Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.554
Filter
1.
Arch Toxicol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105737

ABSTRACT

Idiosyncratic drug-induced liver injury is a rare and unpredictable event. Deciphering its initiating-mechanism is a hard task as its occurrence is individual dependent. Thus, studies that utilize models that are not individual-centric might drive to a general mechanistic conclusion that is not necessarily true. Here, we use the individual-centric spheroid model to analyze the initiating-mechanism of troglitazone-mediated iDILI risk. Individual-centric spheroid models were generated using a proprietary cell educating technology. These educated spheroids contain hepatocytes, hepatic stellate cells, activated monocyte-derived macrophages, and dendritic cells under physiological conditions. We show that phases 1 and 2 drug-metabolizing enzymes were induced in an individual-dependent manner. However, we did not observe any association of DEMs induction and troglitazone (TGZ)-mediated iDILI risk. We analyzed TGZ-mediated iDILI and found that a 44-year-old male showed iDILI risk that is associated with TGZ-mediated suppression of IL-12 expression by autologous macrophages and dendritic cells. We performed a rescue experiment and showed that treatment of spheroids from this 44-year-old male with TGZ and recombinant IL-12 suppressed iDILI risk. We confirmed the mechanism in another 31-year-old female with iDILI risk. We demonstrate here that individual-centric spheroid are versatile models that allow to predict iDILI risk and to analyze a direct effect of the drug on activated macrophages and dendritic cells to uncover the initiating-mechanism of iDILI occurrence. This model opens perspectives for a personalized strategy to mitigate iDILI risk.

2.
Front Bioeng Biotechnol ; 12: 1430235, 2024.
Article in English | MEDLINE | ID: mdl-39132254

ABSTRACT

During mammalian implantation, complex and well-orchestrated interactions between the trophectoderm of implanting blastocysts and the maternal endometrium lead to a successful pregnancy. On the other hand, alteration in endometrium-blastocyst crosstalk often causes implantation failure, pregnancy loss, and complications that result in overall infertility. In domestic animals, this represents one of the major causes of economic losses and the understanding of the processes taking place during the early phases of implantation, in both healthy and pathological conditions, is of great importance, to enhance livestock system efficiency. Here we develop highly predictive and reproducible functional tridimensional (3D) in vitro models able to mimic the two main actors that play a key role at this developmental stage: the blastocyst and the endometrium. In particular, we generate a 3D endometrial model by co-culturing primary epithelial and stromal cells, isolated from sow uteri, onto highly porous polystyrene scaffolds. In parallel, we chemically reprogram porcine adult dermal fibroblasts and encapsulate them into micro-bioreactors to create trophoblast (TR) spheroids. Finally, we combine the generated artificial endometrium with the TR spheroids to model mammalian implantation in vitro and mimic the embryo-maternal interactions. The protocols here described allow the generation of reproducible and functional 3D models of both the maternal compartment as well as the implanting embryo, able to recreate in vitro the architecture and physiology of the two tissues in vivo. We suggest that these models can find useful applications to further elucidate early implantation mechanisms and to study the complex interactions between the maternal tissue and the developing embryos.

3.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126111

ABSTRACT

Curcumin (Cur) is a heavily used complementary derived drug from cancer patients. Spheroid samples derived from 82 patients were prepared and treated after 48 h with two Cur formulations (CurA, CurB) in mono- and combination therapy. After 72 h, cell viability and morphology were assessed. The Cur formulations had significant inhibitory effects of -8.47% (p < 0.001), CurA of -10.01% (-50.14-23.11%, p = 0.001) and CurB of -6.30% (-33.50-19.30%, p = 0.006), compared to their solvent controls Polyethylene-glycol, ß-Cyclodextrin (CurA) and Kolliphor-ELP, Citrate (CurB). Cur formulations were more effective in prostate cancer (-19.54%) and less effective in gynecological non-breast cancers (0.30%). CurA showed better responses in samples of patients <40 (-13.81%) and >70 years of age (-17.74%). CurB had stronger effects in metastasized and heavily pretreated tumors. Combinations of Cur formulations and standard therapies were superior in 20/47 samples (42.55%) and inferior in 7/47 (14.89%). CurB stimulated chemo-doublets more strongly than monotherapies (-0.53% vs. -6.51%, p = 0.022) and more effectively than CurA (-6.51% vs. 3.33%, p = 0.005). Combinations of Cur formulations with Artesunate, Resveratrol and vitamin C were superior in 35/70 (50.00%) and inferior in 16/70 (22.86%) of samples. Cur formulations were significantly enhanced by combination with Artesunate (p = 0.020). Cur formulations showed a high variance in their anti-cancer effects, suggesting a need for individual testing before administration.


Subject(s)
Antineoplastic Agents , Curcumin , Spheroids, Cellular , Humans , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/administration & dosage , Female , Aged , Male , Middle Aged , Spheroids, Cellular/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Adult , Cell Survival/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Drug Compounding , Tumor Cells, Cultured
4.
Biosens Bioelectron ; 264: 116614, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39126904

ABSTRACT

The precision of previous cancer research based on tumor spheroids, especially the microgel-encapsulating tumor spheroids, was limited by the high heterogeneity in the tumor spheroid size and shape. Here, we reported a user-friendly solenoid valve-based sorter to reduce this heterogeneity. The artificial intelligence algorithm was employed to detect and segmentate the tumor spheroids in real-time for the size and shape calculation. A simple off-chip solenoid valve-based sorting actuation module was proposed to sort out target tumor spheroids with the desired size and shape. Utilizing the developed sorter, we successfully uncovered the drug response variations on cisplatin of lung tumor spheroids in the same population but with different sizes and shapes. Moreover, with this sorter, the precision of drug testing on the spheroid population level was improved to a level comparable to the precise but complex single spheroid analysis. The developed sorter also exhibits significant potential for organoid morphology and sorting for precision medicine research.

5.
Eur J Med Chem ; 277: 116730, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39111015

ABSTRACT

In this paper we report the discovery of structurally novel and highly potent programmed cell death-ligand 1 (PD-L1) inhibitors targeting surface and intracellular PD-L1. A ring fusion design utilizing dimethoxyphenyl indazole derivatives was used, followed by structural extension, which further improved potency by inducing the formation of additional symmetrical interactions within the PD-L1 binding site, leading to the discovery of novel and highly active tetra-aryl-scaffold inhibitors. Key optimizations involved polar tail chain modifications that improve potency and minimize cell cytotoxicity. In addition, druggability issues that exist outside the rule-of-five chemical space were addressed. CB31, a representative compound, was found to exhibit outstanding activity in blocking programmed cell death-1 (PD-1)/PD-L1 interactions (IC50 = 0.2 nM) and enhancing T-cell functions, with minimal cell cytotoxicity. CB31 also displayed favorable oral pharmacokinetic properties, consistent with its high passive permeability and insusceptibility to efflux transporters, as well as its high metabolic stability. Additionally, CB31 demonstrated mechanistically differentiated features from monoclonal antibodies by inducing PD-L1 internalization, intracellular retention of PD-L1 with altered glycosylation pattern, and PD-L1 degradation. It also demonstrated greater effects on tumor size reduction and tumor cell killing, with enhanced T-cell infiltration, in a 3D tumor spheroid model. Overall, results show that CB31 is a promising small-molecule PD-L1 inhibitor that can inhibit PD-1/PD-L1 interactions and promote PD-L1 degradation.

6.
Cancers (Basel) ; 16(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39123440

ABSTRACT

The rat protoparvovirus H-1 (H-1PV) is an oncolytic virus known for its anticancer properties in laboratory models of various human tumors, including non-Hodgkin lymphomas (NHL) of B-cell origin. However, H-1PV therapeutic potential against hematological malignancies of T-cell origin remains underexplored. The aim of the present study was to conduct a pilot preclinical investigation of H-1PV-mediated oncolytic effects in cutaneous T-cell lymphoma (CTCL), a type of NHL that is urgently calling for innovative therapies. We demonstrated H-1PV productive infection and induction of oncolysis in both classically grown CTCL suspension cultures and in a novel, in vivo-relevant, heterotypic spheroid model, but not in healthy donor controls, including peripheral blood mononuclear cells (PBMCs). H-1PV-mediated oncolysis of CTCL cells was not prevented by Bcl-2 overexpression and was accompanied by increased extracellular ATP release. In CTCL spheroid co-cultures with PBMCs, increased spheroid infiltration with immune cells was detected upon co-culture treatment with the virus. In conclusion, our preclinical data show that H-1PV may hold significant potential as an ingenious viroimmunotherapeutic drug candidate against CTCL.

7.
Acta Biomater ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39097123

ABSTRACT

Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an extracellular matrix (ECM) for personalized medicine. The ECM influences the tumor response, and understanding the ECM-tumor relationship is important before translating tumor-on-chips into clinics. In this work, we tuned the physical and structural characteristics of ECM in a bioprinted soft-tissue sarcoma microtissue. We formed 3D spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR results showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. In conclusion, this work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips, and our tunable bioink may help reduce the variability of current tumor-on-chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. The cell spheroids' responses underscore the importance of replicating physical and structural properties to mimic tumor response. This work can contribute to personalized medicine by making more effective, tailored cancer models.

8.
Cancer Cell Int ; 24(1): 228, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951897

ABSTRACT

BACKGROUND: In the treatment of oral cavity cancer, margin status is one of the most critical prognostic factors. Positive margins are associated with higher local recurrence and lower survival rates. Therefore, the universal goal of oral surgical oncology is to achieve microscopically clear margins. Near-infrared fluorescence guided surgery (FGS) could improve surgical resection using fluorescent probes. αVß6 integrin has shown great potential for cancer targeting due to its overexpression in oral cancers. Red fluorescent contrast agent IRDye 680 coupled with anti-αVß6 peptide (IRDye-A20) represents an asset to improve FGS of oral cancer. This study investigates the potential of IRDye-A20 as a selective imaging agent in 3D three-dimensional tongue cancer cells. METHODS: αVß6 integrin expression was evaluated by RT-qPCR and Western Blotting in 2D HSC-3 human tongue cancer cells and MRC-5 human fibroblasts. Targeting ability of IRDye-A20 was studied in both cell lines by flow cytometry technique. 3D tumor spheroid models, homotypic (HSC-3) and stroma-enriched heterotypic (HSC-3/MRC-5) spheroids were produced by liquid overlay procedure and further characterized using (immuno)histological and fluorescence-based techniques. IRDye-A20 selectivity was evaluated in each type of spheroids and each cell population. RESULTS: αVß6 integrin was overexpressed in 2D HSC-3 cancer cells but not in MRC-5 fibroblasts and consistently, only HSC-3 were labelled with IRDye-A20. Round shaped spheroids with an average diameter of 400 µm were produced with a final ratio of 55%/45% between HSC-3 and MRC-5 cells, respectively. Immunofluorescence experiments demonstrated an uniform expression of αVß6 integrin in homotypic spheroid, while its expression was restricted to cancer cells only in heterotypic spheroid. In stroma-enriched 3D model, Cytokeratin 19 and E-cadherin were expressed only by cancer cells while vimentin and fibronectin were expressed by fibroblasts. Using flow cytometry, we demonstrated that IRDye-A20 labeled the whole homotypic spheroid, while in the heterotypic model all cancer cells were highly fluorescent, with a negligible fluorescence in fibroblasts. CONCLUSIONS: The present study demonstrated an efficient selective targeting of A20FMDV2-conjugated IRDye 680 in 3D tongue cancer cells stroma-enriched spheroids. Thus, IRDye-A20 could be a promising candidate for the future development of the fluorescence-guided surgery of oral cancers.

9.
J Photochem Photobiol B ; 258: 112960, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991293

ABSTRACT

Photodynamic therapy (PDT) is a medical radio chemotherapeutic method that uses light, photosensitizing agents, and oxygen to produce cytotoxic compounds, which eliminate malignant cells. Recently, Microfluidic systems have been used to analyse photosensitizers (PSs) due to their potential to replicate in vivo environments. While prior studies have established a strong correlation between reacted singlet oxygen concentration and PDT-induced cellular death, the effects that the ambient fluid flow might have on the concentration of oxygen and PS have been disregarded in many, which limits the reliability of the results. Herein, we coupled the transport of oxygen and PS throughout the ambient medium and within the spheroidal multicellular aggregate to initially study the profiles of oxygen and PS concentration alongside PDT-induced cellular death throughout the spheroid before and after radiation. The attained results indicate that the PDT-induced cellular death initiates on the surface of the spheroids and subsequently spreads to the neighbouring regions, which is in great accordance with experimental results. Afterward, the effects that drug-light interval (DLI), fluence rate, PS composition, microchannel height, and inlet flow rate have on the therapeutic outcomes are studied. The findings show that adequate DLI is critical to ensure uniform distribution of PS throughout the medium, and a value of 5 h was found to be sufficient. The composition of PS is critical, as ALA-PpIX induces earlier cell death but accelerates oxygen consumption, especially in the outer layers, depriving the inner layers of oxygen necessary for PDT, which in turn disrupts and prolongs the exposure time compared to mTHPC and Photofrin. Despite the fluence rate directly influencing the singlet oxygen generation rate, increasing the fluence rate by 189 mW/cm2 would not significantly benefit us. Microwell height and inlet flow rate involve competing phenomena-increasing height or decreasing flow reduces oxygen supply and increases PS "washout" and its concentration.

10.
Anticancer Res ; 44(8): 3557-3565, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060056

ABSTRACT

BACKGROUND/AIM: In a previous study, we have demonstrated heightened Pyra-Metho-Carnil (PMC) efficacy in nude mice with intact innate immunity that lack T and B cells. This has prompted hypothesizing that PMC may target macrophages that promote cancer growth. In this study, we conducted co-culture experiments with macrophages derived from THP-1 human monocyte cell lines and spheroids representing normal and cancer microenvironments. We then performed RNA sequencing and flow cytometry analysis to elucidate the mechanisms by which PMC affects macrophage differentiation and maturation. MATERIALS AND METHODS: THP-1 cells were differentiated by phorbol 12-myristate 13-acetate (PMA) and matured by PMA and lipopolysaccharide (LPS) either with or without PMC. Co-cultures were performed using stimulated THP-1 cells and HKe3-wild-type KRAS or HKe3-mutant (mt) KRAS spheroids. We then performed RNA-seq analysis of THP-1 cells stimulated by PMA (either with or without PMC) and flow cytometry analysis of mice peripheral blood obtained after PMC administration. RESULTS: THP-1 cells matured by PMA and LPS specifically increased the area of HKe3-mtKRAS cancer spheroids and the addition of PMC to THP-1 cells was found to inhibit cancer spheroid growth. RNA-seq data suggested that PMC treatment of THP-1 cells stimulated with PMA suppressed cell motility regulatory functions via down-regulation of the NF[Formula: see text]B pathway. Furthermore, flow cytometry results showed that PMC treatment suppressed monocyte maturation in B6 mice. CONCLUSION: The high level of in vivo tumor suppression caused by PMC may be due to inhibition of the differentiation and maturation of tumor-associated macrophages via the NF[Formula: see text]B signaling pathway.


Subject(s)
Cell Differentiation , Macrophages , Tumor Microenvironment , Humans , Animals , Cell Differentiation/drug effects , Tumor Microenvironment/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice , THP-1 Cells , Coculture Techniques , Tetradecanoylphorbol Acetate/pharmacology , Spheroids, Cellular/drug effects
11.
J Formos Med Assoc ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060210

ABSTRACT

BACKGROUND: Osteosarcoma (OS) usually happens in patients under 20 years old and is notorious for its low survivorship and limb loss. Personalized medicine is a viable approach to increase the efficiency of chemotherapy which is the main prognostic factor for survivorship after surgical treatment. METHODS: In this five-year prospective observational study, we collected primary cells of osteosarcoma from 15 patients, and examined the correlation between clinical characters of patients and cell properties characterized using various in vitro assays. The properties including genes expression, pro-angiogenic capability and anti-cancer drug response are characterized respectively by using RT-PCR, tube formation assay, osteogenesis assay and drug testing on 3D tumor spheroid model. RESULT: The results suggest that OS patients with higher MMP9 expression levels have higher probability to develop skip metastasis (p = 0.041). The 3D tumor spheroid test based on the median lethal dose from 2D culture provides some prognostic value. Patients do not response well to methotrexate (MTX) show higher percentage of high pathology grade (p = 0.009) and lung metastasis (p = 0.044). Also, patients respond well to ifosfamide (IFO) have higher probability to achieve high tumor necrosis rate (p = 0.007). CONCLUSION: The association between cell properties and clinical characters of patients provided by our data can act as potential prognostic factors to help physicians to develop effective personalized chemotherapy for osteosarcoma treatments.

12.
Biofabrication ; 16(4)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39019062

ABSTRACT

Three-dimensional (3D) cell culture models capable of emulating the biological functions of natural tissues are pivotal in tissue engineering and regenerative medicine. Despite progress, the fabrication ofin vitroheterocellular models that mimic the intricate structures of natural tissues remains a significant challenge. In this study, we introduce a novel, scaffold-free approach leveraging the inertial focusing effect in rotating hanging droplets for the reliable production of heterocellular spheroids with controllable core-shell structures. Our method offers precise control over the core-shell spheroid's size and geometry by adjusting the cell suspension density and droplet morphology. We successfully applied this technique to create hair follicle organoids, integrating dermal papilla cells within the core and epidermal cells in the shell, thereby achieving markedly enhanced hair inducibility compared to mixed-structure models. Furthermore, we have developed melanoma tumor spheroids that accurately mimic the dynamic interactions between tumor and stromal cells, showing increased invasion capabilities and altered expressions of cellular adhesion molecules and proteolytic enzymes. These findings underscore the critical role of cellular spatial organization in replicating tissue functionalityin vitro. Our method represents a significant advancement towards generating heterocellular spheroids with well-defined architectures, offering broad implications for biological research and applications in tissue engineering.


Subject(s)
Cell Culture Techniques, Three Dimensional , Spheroids, Cellular , Spheroids, Cellular/cytology , Cell Culture Techniques, Three Dimensional/methods , Humans , Tissue Engineering/methods , Organoids/cytology , Hair Follicle/cytology , Animals , Cell Line, Tumor , Tissue Scaffolds/chemistry , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation
13.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005477

ABSTRACT

Cellular biomechanics plays critical roles in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells' behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, we utilize optical Brillouin microscopy to longitudinally acquire mechanical images of growing cancerous spheroids over the period of eight days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, we demonstrate that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, we have developed a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images, suggesting the mechanical features of cancer cells could potentially serve as a new biomarker in cancer classification and detection.

14.
Adv Sci (Weinh) ; : e2403398, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023182

ABSTRACT

This study describes the formation of single-chain polymer dots (Pdots) via ultrasonic emulsification of nonionic donor-acceptor-donor type (D-A-D) alkoxy thiophene-benzobisthiadiazole-based conjugated polymers (Poly BT) with amphiphilic cetyltrimethylammonium bromide (CTAB). The methodology yields Pdots with a high cationic surface charge (+56.5 mV ± 9.5) and average hydrodynamic radius of 12 nm. Optical characterization reveals that these Pdots emit near-infrared (NIR) light at a maximum wavelength of 860 nm owing to their conjugated polymer backbone consisting of D-A-D monomers. Both colloidal and optical properties of these Pdots make them promising fluorescence emissive probes for bioimaging applications. The significant advantage of positively charged Pdots is demonstrated in diffusion-limited mediums such as tissues, utilizing human epithelial breast adenocarcinoma, ATCC HTB-22 (MCF-7), human bone marrow neuroblastoma, ATCC CRL-2266 (SH-SY5Y), and rat adrenal gland pheochromocytoma, CRL-1721 (PC-12) tumor spheroid models. Fluorescence microscopy analysis of tumor spheroids from MCF-7, SH-SY5Y, and PC-12 cell lines reveals the intensity profile of Pdots, confirming extensive penetration into the central regions of the models. Moreover, a comparison with mitochondria staining dye reveals an overlap between the regions stained by Pdots and the dye in all three tumor spheroid models. These results suggest that single-chain D-A-D type Pdots, cationized via CTAB, exhibit long-range mean free path of penetration (≈1 µm) in dense mediums and tumors.

15.
Cancer Innov ; 3(2): e113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38946933

ABSTRACT

Background: Synovial sarcoma (SS) is an SS18-SSX fusion gene-driven soft tissue sarcoma with mesenchymal characteristics, associated with a poor prognosis due to frequent metastasis to a distant organ, such as the lung. Histone deacetylase (HDAC) inhibitors (HDACis) are arising as potent molecular targeted drugs, as HDACi treatment disrupts the SS oncoprotein complex, which includes HDACs, in addition to general HDACi effects. To provide further molecular evidence for the advantages of HDACi treatment and its limitations due to drug resistance induced by the microenvironment in SS cells, we examined cellular responses to HDACi treatment in combination with two-dimensional (2D) and 3D culture conditions. Methods: Using several SS cell lines, biochemical and cell biological assays were performed with romidepsin, an HDAC1/2 selective inhibitor. SN38 was concomitantly used as an ameliorant drug with romidepsin treatment. Cytostasis, apoptosis induction, and MHC class I polypeptide-related sequence A/B (MICA/B) induction were monitored to evaluate the drug efficacy. In addition to the conventional 2D culture condition, spheroid culture was adopted to evaluate the influence of cell-mass microenvironment on chemoresistance. Results: By monitoring the cellular behavior with romidepsin and/or SN38 in SS cells, we observed that responsiveness is diverse in each cell line. In the apoptotic inducible cells, co-treatment with SN38 enhanced cell death. In nonapoptotic inducible cells, cytostasis and MICA/B induction were observed, and SN38 improved MICA/B induction further. As a novel efficacy of SN38, we revealed TWIST1 suppression in SS cells. In the spheroid (3D) condition, romidepsin efficacy was severely restricted in TWIST1-positive cells. We demonstrated that TWIST1 downregulation restored romidepsin efficacy even in spheroid form, and concomitant SN38 treatment along with romidepsin reproduced the reaction. Conclusions: The current study demonstrated the benefits and concerns of using HDACi for SS treatment in 2D and 3D culture conditions and provided molecular evidence that concomitant treatment with SN38 can overcome drug resistance to HDACi by suppressing TWIST1 expression.

16.
J Neurooncol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985431

ABSTRACT

PURPOSE: Brain metastases represent the most common intracranial tumors in adults and are associated with a poor prognosis. We used a personalized in vitro drug screening approach to characterize individual therapeutic vulnerabilities in brain metastases. METHODS: Short-term cultures of cancer cells isolated from brain metastasis patients were molecularly characterized using next-generation sequencing and functionally evaluated using high-throughput in vitro drug screening to characterize pharmacological treatment sensitivities. RESULTS: Next-generation sequencing identified matched genetic alterations in brain metastasis tissue samples and corresponding short-term cultures, suggesting that short-term cultures of brain metastases are suitable models for recapitulating the genetic profile of brain metastases that may determine their sensitivity to anti-cancer drugs. Employing a high-throughput in vitro drug screening platform, we successfully screened the cultures of five brain metastases for response to 267 anticancer compounds and related drug response to genetic data. Among others, we found that targeted treatment with JAK3, HER2, or FGFR3 inhibitors showed anti-cancer effects in individual brain metastasis cultures. CONCLUSION: Our preclinical study provides a proof-of-concept for combining molecular profiling with in vitro drug screening for predictive evaluation of therapeutic vulnerabilities in brain metastasis patients. This approach could advance the use of patient-derived cancer cells in clinical practice and might eventually facilitate decision-making for personalized drug treatment.

17.
Data Brief ; 55: 110653, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39040552

ABSTRACT

The provided dataset describes the transcriptomic profile of human liver spheroid co-cultures consisting of a human hepatoma cell line (C3A/HepG2 cells) and an immortalized activated human hepatic stellate cell line (LX-2 cells) upon exposure to total parenteral nutrition. High-throughput RNA sequencing was performed using DNBSEQTM sequencing technology. Following the quality check and filtering of raw sequence reads, the clean reads were aligned to the reference human genome and used to determine differential gene expression. Raw and processed data are deposited in the Gene Expression Omnibus with accession number GSE264357. These data could serve further mechanistic studies on parenteral nutrition-induced liver injury and support translational research on intestinal failure-associated liver disease occurring in individuals receiving total parenteral nutrition.

18.
Methods Mol Biol ; 2824: 409-424, 2024.
Article in English | MEDLINE | ID: mdl-39039427

ABSTRACT

Three-dimensional culture models of the brain enable the study of neuroinfection in the context of a complex interconnected cell matrix. Depending on the differentiation status of the neural cells, two models exist: 3D spheroids also called neurospheres and cerebral organoids. Here, we describe the preparation of 3D spheroids and cerebral organoids and give an outlook on their usage to study Rift Valley fever virus and other neurotropic viruses.


Subject(s)
Organoids , Spheroids, Cellular , Organoids/virology , Organoids/cytology , Spheroids, Cellular/virology , Humans , Animals , RNA Viruses/physiology , Brain/virology , Brain/cytology , RNA Virus Infections/virology , Cell Culture Techniques/methods , Cell Culture Techniques, Three Dimensional/methods
19.
Article in English | MEDLINE | ID: mdl-39042147

ABSTRACT

PURPOSE: In the current investigation, the effects of the mTOR inhibitors, Rapa and Torin1 on the TGF-ß2-induced conjunctival fibrogenesis were studied. STUDY DESIGN: Experimental research. METHODS: 2D and 3D cultures of HconF were subjected to the following analyses; (1) planar proliferation evaluated by TEER (2D), (2) Seahorse metabolic analyses (2D), (3) subepithelial proliferation evaluated by the 3D spheroids' size and hardness, and (4) the mRNA expression of ECM proteins and their regulators (2D and 3D). RESULT: Rapa or Torin1 both significantly increased planar proliferation in the non-TGF-ß2-treated 2D HconF cells, but in the TGF-ß2-treated cells, this proliferation was inhibited by Rapa and enhanced by Torin1. Although Rapa or Torin1 did not affect cellular metabolism in the non-TGF-ß2-treated HconF cells, mTOR inhibitors significantly decreased and increased the mitochondrial respiration and the glycolytic capacity, respectively, under conditions of TGF-ß2-induced fibrogenesis. Subepithelial proliferation, as evidenced by the hardness of the 3D spheroids, was markedly down-regulated by both Rapa and Torin1 independent of TGF-ß2. The mRNA expressions of several ECM molecules and their regulators fluctuated in the cases of 2D vs 3D and TGF-ß2 untreated vs treated cultures. CONCLUSION: The present findings indicate that mTOR inhibitors have the ability to increase and to reduce planar and subepithelial proliferation in HconF cells, depending on the inhibitor being used.

20.
Cell Tissue Res ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042176

ABSTRACT

3D cell culture has emerged as a promising approach to replicate the complex behaviors of cells within living organisms. This study aims to analyze spatiotemporal behavior of the morphological characteristics of cell structure at multiscale in 3D scaffold-free spheroids using chondrogenic progenitor ATDC5 cells. Over a 14-day culture period, it exhibited cell hypertrophy in the spheroids regarding cellular and nuclear size as well as changes in morphology. Moreover, biological analysis indicated a signification up-regulation of normal chondrocyte as well as hypertrophic chondrocyte markers, suggesting early hypertrophic chondrocyte differentiation. Cell nuclei underwent changes in volume, sphericity, and distribution in spheroid over time, indicating alterations in chromatin organization. The ratio of chromatin condensation volume to cell nuclear volume decreased as the cell nuclei enlarged, potentially signifying changes in chromatin state during hypertrophic chondrocyte differentiation. Our image analysis techniques in this present study enabled detailed morphological measurement of cell structure at multi-scale, which can be applied to various 3D culture models for in-depth investigation.

SELECTION OF CITATIONS
SEARCH DETAIL