 Prevention and Behavior Survey" that was conducted between November 26 and December 22, 2021. Participants were recruited using targeted ads on Facebook in four different countries: Brazil, Italy, South Africa, and the United Kingdom. We measured the onset of relaxation of protective measures in response to key events of the vaccination campaign, namely personal vaccination and vaccination of the most vulnerable population. Through calculation of odds ratios (ORs) and regression analysis, we assessed the strength of association between compliance with NPIs and sociodemographic characteristics of participants. RESULTS: We received 2263 questionnaires from the four countries. Participants reported the most significant changes in social activities such as going to a restaurant or the cinema and visiting relatives and friends. This is in good agreement with validated psychological models of health-related behavioral change such as the Health Belief Model, according to which activities with higher costs and perceived barriers (eg, social activities) are more prone to early relaxation. Multivariate analysis using a generalized linear model showed that the two main determinants of the drop of social NPIs were (1) having previously tested positive for COVID-19 (after the second vaccine dose: OR 2.46, 95% CI 1.73-3.49) and (2) living with people at risk (after the second vaccine dose: OR 1.57, 95% CI 1.22-2.03). CONCLUSIONS: This work shows that particular caution has to be taken during vaccination campaigns. Indeed, people might relax their safe behaviors regardless of the dynamics of the epidemic. For this reason, it is crucial to maintain high compliance with NPIs to avoid hindering the beneficial effects of the vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/therapeutic use , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Social Behavior
20.
Iran J Nurs Midwifery Res ; 28(5): 528-535, 2023.
Article in English | MEDLINE | ID: mdl-37869703

ABSTRACT

Background: Working as a child can have various effects on all aspects of children's health. Investigating and identifying issues related to the health of working children can be useful in promoting their health. Therefore, in this qualitative study, we examined issues related to the mental health and behavior of working children. Materials and Methods: This qualitative study was conducted in Tehran, Iran, in 2021 with the contractual content analysis approach. The main participants (N = 32) in this study were working children aged 10 to 18 years. To collect data, in-depth and semi-structured interviews were conducted with working children, their parents, and the center officials. In addition to the interview, some field notes were also taken from interactions between working children. After each interview, they were transcribed and coded. After 27 interviews, the data were saturated, no new code was extracted, and further interviews were conducted to ensure data saturation. Data analysis was performed based on the proposed method of Lundman and Graneheim. Results: The results revealed the three main categories of mental distress (fear and anxiety, depression, loneliness and isolation, decreased self-confidence, and decentralized mind), social anger (negative social role modeling, harassment and harm of others, reprehensible and antisocial behavior, disregard for the property of others, disrupted relationships, and violence), and in-group commitment (self-censorship outside the group, individual independence and group cohesion, and caring for the group). Conclusions: Most working children suffer from various forms of mental and behavioral issues, which, if not taken care of, can have irreparable consequences.

SELECTION OF CITATIONS
SEARCH DETAIL