Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters








Publication year range
1.
Adv Sci (Weinh) ; : e2407301, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225309

ABSTRACT

Regulating the adsorption of an intermediate on an electrocatalyst by manipulating the electron spin state of the transition metal is of great significance for promoting the activation of inert nitrogen molecules (N2) during the electrocatalytic nitrogen reduction reaction (eNRR). However, achieving this remains challenging. Herein, a novel 2D/2D Mott-Schottky heterojunction, Co9S8/Nb2CTx-P, is developed as an eNRR catalyst. This is achieved through the in situ growth of cobalt sulfide (Co9S8) nanosheets over a Nb2CTx MXene using a solution plasma modification method. Transformation of the Co spin state from low (t2g 6eg 1) to high (t2g 5eg 2) is achieved by adjusting the interface electronic structure and sulfur vacancy of Co9S8/Nb2CTx-P. The adsorption ability of N2 is optimized through high spin Co(II) with more unpaired electrons, significantly accelerating the *N2→*NNH kinetic process. The Co9S8/Nb2CTx-P exhibits a high NH3 yield of 62.62 µg h-1 mgcat. -1 and a Faradaic efficiency (FE) of 30.33% at -0.40 V versus the reversible hydrogen electrode (RHE) in 0.1 m HCl. Additionally, it achieves an NH3 yield of 41.47 µg h-1 mgcat. -1 and FE of 23.19% at -0.60 V versus RHE in 0.1 m Na2SO4. This work demonstrates a promising strategy for constructing heterojunction electrocatalysts for efficient eNRR.

2.
Micromachines (Basel) ; 15(7)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39064422

ABSTRACT

A single nitrogen-vacancy (NV) center in a diamond can be used as a nanoscale sensor for magnetic field, electric field or nuclear spins. Due to its low photon detection efficiency, such sensing processes often take a long time, suffering from an electron spin resonance (ESR) frequency fluctuation induced by the time-varying thermal perturbations noise. Thus, suppressing the thermal noise is the fundamental way to enhance single-sensor performance, which is typically achieved by utilizing a thermal control protocol with a complicated and highly costly apparatus if a millikelvin-level stabilization is required. Here, we analyze the real-time thermal drift and utilize an active way to alternately track the single-spin ESR frequency drift in the experiment. Using this method, we achieve a temperature stabilization effect equivalent to sub-millikelvin (0.8 mK) level with no extra environmental thermal control, and the spin-state readout contrast is significantly improved in long-lasting experiments. This method holds broad applicability for NV-based single-spin experiments and harbors the potential for prospective expansion into diverse nanoscale quantum sensing domains.

3.
J Am Chem Soc ; 146(31): 21752-21761, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39056815

ABSTRACT

Organic polyradicals with a high-spin ground state and quantum magnetic properties suitable for spin manipulation are valuable materials for diverse innovative technologies, including quantum devices. However, the typically high reactivity and low stability of conventional polyradicals present a major obstacle to such applications. In this study, a highly stable carbon-centered triradical TR with a quartet ground state and excellent stability (τ1/2 of ∼90 days in air-saturated toluene at room temperature) is achieved, which shows apposite magnetic anisotropy and Zeeman splitting partition with favorable addressability. By virtue of the optimal stability, thorough structural and magnetic characterizations are realized. With X-ray crystallography unambiguously proving the molecular structure, the quartet ground state (ΔED-Q = 0.78 kcal/mol) is confirmed by the SQUID measurements, while the cw- and pulsed EPR techniques offer additional supportive evidence for the high-spin nature. Remarkably, owing to the easily attained magnetic anisotropy, selective excitations between different Zeeman splitting levels are successfully demonstrated with TR in its frozen toluene solution without the requirement for special alignment, which is unprecedented for organic polyradicals. Along with the millisecond spin-lattice relaxation and microsecond coherence time manifested by TR, this triradical is promising for potential coherent spin manipulation applications as a multienergy-level quantum information carrier.

4.
Angew Chem Int Ed Engl ; 62(41): e202305408, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37258996

ABSTRACT

The intrinsic properties of predesignable topologies and tunable electronic structures, coupled with the increase of electrical conductivity, make two-dimensional metal-organic frameworks (2D MOFs) highly prospective candidates for next-generation electronic/spintronic devices. In this Minireview, we present an outline of the design principles of 2D MOF-based spintronics materials. Then, we highlight the spin-transport properties of 2D MOF-based organic spin valves (OSVs) as a notable achievement in the progress of 2D MOFs for spintronics devices. After that, we discuss the potential for spin manipulation in 2D MOFs with bipolar magnetic semiconductor (BMS) properties as a promising field for future research. Finally, we provide a brief summary and outlook to encourage the development of novel 2D MOFs for spintronics applications.

5.
Nano Lett ; 23(11): 4815-4821, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37256831

ABSTRACT

Electrically controlled rotation of spins in a semiconducting channel is a prerequisite for the successful realization of many spintronic devices, like, e.g., the spin-field-effect transistor (sFET). To date, there have been only a few reports on electrically controlled spin precession in sFET-like devices. These devices operate in the ballistic regime, as postulated in the original sFET proposal, and hence need high SOC channel materials in practice. Here, we demonstrate gate-controlled precession of spins in a nonballistic sFET using an array of narrow diffusive wires as a channel between a spin source and a spin drain. Our study shows that spins traveling in a semiconducting channel can be coherently rotated on a distance far exceeding the electrons' mean free path, and spin-transistor functionality can be thus achieved in nonballistic channels with relatively low SOC, relaxing two major constraints of the original sFET proposal.

6.
Nano Lett ; 22(10): 3976-3982, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35561341

ABSTRACT

Solid-state materials are currently being explored as a platform for the manipulation of spins for spintronics and quantum information science. More broadly, a wide spectrum of ferroelectric materials, spanning from inorganic oxides to polymeric systems such as PVDF, present a different approach to explore quantum phenomena in which the spins are set and manipulated with electric fields. Using dilute Fe3+-doped ferroelectric PbTiO3-SrTiO3 superlattices as a model system, we demonstrate intrinsic spin-polarization control of spin directionality in complex ferroelectric vortices and skyrmions. Electron paramagnetic resonance (EPR) spectra show that the spins in the Fe3+ ion are strongly coupled to the local polarization and preferentially aligned perpendicular to the ferroelectric polar c axis in this complex vortex structure. The effect of polarization-spin directionality is corroborated by first-principles calculations, demonstrating the variation of the spin directionality with the polar texture and offering the potential for future quantum analogues of macroscopic magnetoelectric devices.

7.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34493664

ABSTRACT

Magnetic superconductors are specific materials exhibiting two antagonistic phenomena, superconductivity and magnetism, whose mutual interaction induces various emergent phenomena, such as the reentrant superconducting transition associated with the suppression of superconductivity around the magnetic transition temperature (T m), highlighting the impact of magnetism on superconductivity. In this study, we report the experimental observation of the ferromagnetic order induced by superconducting vortices in the high-critical-temperature (high-T c) magnetic superconductor EuRbFe4As4 Although the ground state of the Eu2+ moments in EuRbFe4As4 is helimagnetism below T m, neutron diffraction and magnetization experiments show a ferromagnetic hysteresis of the Eu2+ spin alignment. We demonstrate that the direction of the Eu2+ moments is dominated by the distribution of pinned vortices based on the critical state model. Moreover, we demonstrate the manipulation of spin texture by controlling the direction of superconducting vortices, which can help realize spin manipulation devices using magnetic superconductors.

8.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34443937

ABSTRACT

Individual nitrogen vacancy (NV) color centers in diamond are versatile, spin-based quantum sensors. Coherently controlling the spin of NV centers using microwaves in a typical frequency range between 2.5 and 3.5 GHz is necessary for sensing applications. In this work, we present a stripline-based, planar, Ω-shaped microwave antenna that enables one to reliably manipulate NV spins. We found an optimal antenna design using finite integral simulations. We fabricated our antennas on low-cost, transparent glass substrate. We created highly uniform microwave fields in areas of roughly 400 × 400 µm2 while realizing high Rabi frequencies of up to 10 MHz in an ensemble of NV centers.

9.
Nanoscale Res Lett ; 15(1): 226, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33296058

ABSTRACT

Spintronics is the most promising technology to develop alternative multi-functional, high-speed, low-energy electronic devices. Due to their unusual physical characteristics, emerging two-dimensional (2D) materials provide a new platform for exploring novel spintronic devices. Recently, 2D spintronics has made great progress in both theoretical and experimental researches. Here, the progress of 2D spintronics has been reviewed. In the last, the current challenges and future opportunities have been pointed out in this field.

10.
Front Chem ; 8: 589207, 2020.
Article in English | MEDLINE | ID: mdl-33195092

ABSTRACT

π-Conjugated semiconductors, primarily composed of elements with low atomic number, are regarded as promising spin-transport materials due to the weak spin-orbit coupling interaction and hence long spin relaxation time. Moreover, a large number of additional functions of organic semiconductors (OSCs), such as the abundant photo-electric properties, flexibility, and tailorability, endow the organic spintronic devices more unique properties and functionalities. Particularly, the integration of the photo-electric functionality and excellent spin transport property of OSCs in a single spintronic device has even shown great potential for the realization of spin manipulation in OSCs. In this review, the application of OSCs in spintronic study will be succinctly discussed. As the most important and extensive application, the long-distance spin transport property of OSCs will be discussed first. Subsequently, several multifunctional spintronic devices based on OSCs will be summarized. After that, the organic-based magnets used for the electrodes of spintronic devices will be introduced. Finally, according to the latest progress, spin manipulation in OSCs via novel spintronic devices together with other prospects and challenges will be outlined.

11.
Nano Lett ; 20(3): 2129-2136, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32078769

ABSTRACT

Valley pseudospin in two-dimensional (2D) transition-metal dichalcogenides (TMDs) allows optical control of spin-valley polarization and intervalley quantum coherence. Defect states in TMDs give rise to new exciton features and theoretically exhibit spin-valley polarization; however, experimental achievement of this phenomenon remains challenges. Here, we report unambiguous valley pseudospin of defect-bound localized excitons in CVD-grown monolayer MoS2; enhanced valley Zeeman splitting with an effective g-factor of -6.2 is observed. Our results reveal that all five d-orbitals and the increased effective electron mass contribute to the band shift of defect states, demonstrating a new physics of the magnetic responses of defect-bound localized excitons, strikingly different from that of A excitons. Our work paves the way for the manipulation of the spin-valley degrees of freedom through defects toward valleytronic devices.

12.
ACS Nano ; 13(6): 6917-6924, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31180628

ABSTRACT

We study a low-temperature on-surface reversible chemical reaction of oxygen atoms to molecules in ultrahigh vacuum on the semiconducting rutile TiO2(110)-(1 × 1) surface. The reaction is activated by charge transfer from two sources, natural surface/subsurface polarons and experimental Kelvin probe force spectroscopy as a tool for electronic charge manipulation with single electron precision. We demonstrate a complete control over the oxygen species not attainable previously, allowing us to deliberately discriminate in favor of charge or bond manipulation, using either direct charge injection/removal through the tip-oxygen adatom junction or indirectly via polarons. Comparing our ab initio calculations with experiment, we speculate that we may have also manipulated the spin on the oxygens, allowing us to deal with the singlet/triplet complexities associated with the oxygen molecule formation. We show that the manipulation outcome is fully governed by three experimental parameters, vertical and lateral tip positions and the bias voltage.

13.
Natl Sci Rev ; 6(1): 32-54, 2019 Jan.
Article in English | MEDLINE | ID: mdl-34691830

ABSTRACT

Semiconductors, a significant type of material in the information era, are becoming more and more powerful in the field of quantum information. In recent decades, semiconductor quantum computation was investigated thoroughly across the world and developed with a dramatically fast speed. The research varied from initialization, control and readout of qubits, to the architecture of fault-tolerant quantum computing. Here, we first introduce the basic ideas for quantum computing, and then discuss the developments of single- and two-qubit gate control in semiconductors. Up to now, the qubit initialization, control and readout can be realized with relatively high fidelity and a programmable two-qubit quantum processor has even been demonstrated. However, to further improve the qubit quality and scale it up, there are still some challenges to resolve such as the improvement of the readout method, material development and scalable designs. We discuss these issues and introduce the forefronts of progress. Finally, considering the positive trend of the research on semiconductor quantum devices and recent theoretical work on the applications of quantum computation, we anticipate that semiconductor quantum computation may develop fast and will have a huge impact on our lives in the near future.

14.
Nano Lett ; 18(3): 1842-1848, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29424230

ABSTRACT

Laser pulses induce spin-selective charge flow that we show to generate dramatic changes in the magnetic structure of materials, including a switching of magnetic order from antiferromagnetic (AFM) to transient ferromagnetic (FM) in multisub-lattice systems. The microscopic mechanism underpinning this ultrafast switching of magnetic order is dominated by spin-selective charge transfer from one magnetic sublattice to another. Because this spin modulation is purely optical in nature (i.e., not mediated indirectly via the spin-orbit interaction) this is one of the fastest means of manipulating spin by light. We further demonstrate this mechanism to be universally applicable to AFM, FM, and ferri-magnets in both multilayer and bulk geometry and provide three rules that encapsulate early-time magnetization dynamics of multisub-lattice systems.

15.
Sci Adv ; 3(3): e1602312, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28345050

ABSTRACT

The Rashba physics has been intensively studied in the field of spin orbitronics for the purpose of searching novel physical properties and the ferromagnetic (FM) magnetization switching for technological applications. We report our observation of the inverse Edelstein effect up to room temperature in the Rashba-split two-dimensional electron gas (2DEG) between two insulating oxides, SrTiO3 and LaAlO3, with the LaAlO3 layer thickness from 3 to 40 unit cells (UC). We further demonstrate that the spin voltage could be markedly manipulated by electric field effect for the 2DEG between SrTiO3 and 3-UC LaAlO3. These results demonstrate that the Rashba-split 2DEG at the complex oxide interface can be used for efficient charge-and-spin conversion at room temperature for the generation and detection of spin current.

SELECTION OF CITATIONS
SEARCH DETAIL