Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters








Publication year range
1.
Small ; : e2404452, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248686

ABSTRACT

Aqueous rechargeable lithium-ion batteries (ARLIBs) are extensively researched due to their inherent safety, typical affordability, and potential high energy density. However, fabricating ARLIBs with both high energy density and power performance remains challenging. Herein, based on cyanoethyl-modified bacterial cellulose nanofibers (CBCNs), a multifunctional fast ion transport framework is developed to construct the flexible free-standing ARLIBs with high areal loading and excellent rate performance. Benefiting from the unique merits of CBCNs, such as ultra-high aspect ratio, excellent toughness, superior adhesion, good lithiophilicity and ideal stability, the flexible free-standing and highly robust electrodes are fabricated and exhibit a long-term stable cycling of 1200 cycles with a high specific capacity of 117 mAh∙g-1 at 15 C. Remarkably, the corresponding full cell with the free-standing high mass loading (45.5 mg∙cm-2) electrodes under the condition of ultra-low addition of battery binder demonstrates a cycle lifespan of over 1000 cycles with a specific capacity of 120 mAh∙g-1 and a capacity decay as low as 0.03% per cycle, which is far superior to those of almost all previous reports. This work provides a strategy for constructing ARLIBs with high energy density and power performance by introducing a unique fast ion transport nanofiber framework.

2.
ACS Appl Mater Interfaces ; 16(35): 46677-46689, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39185799

ABSTRACT

Material extrusion 3D printing has received enormous attention to potentially overcome its limits by tailoring and designing thick electrodes. In this work, we prepared a thick reduced graphene oxide/carbon nanotube-reduced graphene oxide/carbon nanotubes/manganese oxide@carbon nanotubes (rGC-rGCMC) electrode with controlled lattice architectures, core-sheath structure, and hierarchical porosity by material coaxial extrusion 3D printing, freeze-drying, and thermal treatment. The volume ratios of core to sheath, including 100%-0%, 0%-100%, 20%-80%, 30%-70%, 40%-60%, and 50%-50%, were designed to investigate the influences of the core-sheath structure on thick electrodes. The electrodes with a core-sheath volume ratio of 30%-70% electrodes exhibited an enhanced areal specific capacitance of 588.27 mF cm-2 (39.48 F g-1) at a scan rate of 0.5 mA cm-2. All capacitance decays from core-sheath electrodes (20%-80%, 30%-70%, 40%-60%, and 50%-50%) were smaller than those from rGCMC (0%-100%) electrodes, indicating the improved rate capability from the core-sheath structure. On comparison of 30%-70% core-sheath electrodes with electrodes made of a homogeneous 30% rGC and 70% rGCMC mixture (30%+70%), lower capacitance (382.27 mF cm-2 and 25.66 F g-1 at 0.5 mA cm-2) of the 30%+70% mixture electrode without a core-sheath structure suggested less efficiency to harvest electrons from the redox reactions. Electrochemical impedance spectroscopy (EIS) data further supported and explained the resistances of thick electrodes with different volume ratios.

3.
Natl Sci Rev ; 11(8): nwae207, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39007002

ABSTRACT

Thickening of electrodes is crucial for maximizing the proportion of active components and thus improving the energy density of practical energy storage cells. Nevertheless, trade-offs between electrode thickness and electrochemical performance persist because of the considerably increased ion transport resistance of thick electrodes. Herein, we propose accelerating ion transport through thick and dense electrodes by establishing an immobile polyanionic backbone within the electrode pores; and as a proof of concept, gel polyacrylic electrolytes as such a backbone are in situ synthesized for supercapacitors. During charge and discharge, protons rapidly hop among RCOO- sites for oriented transport, fundamentally reducing the effects of electrode tortuosity and polarization resulting from concentration gradients. Consequently, nearly constant ion transport resistance per unit thickness is achieved, even in the case of a 900-µm-thick dense electrode, leading to unprecedented areal capacitances of 14.85 F cm-2 at 1 mA cm-2 and 4.26 F cm-2 at 100 mA cm-2. This study provides an efficient method for accelerating ion transport through thick and dense electrodes, indicating a significant solution for achieving high energy density in energy storage devices, including but not limited to supercapacitors.

4.
Chemosphere ; 360: 142325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754489

ABSTRACT

Enhancing the kinetic performance of thick electrodes is essential for improving the efficiency of lithium extraction processes. Biochar, known for its affordability and unique three-dimensional (3D) structure, is utilized across various applications. In this study, we developed a biochar-based, 3D-conductive network thick electrode (∼20 mg cm-2) by in-situ deposition of LiFePO4 (LFP) onto watermelon peel biomass (WB). Utilizing Density Functional Theory (DFT) calculations complemented by experimental data, we confirmed that this The thick electrode exhibits outstanding kinetic properties and a high capacity for lithium intercalation in brines, even in environments where the Magnesia-lithium ratios are significantly high. The electrode showed an impressive intercalation capacity of 30.67 mg g-1 within 10 min in a pure lithium solution. It also maintained high intercalation performance (31.17 mg g-1) in simulated brines with high Magnesia-lithium ratios. Moreover, in actual brine, it demonstrated a significant extraction capacity (23.87 mg g-1), effectively lowering the Magnesia-lithium ratio from 65 to 0.50. This breakthrough in high-conductivity thick electrode design offers new perspectives for lithium extraction technologies.


Subject(s)
Charcoal , Electrodes , Lithium , Lithium/chemistry , Lithium/isolation & purification , Charcoal/chemistry , Lakes/chemistry , Magnesium/chemistry , Citrullus/chemistry , Salts/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Kinetics , Iron , Phosphates
5.
Polymers (Basel) ; 16(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257053

ABSTRACT

The design of binders plays a pivotal role in achieving enduring high power in lithium-ion batteries (LIBs) and extending their overall lifespan. This review underscores the indispensable characteristics that a binder must possess when utilized in LIBs, considering factors such as electrochemical, thermal, and dispersion stability, compatibility with electrolytes, solubility in solvents, mechanical properties, and conductivity. In the case of anode materials, binders with robust mechanical properties and elasticity are imperative to uphold electrode integrity, particularly in materials subjected to substantial volume changes. For cathode materials, the selection of a binder hinges on the crystal structure of the cathode material. Other vital considerations in binder design encompass cost effectiveness, adhesion, processability, and environmental friendliness. Incorporating low-cost, eco-friendly, and biodegradable polymers can significantly contribute to sustainable battery development. This review serves as an invaluable resource for comprehending the prerequisites of binder design in high-performance LIBs and offers insights into binder selection for diverse electrode materials. The findings and principles articulated in this review can be extrapolated to other advanced battery systems, charting a course for developing next-generation batteries characterized by enhanced performance and sustainability.

6.
ChemSusChem ; 17(6): e202301586, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38168109

ABSTRACT

Organic electrode materials (OEMs) have been well developed in recent years. However, the practical applications of OEMs have not been paid sufficient attention. The concept here focused on one of the essential aspects for practical applications, i. e., high mass loading of active materials. This paper summarizes the challenges posed by high-mass loading of active materials in organic batteries and discusses the possible solutions in terms of organic electrode materials, conductive additives, electrode structures, and electrolytes or battery systems. We hope this concept can stimulate more attention to practical applications of organic batteries towards industry from lab.

7.
ACS Appl Mater Interfaces ; 16(5): 5943-5956, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38285498

ABSTRACT

Developing thick electrodes with high-area loadings is a direct method for boosting the energy density. However, this approach also leads to a proportional increase in the resistance to charge transport. Optimizing the microstructure of the electrode can effectively enhance the charge transport kinetics in thick electrodes. Herein, a low-tortuosity nickel electrode with vertical channels (VC-Ni) is fabricated using a phase inversion method. A high-loading VC-Ni electrode (26.7 mg cm-2) delivers a superior specific capacity of 134.0 mAh g-1 at a 5 C rate, significantly outperforming the conventional nickel electrode (Con-Ni). Numerical simulations reveal the fast transport kinetics within the vertical channel electrodes. For the thick electrode, the VC-Ni electrode shows a substantially lower concentration gradient of OH- and H+ compared to the Con-Ni electrode. Notably, beyond a critical loading of 26.5 mg cm-2, the specific capacity initially increases with volume fraction, peaking at 50%, and then diminishes. The specific capacity increases as the channel size decreases, but the tendency to increase gradually decreases. The highest specific capacity is achieved with an inverted trapezoidal channel shape, characterized by larger pores near the separator and smaller pores near the current collector. This work is of guidance for the design of thick electrodes for high-performance aqueous batteries.

8.
Small ; 20(23): e2309126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38148313

ABSTRACT

Lithium-sulfur batteries (LSBs) with superior energy density are among the most promising candidates for next-generation energy storage techniques. Sulfurized polyacrylonitrile (SPAN) exhibits competitive advantages in terms of cycle stability, rate performance as well as cost. However, the preparation of high-loading SPAN electrodes is still challenging. Herein, inspired by mussel and cobweb, a high-loading SPAN electrode is enabled by the combination of polydopamine (PDA) coating and a bimodal distributed single-wall carbon nanotubes (SWCNT) slurry dispersed in polyvinylpyrrolidone (PVP), their synergistic effect not only constructs effective electron percolating networks within the electrode but also make high active material (AM) ratio possible. High areal capacity PDA@SPAN electrode (18.40 mAh cm-2 in the initial cycle) with negligible specific capacity attenuation as the mass loading increasement is realized through the facile slurry casting process. The dynamic N─H…O hydrogen bond is formed between PDA and PVP and the electrode integrity during charge/discharge is greatly strengthened. The battery with an areal AM loading of 7.16 mg cm-2 (5.16 mAh cm-2) retains 92.0% of capacity in 80 cycles and 87.18% in 160 cycles, and it also shows stable cycle performances even with a high loading of 19.79 mg cm-2 and lean electrolyte (3.28 µL mg-1).

9.
ACS Nano ; 17(10): 8866-8898, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37126761

ABSTRACT

The emergence and development of thick electrodes provide an efficient way for the high-energy-density supercapacitor design. Wood is a kind of biomass material with porous hierarchical structure, which has the characteristics of a straight channel, uniform pore structure, good mechanical strength, and easy processing. The wood-inspired low-tortuosity and vertically aligned channel architecture are highly suitable for the construction of thick electrochemical supcapacitor electrodes with high energy densities. This review summarizes the design concepts and processing parameters of thick electrode supercapacitors inspired by natural woods, including wood-based pore structural design regulation, electric double layer capacitances (EDLCs)/pseudocapacitance construction, and electrical conductivity optimization. In addition, the optimization strategies for preparing thick electrodes with wood-like structures (e.g., 3D printing, freeze-drying, and aligned-low tortuosity channels) are also discussed in detail. Further, this review presents current challenges and future trends in the design of thick electrodes for supercapacitors with wood-inspired pore structures. As a guideline, the brilliant blueprint optimization will promote sustainable development of wood-inspired structure design for thick electrodes and broaden the application scopes.

10.
Materials (Basel) ; 16(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37176321

ABSTRACT

This article addresses the issue of bulk electrode design and the factors limiting the performance of thick electrodes. Indeed, one of the challenges for achieving improved performance in electrochemical energy storage devices (batteries or supercapacitors) is the maximization of the ratio between active and non-active components while maintaining ionic and electronic conductivity of the assembly. In this study, we developed and compared supercapacitor thick electrodes using commercially available carbons and utilising conventional, easily scalable methods such as spray coating and freeze-casting. We also compared different binders and conductive carbons to develop thick electrodes and analysed factors that determine the performance of such thick electrodes, such as porosity and tortuosity. The spray-coated electrodes showed high areal capacitances of 1428 mF cm-2 at 0.3 mm thickness and 2459 F cm-2 at 0.6 mm thickness.

11.
ACS Appl Mater Interfaces ; 14(40): 45526-45532, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36166400

ABSTRACT

Carbon-based materials are the most prospective anodes. Typically, a single carbon-based material is applied to different energy storage systems (EESs) without modification. However, the microcrystal structure of carbon plays a decisive role in the energy storage performance, and therefore, it should be adjusted when applied to different EESs. Here, a hierarchical porous carbon monomer monolith (HPCM) embedded with carbon nanotubes blooming on ZIF-67 was designed as a soft-hard carbon-based freestanding thick electrode for achieving high-energy lithium-ion and sodium-ion batteries. HPCM is resorcinol-formaldehyde (RF) resin-derived carbon, mainly composed of hard carbon, which has outstanding mechanical properties, a high surface area, and high porosity. Carbon nanotubes (CNTs) derived from ZIF-67 have extraordinary electronic conductivity, which provides soft carbon. High-temperature CO2 etching was performed to adjust the microcrystal structure, and the lithium/sodium storage performance of the electrode was evaluated. After CO2 etching, the materials lose almost half their weight (mainly hard carbon), and pseudocapacitive contribution decreases for both lithium-ion and sodium-ion batteries, whereas the specific capacity increases for lithium-ion batteries and decreases for sodium-ion batteries. Capacities of 5.96 mAh cm-2 (areal) and 132.48 mAh cm-3 (volumetric) were achieved for lithium storage, and those for sodium storage were 2.31 and 51.24 mAh cm-3, respectively. In summary, it is significant to adjust the microcrystal structure of carbon-based electrodes, and this study provides related experience for lithium and sodium storage.

12.
Nano Lett ; 22(6): 2521-2528, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35254075

ABSTRACT

Because it has been demonstrated to be effective toward faster ion diffusion inside the pore space, low-tortuosity porous architecture has become the focus in thick electrode designs, and other possibilities are rarely investigated. To advance current understanding in the structure-affected electrochemistry and to broaden horizons for thick electrode designs, we present a gradient electrode design, where porous channels are vertically aligned with smaller openings on one end and larger openings on the other. With its 3D morphology carefully visualized by Raman mapping, the electrochemical properties between opposite orientations of the gradient electrodes are compared, and faster energy storage kinetics is found in larger openings and more concentrated active material near the separator. As further verified by simulation, this study on gradient electrode design deepens the knowledge of structure-related electrochemistry and brings perspectives in high-energy battery electrode designs.

13.
Nano Lett ; 22(6): 2429-2436, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35285233

ABSTRACT

Lithium cobalt oxide (LCO) is a widely used cathode material for lithium-ion batteries. However, it suffers from irreversible phase transition during cycling because of high cutoff voltage or huge concentration polarization in thick electrode, resulting in deteriorated cyclability. Here, we design a low tortuous LiCoO2 (LCO-LT) electrode by ice-templating method and investigate the reversibility of LCO phase transition. LCO-LT thick electrode shows accelerated lithium-ion transport and reduced concentration polarization, achieving excellent rate capability and homogeneous actual operating voltage. Moreover, LCO-LT thick electrode exhibits a durable phase transition between O2 and H1-3, mitigated volume expansion, and suppressed microcrack formation. LCO-LT electrode (25 mg cm-2) delivers improved capacity retentions of 94.4% after 200 cycles and 93.3% after 150 cycles at cutoff voltages of 4.3 and 4.5 V, respectively. This strategy provides a new concept to improve the reversibility of LCO phase transition in thick electrode by low tortuosity design.

14.
Nanomaterials (Basel) ; 12(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35159665

ABSTRACT

Manufacturing thick electrodes for Li-ion batteries is a challenging task to fulfill, but leads to higher energy densities inside the cell. Water-based processing even adds an extra level of complexity to the procedure. The focus of this work is to implement a multi-layered coating in an industrially relevant process, to overcome issues in electrode integrity and to enable high electrochemical performance. LiNi0.8Mn0.1Co0.1O2 (NMC811) was used as the active material to fabricate single- and multi-layered cathodes with areal capacities of 8.6 mA h cm-2. A detailed description of the manufacturing process is given to establish thick defect-free aqueous electrodes. Good inter-layer cohesion and adhesion to the current collector foil are achieved by multi-layering, as confirmed by optical analysis and peel testing. Furthermore, full cells were assembled and rate capability tests were performed. These tests show that by multi-layering, an increase in specific discharge capacity (e.g., 20.7% increase for C/10) can be established for all tested C-rates.

15.
ACS Appl Mater Interfaces ; 12(44): 49607-49616, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33104326

ABSTRACT

Nanostructured anode materials have attracted significant attention for lithium-ion batteries (LIBs) due to their high specific capacity. However, their practical application is hindered by the rather low areal capacity in the ultrathin electrode (∼1 mg cm-2). Herein, we propose a new strategy of an all-conductive electrode to fabricate a flexible and free-standing vanadium nitride@N-doped carbon/graphene (VN@C/G) thick electrode. Due to the free-standing structure and absence of any nonconductive components in the electrode, the obtained thick electrode displays excellent cycling performances. With the high mass loading of 5 mg cm-2, VN based electrodes achieve a reversible capacity of 2.6 mAh cm-2 after 200 cycles. Moreover, the all-conductive electrode allows an ultrahigh areal capacity of 7 mAh cm-2 with a high mass loading of 18.3 mg cm-2, which is comparable to state-of-the-art graphite anodes (4 mAh cm-2). Theoretical calculations prove the metallic conductivity of VN, which allows fast charge transport in the thick electrode. This strategy of fabricating all-conductive electrodes shows great potentials to achieve high areal capacity in practical lithium-ion batteries.

16.
ACS Appl Mater Interfaces ; 12(42): 47623-47633, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33047606

ABSTRACT

The ever-growing demand for energy in the consumer market has put higher requirements on the energy density of Li-ion batteries. Many researchers have strived to discover new electrode materials with higher capacity, while little attention has been focused on improving the cell structure. How to increase the thickness of conventional slurry-cast electrodes as well as decrease the charge transfer resistance by improving the electrode structure is an urgent problem for enhancing the energy density of Li-ion batteries. Here, a porous Cu film is developed to replace the conventional Cu foil current collector, and a thick graphite anode (300 µm) is engineered by two-side slurry casting. The anode delivers a maximum capacity of 18 mAh cm-2 or 301.3 mAh g-1 under a highly active mass loading of 60 mg cm-2, much higher than that fabricated on Cu foil. The assembled full cell with the graphite anode and the LiFePO4 cathode achieves high energy densities of 36.2 mWh cm-2 and 283.3 Wh kg-1. Systematic experimental and simulation investigations reveal the enhanced performance benefits from the facilitated charge transfer efficiency by the porous Cu current collector. This work provides a new strategy for engineering thick electrodes for high-energy Li-ion batteries by improving the conventional electrode structure.

17.
ACS Appl Mater Interfaces ; 11(20): 18386-18394, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31021598

ABSTRACT

In composite battery electrode architectures, local limitations in ionic and electronic transport can result in nonuniform energy storage reactions. Understanding such reaction heterogeneity is important to optimizing battery performance, including rate capability and mitigating degradation and failure. Here, we use spatially resolved X-ray diffraction computed tomography to map the reaction in a composite electrode based on the LiFePO4 active material as it undergoes charge and discharge. Accelerated reactions at the electrode faces in contact with either the separator or the current collector demonstrate that both ionic and electronic transport limit the reaction progress. The data quantify how nonuniformity of the electrode reaction leads to variability in the charge/discharge rate, both as a function of time and position within the electrode architecture. Importantly, this local variation in the reaction rate means that the maximum rate that individual cathode particles experience can be substantially higher than the average, control charge/discharge rate, by a factor of at least 2-5 times. This rate heterogeneity may accelerate rate-dependent degradation pathways in regions of the composite electrode experiencing faster-than-average reaction and has important implications for understanding and optimizing rate-dependent battery performance. Benchmarking multiscale continuum model parameters against the observed reaction heterogeneity permits extension of these models to other electrode geometries.

18.
ACS Appl Mater Interfaces ; 9(29): 24407-24421, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28617586

ABSTRACT

The renaissance of Li-S battery technology is evidenced by the intensive R&D efforts in recent years. Although the theoretical capacity and energy of a Li-S battery is theoretically very high, the projected usable energy is expected to be no more than twice that of state-of-the-art Li-ion batteries, or 500 Wh/kg. The recent "sulfur fever" has certainly gathered new knowledge on sulfur chemistry and electrochemistry, electrolytes, lithium metal, and their interactions in this "new" system; however, a real advance toward a practical Li-S battery is still missing. One of the main reasons behind this is the sensitivity of Li-S batteries to the experimental testing parameters. Sophisticated nanostructures are usually employed, while the practicality of these nanomaterials for batteries is rarely discussed. The sulfur electrode, usually engineered in a thin-film configuration, further poses uncertainties in the knowledge transfer from the lab to industry. This review article briefly overviews the recent research progress on Li-S batteries, followed by a discussion of the Li-S battery system from the authors' own understandings collected from their past few years of research. The critical findings, the unresolved issues, and the scientific gap between lab research and industrial application are discussed. The future work in Li-S battery research is also explored to propel relevant research efforts toward industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL