Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 577
Filter
Add more filters








Publication year range
1.
Angew Chem Int Ed Engl ; : e202414859, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352800

ABSTRACT

Silicon (Si)-based anodes offer high theoretical capacity for lithium-ion batteries but suffer from severe volume changes and continuous solid electrolyte interphase (SEI) degradation. Here, we address these challenges by selective methylation of 1,3-dioxolane (DOL), thus shifting the unstable bulk polymerization to controlled interfacial reactions and resulting in a highly elastic SEI. Comparative studies of 2-methyl-1,3-dioxolane (2MDOL) and 4-methyl-1,3-dioxolane (4MDOL) reveal that 4MDOL, with its larger ring strain and more stable radical intermediates due to hyperconjugation effect, promotes the formation of high-molecular-weight polymeric species at the electrode-electrolyte interface. This elastic, polymer-rich SEI effectively accommodates volume changes of Si and inhibits continuous side reactions. Our designed electrolyte enables Si-based anode to achieve 85.4% capacity retention after 400 cycles at 0.5 C without additives, significantly outperforming conventional carbonate-based electrolytes. Full cells also demonstrate stable long-term cycling. This work provides new insights into molecular-level electrolyte design for high-performance Si anodes, offering a promising pathway toward next-generation lithium-ion batteries with enhanced energy density and longevity.

2.
Small ; : e2407425, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39350438

ABSTRACT

The characteristics of solid electrolyte interphase (SEI) at both the cathode and anode interfaces are crucial for the performance of sodium-ion batteries (SIBs). The research demonstrates the merits of a balanced organic component, specifically the organic sodium alkyl sulfonate (ROSO2Na) featured in this work, in conjunction with the inorganic sodium fluoride (NaF), to enhance the interfacial stability. Using a customized electrolyte, it has optimized the interphase, curbing excess NaF production, and created a thin and uniform NaF/ROSO2Na-rich SEI layer. It offers exceptional protection against interface deterioration, transition metal dissolution, and concurrently ensures a consistent reduction in interfacial impedance. This creative approach results in a substantial improvement in the performance of both the Na0.9Ni0.4Fe0.2Mn0.4O2 cathode and the hard carbon anode. The cathode demonstrates remarkable average Coulombic efficiency exceeding 99.9% and a capacity retention of 81% after 500 cycles. Furthermore, the Ah-level pouch cell has shown outstanding performance with an 87% capacity retention after 400 cycles. Moving beyond the prevailing focus on inorganic-rich SEI, these results highlight the effectiveness of the customized organic-inorganic hybrid SEI formulation in improving SIB technology, offering an adaptable solution that ensures superior interfacial stability.

3.
Article in English | MEDLINE | ID: mdl-39374378

ABSTRACT

Many studies on electrode material development for rechargeable batteries have focused on improving the intrinsic physicochemical and electrochemical properties of active materials, but the electrochemical performances of batteries are exhibited by the overall electrode unit consisting of active materials, conductive additives, and a binder. Additionally, the electrodes have undergone an essential calendering process to enhance the physical contact between those components. Therefore, the electrochemical behavior and performance of a cell should be analyzed at the electrode level, as the inherent properties of active materials might be changed in electrode preparation, including the calendaring process and real-operating environments. In this study, we aimed to understand the electrochemical properties of the reduced graphene oxide (RGO)-containing electrodes rather than the RGO-active materials by studying the changes in the RGO electrode before and after the calendering process. Specifically, the study investigates the effect of the calendering process on the electrochemically active interphase formation and electrochemical properties of the RGO electrode. We found that the calendering process deteriorates the electrochemical properties of RGO electrodes by impeding enough electrolyte wetting, limiting the formation of thin and stable solid-electrolyte interphase, and leaving unreacted RGO sheets. Additional experiments with carbon-coated silicon/RGO composite electrodes demonstrate that after the calendering process, the sequential participation of Si/C particles in the electrochemical reaction resulted in much more severe capacity degradation over repeated cycling processes. The studies suggest that fine-controlling the number of RGO sheets and maintaining enough distance between those sheets even after the calendering process are required for the utilization of RGO in rechargeable batteries.

4.
Nano Lett ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382216

ABSTRACT

All-solid-state lithium metal batteries have emerged as a promising solution to overcoming the energy density and safety challenges associated with conventional lithium-ion batteries. Solid polymer electrolytes, particularly those based on poly(vinylidene fluoride) (PVDF) and dimethylformamide (DMF), demonstrate significant potential. However, interfacial side reactions between residual DMF solvents and lithium metal present substantial challenges. In this study, we investigate the in situ formation of solid electrolyte interphase protective layers to mitigate these side reactions. By incorporating F-rich additives, such as fluoroethylene carbonate and lithium difluorophosphate, we successfully establish a dual-layer inorganic SEI structure characterized by an outer LiF layer and an inner Li2O layer. Consequently, our approach extends the cycle life of lithium symmetric batteries to 3000 h. Additionally, the Li||LiFePO4 solid-state battery demonstrates exceptional stability, enduring 400 cycles at a 1C rate with an impressive capacity retention of 84%. This strategic methodology effectively leverages the benefits of residual solvents, ensuring both enhanced battery efficiency and long-term operational stability for PVDF-based all-solid-state lithium metal batteries.

5.
Angew Chem Int Ed Engl ; : e202412108, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39382622

ABSTRACT

Lithium-ion batteries (LIBs) with conventional carbonate-based electrolytes suffer from safety concerns in large-scale applications. Phosphates feature high flame retardancy but are incompatible with graphite anode due to their inability to form a passivated solid electrolyte interphase (SEI). Herein, we report a monofluorinated co-solvent, diethyl fluoridophosphate (DEFP), featuring a unique P-F bond that allows a trade-off between safety and electrochemical performance in LIBs. The P-F bond in DEFP weakens ion-dipole interactions with Li+ ions, lowering the desolvation barrier, and simultaneously reduces the lowest unoccupied molecular orbital (LUMO) of DEFP, promoting the formation of a robust and inorganic-rich SEI. Additionally, DEFP exhibits improved thermal stability due to both robust SEI and the inherent flame-retardant properties of the P-F bond. Consequently, the optimized DEFP-based electrolyte exhibits improved cyclability and rate capacity in LiNi0.8Co0.1Mn0.1O2 || graphite full cells compared with triethyl phosphate-based electrolytes and commercial carbonate electrolytes. Even at a low E/C ratio of 3.45 g Ah-1, the 1.16 Ah NCM811||Gr pouch cells achieve a high capacity retention of 94.2% after 200 cycles. This work provides a promising approach to decouple phosphate safety and graphite compatibility, paving the way for safer and high-performance lithium-ion batteries.

6.
Adv Sci (Weinh) ; : e2407201, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373706

ABSTRACT

Zinc-ion batteries (ZIBs) hold immense promise as next-generation energy storage solutions, however, the practical application of zinc anodes is hindered by dendrite formation and parasitic side reactions. Engineering a stable solid- eletrolyte interphase (SEI) is crucial for addressing these issues. This study proposes a novel strategy to enhance Zn anode performance by incorporating a ZnSiF6 additive into a standard ZnSO4 (ZSO) electrolyte. The ZnSiF6 additive facilitates the formation of a stable, fluorine-rich SEI on the Zn anode surface. Characterization reveals a hierarchical SEI structure, primarily composed of porous alkali zinc sulfate (ZHS) with embedded ZnF2. This unique architecture promotes rapid zinc ion desolvation and efficient transport, enhances corrosion resistance, and mitigates hydrogen evolution. Consequently, ZnSiF6-modified cells exhibit exceptional cycling stability, exceeding 3000 hours at 0.5 mA cm-2 and 560 hours at 10 mA cm-2, significantly outperforming ZSO-based cells. The modified cells also achieve high areal capacities (10 mAh cm-2), indicating superior zinc utilization. This work provides key insights for designing stable electrode/electrolyte interfaces, contributing to the development of high-performance aqueous ZIBs.

7.
ACS Nano ; 18(41): 28456-28468, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39357008

ABSTRACT

Unwanted processes in metal anode batteries, e.g., non-uniform metal electrodeposition, electrolyte decomposition, and/or short-circuiting, are not fully captured by the electrolyte bulk solvation structure but rather defined by the electrode-electrolyte interface and its changes induced by cycling conditions. Specifically, for aluminum-ion batteries (AIBs), the role of the solid-electrolyte interphase (SEI) on the Al0 electrodeposition mechanism and associated changes during resting or cycling remain unclear. Here, we investigated the current-dependent changes at the electrified aluminum anode/ionic liquid electrolyte interface to reveal the conditions of the SEI formation leading to irreversible cycling in the AIBs. We identified that the mechanism of anode failure depends on the nature of the counter electrode, where the areal capacity and cycling current for Al0 electrodeposition dictates the number of successful cycles. Notwithstanding the differences behind unstable aluminum anode cycling in symmetrical cells and AIBs, the uniform removal of electrochemically inactive SEI components, e.g., oxide-rich or solvent-derived organic-rich interphases, leads to more efficient cycling behavior. These understandings raise the importance of using specific conditioning protocols for efficient cycling of the aluminum anode in conjugation with different cathode materials.

8.
Small ; : e2407395, 2024 Oct 13.
Article in English | MEDLINE | ID: mdl-39397251

ABSTRACT

Lithium (Li) metal batteries (LMBs) are among the most promising candidates for future battery technology due to their high theoretical capacity and energy density. However, the formation of dendritic Li, characterized by needle-like structures, poses serious safety issues. To address this, numerous methods are developed to prevent Li dendrite formation. Another significant challenge in LMBs is the formation of inactive Li, known as dead Li, which significantly impacts their Coulombic efficiency and overall performance. This review explores the issues surrounding dead Li in LMBs, specifically focusing on electrically isolated Li metal and the repeatedly generated solid electrolyte interphase (SEI). Advanced techniques for characterizing inactive Li are discussed, alongside various strategies designed to activate or suppress dead Li, thus restoring battery capacity. The review summarizes recent advancements in research related to the activation, reuse, and prevention of dead Li, offering valuable insights for enhancing the efficiency and safety of LMBs. This comprehensive overview provides fundamental guidance for the practical application of Li metal anodes and similar metal batteries.

9.
Article in English | MEDLINE | ID: mdl-39364665

ABSTRACT

Construction of quasi-solid-state lithium metal batteries (LMBs) by in situ polymerization is considered a key strategy for the next generation of energy storage systems with high specific energy and safety. Poly(1,3-dioxolane) (PDOL)-based electrolytes have attracted wide attention among researchers, benefiting from the low cost and high ionic conductivity. However, interfacial deterioration and uncontrollable growth of lithium dendrites easily appeared in LMBs due to the high reactivity of lithium metal, resulting in the failure of LMBs. In this work, a strategy is developed of using Ga(OTF)3 as the initiator to obtain a PDOL-based gel electrolyte (GaPD). In addition, a hybrid stable solid electrolyte interphase (SEI) of lithium fluoride/Li2O/Li-Ga alloys is observed on the surface of lithium metal. Combined with density functional theory calculations, the hybrid SEI shows high affinity toward Li+, indicating that a uniform deposition of Li+ could be achieved. Therefore, the Li/GaPD/Li cell operates stably for 1600 h at room temperature. In addition, the LiFePO4/GaPD/Li cell retains a capacity retention rate of 90.2% over 200 cycles at 1 C. This work provides a reference for the practical application of in situ polymerization technology in high-performance and safe LMBs.

10.
Article in English | MEDLINE | ID: mdl-39371041

ABSTRACT

As an important component of lithium batteries, the wettability and thermal stability of the separator play a significant role in cell performance. Despite the availability of numerous commercial separators, issues such as low ion selectivity and poor thermal stability continue to limit the efficiency and reliability of the batteries. Herein, two cationic covalent organic frameworks (Br-COF and TFSI-COF) with abundant imidazole cationic groups were designed to modify commercial polypropylene (PP) separators. The strong lithium-ion affinity of the cationic COF enables the effective dissociation of lithium salt ion clusters, simplifying the solvent structure of lithium ions to promote lithium ions transport. Additionally, solvent anions can be anchored to the cationic COF by electrostatic interactions, reducing side reactions on the lithium metal anode surface to form a favorable SEI layer, which can effectively inhibit the growth of lithium dendrites. The rapid dissociation of anions in lithium salts with some organic solvents and cationic COFs was revealed by a molecular dynamics simulation. A LiF-rich SEI layer on the lithium metal anode surface was formed, which can speed up Li+ transport at interfaces, leading to consistent lithium deposition and outstanding battery performance. The ordered porous structure of the cationic COF provides interconnected and continuous channels, improving the wettability between the liquid electrolyte and separators, which is conducive to ion transport. When paired with a LiFePO4 cathode and electrolyte (1.0 M LiTFSI in DEC: EC: DMC = 1:1:1), the LiFePO4/TFSI-COF@PP/Li cell demonstrates a prominent cycling capacity of 148.0 mAh g-1 at 0.5 C with a Coulombic efficiency of 98.0% in the first cycle, and the capacity retention is 82.0% after 100 cycles, showing good cycling stability. Thus, this investigation provides inspiration for the expansion of cationic COF-modified separators for next-generation lithium metal batteries.

11.
Angew Chem Int Ed Engl ; : e202416565, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39387215

ABSTRACT

Solid-electrolyte interphase (SEI) plays a decisive role in building reliable Li metal batteries. However, the scarcity of anions in Helmholtz layer (HL) caused by electrostatic repulsion usually leads to the inferior SEI derived from solvents, resulting in dendrites and 'dead' Li. Therefore, regulating the distribution of anions in electric double layer (EDL) and continuously introducing more anions into HL to tailor anions-derived SEI is crucial for achieving stable Li plating/stripping. Herein, by jointly utilizing the controlled defects of reduced graphene oxide (rGO) and the oriented dipoles of ferroelectric BaTiO3 (BTO), the rGO-BTO composite layer sustainedly brings more TFSI- and NO3- into anion-defecient HL, promoting favorable decomposition of anions and guiding the generation of robust and fast-Li+-transport SEI containing more inorganics LiF and Li3N species. Thus, the resulting Li deposit shows smooth and dense morphologies without dendrites, leading to high average Coulombic efficiency. The Li//Cu@rGO-BTO (10 mAh cm-2 plated Li) cell exhibits an enhanced Li plating/stripping stability (2700 h) and a higher rate capability. The LiFePO4 full cell (N/P=~6.3) using rGO-BTO displays an enhanced capacity retention (82.0% @ 430 cycles). This work provides a new insight on the construction of robust SEI by regulating the distribution of anions within EDL.

12.
Angew Chem Int Ed Engl ; : e202413927, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304910

ABSTRACT

Introducing fluorinated electrolyte additives to construct LiF-rich solid-electrolyte interphase (SEI) on Si-based anodes is proven an effective strategy for coping with its massive volume changes during cycling. However, most current research on fluorine-containing additives focuses on their thermodynamics of decomposition, lacking studies on the correlation between the molecular structure of additives and their decomposition kinetics. Herein, two fluorinated ester additives, diethyl fluoromalonate (F1DEM) and diethyl 2,2-difluoromalonate (F2DEM) were designed and synthesized. Through combining a wealth of characterizations and simulations, it is revealed that despite the similar reduction thermodynamics, the favorable reduction kinetics of single-fluorinated F1DEM facilitate a LiF-rich layer during the early stage of SEI formation, contributing to the formation of a more robust SEI on SiOx anode compared to the difluorinated F2DEM. Consequently, the proposed additive achieves excellent cycling stability (84 % capacity retention after 1000 cycles) for 5 Ah 21700 cylindrical batteries under practical testing conditions. By unveiling the role of reaction kinetics, a long-overlooked aspect for the study of electrolyte additives, this work sheds light on how to construct a stable SEI on Si-based anodes.

13.
Angew Chem Int Ed Engl ; : e202414117, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315791

ABSTRACT

Rechargeable aqueous Zn metal batteries (AZMBs) are attractive for stationary energy storage due to their low cost and high safety. However, their practical application is hindered by the excessive use of zinc anodes and poor high-temperature performance, caused by severe side reactions and dendritic growth issues. Here, an electrolyte design strategy is reported based on bidentate coordination of Zn2+ and solvent to tailor the solvation structure. The triethylene glycol (TEG) co-solvent with two-oxygen coordination sites is demonstrated to facilitate the formation of an anions-involved solvation shell, greatly reducing the activity of coordinated H2O molecules. The sequential reduction of OTF- anions and TEG to form an organic-inorganic bilayer SEI (hydrophobic organic layer and high ion conductivity inorganic layer), protecting Zn anodes from side reaction and dendrite growth, thus ensuring an unprecedented Zn reversibility (99.95% over 5000 cycles at 0.5 mA cm-2). More importantly, the full cells of Zn||V2O5 exhibit a record-high cumulative capacity (2552 mAh cm-2) under a lean electrolyte condition (E/C ratio = 15 µL mAh-1), a limited Zn supply (N/P ratio = 1.9) and a high areal capacity (3.0 mAh cm-2).

14.
Angew Chem Int Ed Engl ; : e202412955, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319374

ABSTRACT

Anode-free lithium (Li) metal batteries (AFLBs) featured high energy density are viewed as the viable future energy storage technology. However, the irregular Li deposition and unstable solid electrolyte interphase (SEI) on anode current collectors reduce their cycling performance. Here, we propose a concept of anion-recognition electrodes enabled by anion-π interactions to regulate the inner Helmholtz plane (IHP) and electrolyte solvation chemistry for high-performance AFLBs. By engineering the electrodes with electron-deficient aromatic-π systems that possess high permanent quadrupole moment (Qzz ), the anion-π interactions can be generated to concentrate the anions on the electrode surface and tune the IHP structure to construct a stable anion-derived SEI layer, thus achieving highly reversible Li plating/stripping process. Through designing various current collectors with different Qzz values, the intimate correlations among the surface charge of the electrode, competitive adsorption of the IHP, and SEI structures are demonstrated. Particularly, the modified carbon cloth current collector with a high Qzz value (+35.1) delivers a high average Li stripping/plating Coulombic efficiency of 99.1% over 230 cycles in the carbonated electrolyte, enabling a long lifespan and high capacity retention of LiNi0.8Co0.1Mn0.1O2-based AFLBs with a commercial-level areal capacity (4.1 mA h cm-2).

15.
Angew Chem Int Ed Engl ; 63(41): e202317016, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39240135

ABSTRACT

Regulating the composition of solid-electrolyte-interphase (SEI) is the key to construct high-energy density lithium metal batteries. Here we report a selective catalysis anionic decomposition strategy to achieve a lithium fluoride (LiF)-rich SEI for stable lithium metal batteries. To accomplish this, the tris(4-aminophenyl) amine-pyromeletic dianhydride covalent organic frameworks (TP-COF) was adopted as an interlayer on lithium metal anode. The strong donor-acceptor unit structure of TP-COF induces local charge separation, resulting in electron depletion and thus boosting its affinity to FSI-. The strong interaction between TP-COF and FSI- lowers the lowest unoccupied molecular orbital (LUMO) energy level of FSI-, accelerating the decomposition of FSI- and generating a stable LiF-rich SEI. This feature facilitates rapid Li+ transfer and suppresses dendritic Li growth. Notably, we demonstrate a 6.5 Ah LiNi0.8Co0.1Mn0.1O2|TP-COF@Li pouch cell with high energy density (473.4 Wh kg-1) and excellent cycling stability (97.4 %, 95 cycles) under lean electrolyte 1.39 g Ah-1, high areal capacity 5.7 mAh cm-2, and high current density 2.7 mA cm-2. Our selective catalysis strategy opens a promising avenue toward the practical applications of high energy-density rechargeable batteries.

16.
ACS Appl Mater Interfaces ; 16(39): 52466-52475, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39297885

ABSTRACT

The development of room-temperature (RT) sodium-sulfur (Na-S) batteries is severely hindered due to the slow kinetics of the S cathode and the instability of the Na-metal anode. To overcome this, we introduced a dual-functional electrolyte cosolvent, trifluoromethanesulfonamide (TFMSA). Short-chain Na2Sx (1 ≤ x ≤ 2) can be effectively dissolved due to the strong H-S bond interaction between TFMSA and sulfides, which changes the S conversion process, thereby effectively enhancing the conversion kinetics of the cathode. Meanwhile, TFMSA can generate a stable solid electrolyte interphase on the Na-metal surface to protect it from soluble polysulfide attack. Therefore, the RT Na-S batteries using the ether electrolyte show a high initial discharge capacity of 896.6 mAh g-1 and a capacity retention rate of 73% after 150 cycles at 0.2C, and the pouch cell also demonstrates its practical performance. This work proposes a dual-functional electrolyte cosolvent selection principle to inspire the practical application of high-performance RT Na-S batteries.

17.
ACS Appl Mater Interfaces ; 16(39): 52130-52143, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39298291

ABSTRACT

SiOx electrodes are promising for high-energy-density lithium-ion batteries (LIBs) due to their ability to mitigate volume expansion-induced degradation. Here, we investigate the surface dynamics of SiOx thin-film electrodes cycled in different carbonate-based electrolytes using a combination of ex situ X-ray photoelectron spectroscopy (XPS) and operando synchrotron X-ray reflectivity analyses. The thin-film geometry allows us to probe the depth-dependent chemical composition and electron density from surface to current collector through the solid electrolyte interphase (SEI), the active material, and the thickness evolution during cycling. Results reveal that SiOx lithiation initiates below 0.4 V vs Li+/Li and indicate a close relationship between SEI formation and SiOx electrode lithiation, likely due to the high resistivity of SiOx. We find similar chemical compositions for the SEI in FEC-containing and FEC-free electrolytes but observe a reduced thickness in the former case. In both cases, the SEI thickness decreases during delithiation due to the removal or dissolution of some carbonate species. These findings give insights into the (de)lithiation of SiOx, in particular, during the formation stage, and the effect of the presence of FEC in the electrolyte on the evolution of the SEI during cycling.

18.
J Colloid Interface Sci ; 678(Pt C): 515-525, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39305619

ABSTRACT

In hard carbon (HC) anodes, elucidating the relationship between the solid electrolyte interphase formation and the solvated Na+ co-intercalation mechanism is crucial, particularly considering different anionic salts in ether-based electrolytes. Here, we comprehensively explore the impact of different anionic salts on the electrochemical performance of HC/Na half-cell and elucidate the underlying mechanism through experimental studies and theoretical calculations. The surface morphology of the HC anode and its interphasial property are further investigated to evaluate the differences endowed by the presence of various anionic salts in diglyme (2G). The HC/Na half-cells with NaPF6-2G and sodium trifluoromethanesulfonate (NaCF3SO3)-2G display superior electrochemical performance with faster kinetics and lower interfacial resistance than those with NaClO4-2G, sodium bis-(fluorosulfonyl) imide (NaFSI)-2G and sodium bis-(trifluoromethanesulfonyl) imide (NaTFSI)-2G. NaClO4-2G forms a relatively thick interphase layer with high resistance at the electrode/electrolyte interface owing to its insufficient stability. NaFSI-2G and NaTFSI-2G exhibit severe side reactions with Na metal, producing a thick interphase layer on the HC surface with high interfacial resistance from excess electrolyte decomposition, thus deteriorating the electrochemical performance. In summary, the study on the stability of different anionic salts in ether-based electrolyte for the HC anode with the intercalation mechanism provides valuable insights for screening appropriate conductive salts for high-performance sodium-ion batteries, especially when considering Na metal counter/reference electrodes.

19.
Small ; : e2405453, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263778

ABSTRACT

High-quality solid electrolyte interphase (SEI) layers can effectively suppress the growth of Li dendrites and improve the cycling stability of lithium metal batteries. Herein, 1-(6-bromohexanoyl)-3-butylurea is used to construct an organic/inorganic hybrid (designated as LiBr-HBU) SEI layer that features a uniform and compact structure. The LiBr-HBU SEI layer exhibits superior electrolyte wettability and air stability as well as strong attachment to Li foils. The LiBr-HBU SEI layer achieves a Li+ conductivity of 2.75 × 10-4 S cm-1, which is ≈50-fold higher than the value measured for a native SEI layer. A Li//Li symmetric cell containing the LiBr-HBU SEI layer exhibits markedly improved cyclability when compared with the cell containing a native SEI layer, especially at a high current density (e.g., cycling life up to 1333 h at 15 mA cm-2). The LiBr-HBU SEI layer also improves the performance of lithium-sulfur cells, particularly the rate capability (548 mAh g-1 at 10 C) and cycling stability (513 mAh g-1 at 0.5 C after 500 cycles). The methodology described can be extended to the commercial processing of Li metal anodes as the artificial SEI layer also protects Li metal against corrosion.

20.
Adv Mater ; : e2407852, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225353

ABSTRACT

Advanced aqueous batteries are promising solutions for grid energy storage. Compared with their organic counterparts, water-based electrolytes enable fast transport kinetics, high safety, low cost, and enhanced environmental sustainability. However, the presence of protons in the electrolyte, generated by the spontaneous ionization of water, may compete with the main charge-storage mechanism, trigger unwanted side reactions, and accelerate the deterioration of the cell performance. Therefore, it is of pivotal importance to understand and master the proton activities in aqueous batteries. This Perspective comments on the following scientific questions: Why are proton activities relevant? What are proton activities? What do we know about proton activities in aqueous batteries? How do we better understand, control, and utilize proton activities?

SELECTION OF CITATIONS
SEARCH DETAIL