Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.792
Filter
1.
Neurorehabil Neural Repair ; : 15459683241268583, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39104216

ABSTRACT

BACKGROUND: Gait disturbances are exacerbated in people with Parkinson's disease (PD) during dual-task walking (DTW). Transcranial direct current stimulation (tDCS) has been shown to exert beneficial effects on gait performance and cortical excitability in PD; however, its combined effects with treadmill training (TT) remain undetermined. OBJECTIVE: To investigate the effects of tDCS followed by TT on DTW performance and cortical excitability in individuals with PD. METHODS: Thirty-four PD participants were randomized to dorsal lateral prefrontal cortex (DLPFC) tDCS and TT group (DLPFC tDCS + TT group) or sham tDCS and TT group (sham tDCS + TT group) for 50 minutes per session (20 minutes tDCS followed by 30 minutes TT), 12 sessions within 5 weeks (2-3 sessions each week). Outcome measures included cognitive dual-task walking (CDTW), motor dual-task walking (MDTW), usual walking performance, cortical excitability, functional mobility, cognitive function, and quality of life. RESULTS: The DLPFC tDCS + TT group exerted significantly greater improvement in CDTW velocity (P = .046), cadence (P = .043), and stride time (P = .041) compared to sham tDCS + TT group. In addition, DLPFC tDCS + TT group demonstrated a significant increase in resting motor threshold of stimulated hemisphere compared with sham tDCS + TT group (P = .026). However, no significant differences between groups were found in MDTW performance and other outcomes. CONCLUSION: Twelve-session DLPFC tDCS followed by TT significantly improved CDTW performance and decreased cortical excitability more than TT alone in individuals with PD. Applying DLPFC tDCS prior to TT could be suggested for gait rehabilitation in individuals with PD. CLINICAL TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry ACTRN12622000101785.

2.
Am J Vet Res ; : 1-11, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094616

ABSTRACT

OBJECTIVE: The goal of this study was to compare the accuracy of kinematic measurements obtained using the 2-D video-based kinematic motion analysis (KMA) software Kinovea (version 0.9.5; http://www.kinovea.org) with 3-D KMA in healthy dogs. METHODS: In this prospective study, 3-D marker-based KMA (VICON-Nexus, version 2.12.1, and Procalc, version 1.6; VICON Motion Systems Ltd) was performed on healthy dogs (body weight ≥ 20 kg; height at withers > 50 cm) walking on a treadmill (study period: November 2022). Simultaneously, dogs were video recorded by 1 smartphone (iPhone SE; Apple Inc) at a 1.50-m distance perpendicular to the shoulder (60 frames per second; 1,920 X 1,080 pixels) for KMA using Kinovea. Joint angle and joint angle velocity of the shoulder, elbow, carpus, hip, stifle, and tarsus were calculated for 6 synchronized gait cycles. Each gait cycle was divided into 10 increments. The difference between 3-D KMA and Kinovea was assessed for each parameter using robust linear mixed-effects models. RESULTS: 34 dogs were included. The estimated joint angle difference between 3-D KMA and Kinovea was less than 2° for all shoulder and elbow gait cycle increments. For the carpus, hip, stifle, and tarsus, the difference was less than 2° in 9, 5, 4, and 4 out of 10 gait cycle increments, respectively. CONCLUSIONS: Kinovea provides accurate kinematic data for the shoulder and elbow of healthy dogs. Carpal, hip, stifle, and tarsal kinematics were less accurate. CLINICAL RELEVANCE: The use of Kinovea for clinical and research purposes remains limited. Future Kinovea-based studies are needed to investigate the accuracy of carpal, hip, stifle, and tarsal kinematics.

3.
Disabil Rehabil ; : 1-8, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126138

ABSTRACT

PURPOSE: Parkinson's disease creates an inability to perform previous learned autonomic tasks, such as walking, which worsens with disease progression. Recommendations to incorporate exercise at moderate to high intensities for this population has been established but there is limited knowledge about its impact on clinical based outcomes. The purpose of this research is to investigate the effectiveness of a 6-week intensity-driven walking program on clinical-based outcomes in individuals with PD. MATERIALS/METHODS: Five individuals with PD were recruited for this single-subject withdrawal design (A-B-A-B) study. 6-minute walk performance and other core neurological measures of gait were collected. Intervention phases incorporated a 30-minute individualized intensity-driven treadmill walking program practiced at 65% or more of ones maximum heart rate. Increased treadmill speed, incline, and resistance were manipulated to reach the target heart rate zone. RESULTS: 6-minute walk test within condition visual analysis demonstrated a therapeutic change during intervention phases and a countertherapeutic change during withdraw periods for all 5 individuals. An abrupt therapeutic effect was demonstrated for all individuals between conditions with the percent of nonoverlapping data ranging from 70-90%. Band method analysis revealed a range of 9-19 sessions two standard deviations above baseline mean performances for all individuals. CONCLUSION: To achieve sufficient walking performance, gait practiced at higher intensity levels may provide the optimal solution as an adjunct to standard care for individuals with PD who want to improve their walking.


Parkinson's disease creates an inability to perform previous learned autonomic tasks, such as walking, which worsens with disease progression.Exercise practiced at higher levels of intensity has been recommended to improve clinical based outcomes for the neurological population.Walking practice at higher intensity levels can provide a solution to improve gait endurance for individuals with Parkinson's disease.

4.
Front Physiol ; 15: 1409304, 2024.
Article in English | MEDLINE | ID: mdl-39113935

ABSTRACT

Post-stroke gait asymmetry leads to inefficient gait and a higher fall risk, often causing limited home and community ambulation. Two types of treadmills are typically used for training focused on symmetry: split-belt and single belt treadmills, but there is no consensus on which treadmill is superior to improve gait symmetry in individuals with stroke. To comprehensively determine which intervention is superior, we considered multiple spatial and temporal gait parameters (step length, stride time, swing time, and stance time) and their symmetries. Ten individuals with stroke underwent a single session of split-belt treadmill training and single belt treadmill training on separate days. The changes in step length, stride time, swing time, stance time and their respective symmetries were compared to investigate which training improves both spatiotemporal gait parameters and symmetries immediately after the intervention and after 5 min of rest. Both types of treadmill training immediately increased gait velocity (0.08 m/s faster) and shorter step length (4.15 cm longer). However, split-belt treadmill training was more effective at improving step length symmetry (improved by 27.3%) without sacrificing gait velocity or step length. However, this step length symmetry effect diminished after a 5-min rest period. Split-belt treadmill training may have some advantages over single belt treadmill training, when targeting step length symmetry. Future research should focus on comparing the long-term effects of these two types of training and examining the duration of the observed effects to provide clinically applicable information.

5.
Bull Exp Biol Med ; 177(2): 235-237, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39090459

ABSTRACT

We studied the effect of N1-(2,3,4-trimethoxybenzyl)-N2-{2-[(2,3,4-trimethoxybenzyl)amino]ethyl}-1,2-ethanediamine (compound ALM-802) on the physical performance of mice after acute fatigue. The animals' performance was assessed on a treadmill. The criterion for assessing exercise tolerance was the length of the distance passed when running on a treadmill until complete fatigue. To assess the actoprotective activity of compound ALM-802, we used a method of stepwise increase in load with an initial running speed of 42 cm/sec and its subsequent increase by 5 cm/sec every 5 min. The maximum speed of movement of the treadmill belt is 77 cm/sec. Animals that received compound ALM-802 (2 mg/kg intraperitoneally), 1 day after acute fatigue, ran a distance to complete fatigue that exceeded that of control mice by 68% (387.9±60.5 and 230.6±29.6 m, respectively, p=0.023). The reference drug trimetazidine (30 mg/kg, intraperitoneally) did not have a significant effect on the distance traveled. Compound ALM-802 helps restore physical performance, i.e. exhibits significant actoprotective activity.


Subject(s)
Fatigue , Animals , Mice , Male , Fatigue/drug therapy , Exercise Tolerance/drug effects , Physical Conditioning, Animal , Physical Functional Performance , Diamines/chemistry , Diamines/pharmacology
6.
Cancers (Basel) ; 16(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39123444

ABSTRACT

Moderate-to-vigorous-intensity physical activity decreases the risk of breast cancer. The muscle-derived cytokine (myokine), oncostatin M (OSM), has been shown to decrease breast cancer cell proliferation. We hypothesized that OSM is involved in physical activity-induced breast cancer prevention, and that OSM antibody (Anti-OSM) administration would mitigate the effect of physical activity in a rat model of mammary carcinoma. Female Sprague Dawley rats were injected with 50 mg/kg N-methyl-N-nitrosourea to induce mammary carcinogenesis. During the 20-week study, rats were exercise trained (EX) or remained sedentary (SED). Additional groups were treated with Anti-OSM antibody (SED + Anti-OSM and EX + Anti-OSM) to explore the impact of OSM blockade on tumor latency. Exercise training consisted of treadmill acclimation and progressive increases in session duration, speed, and grade, until reaching 30 min/day, 20 m/min at 15% incline. Experimentally naïve, age-matched, female rats also completed an acute exercise test (AET) with time course blood draws to evaluate OSM plasma concentrations. Relative tumor-free survival time was significantly longer in EX animals (1.36 ± 0.39) compared to SED animals (1.00 ± 0.17; p = 0.009), SED + Anti-OSM animals (0.90 ± 0.23; p = 0.019), and EX + Anti-OSM animals (0.93 ± 0.74; p = 0.004). There were no significant differences in relative tumor latency between SED, SED + Anti-OSM, or EX + Anti-OSM animals. Following the AET, OSM plasma levels trended higher compared to baseline OSM levels (p = 0.080). In conclusion, we observed that exercise-induced delay of mammary tumor development was mitigated through Anti-OSM administration. Thus, future studies of the OSM mechanism are required to lay the groundwork for developing novel chemo-prevention strategies in women who are unable or unwilling to exercise.

7.
Knee ; 49: 192-200, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39043014

ABSTRACT

AIMS: The aim of the present study was to investigate whether the predictability of fronto-parallel trunk rotations (lateral body sway) could serve as a frame of reference to monitor recovery after total knee arthroplasty (TKA). METHODS: Before surgery, 11 TKA patients were asked to perform a treadmill walking task at three different speeds. In addition, their gait abilities were scored on three standard clinical walking tests. The treadmill walking task was repeated at three different timepoints following surgery, i.e., at 3, 6 and 12 months post-TKA. The movements of the trunk were digitized with an inertial sensor to capture the amplitude and the sample entropy (SEn) of the lateral body sway that were evaluated in separate ANOVAs. RESULTS: Before surgery the TKA group showed larger body sway (P = 0.025) with smaller SEn values (P = 0.038), which both restored to levels of healthy adults in the 12 months following surgery. Systematic correlations between the SEn values and the clinical test scores were found. CONCLUSIONS: The current findings show that movement behavior of the trunk in the fronto-parallel plane was affected by knee osteoarthritis and suggest that the predictability of the lateral body sway may serve as an index of recovery after TKA.

8.
Article in English | MEDLINE | ID: mdl-39008617

ABSTRACT

Exercise training is considered a non-pharmacological therapeutic approach for many diseases. Mild-to-moderate endurance exercise training is suggested to improve the mental and physical state of people with Amyotrophic Lateral Sclerosis (ALS). The aim of the present study was to determine the capacity of symptomatic rNLS8 mice, which develop ALS-reminiscent TAR DNA-binding protein 43 (TDP-43) pathology and motor dysfunction, to perform mild-to-moderate intensity treadmill exercise training and to evaluate the effects of this training on skeletal muscle health and disease progression. Symptomatic rNLS8 mice were able to complete four weeks of mild-to-moderate treadmill running (30 min at 6-13 m/min, 3 days a week). Exercise training induced an increase in the percentage of type IIA fibers in the tibialis anterior muscle as well as minor adaptations in molecular markers of myogenic, mitochondrial and neuromuscular junction health in some forelimb and hindlimb muscles. However, this exercise training protocol did not attenuate the loss in motor function or delay disease progression. Alternative exercise regimes need to be investigated to better understand the role exercise training may play in alleviating symptoms of ALS.

9.
Cureus ; 16(6): e63317, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39070321

ABSTRACT

AIM: To evaluate the relationship between cardiorespiratory fitness (CRF), expressed as maximal oxygen uptake (ml.kg-1.min-1), metabolic syndrome (MetS), and high-sensitivity C-reactive protein (hs-CRP), a marker of systemic inflammation. METHODS: The relationship between CRF, MetS, and hs-CRP was examined in a cohort of 173 men and women. CRF was evaluated using a Bruce protocol treadmill test and measured as estimated maximal oxygen uptake (VO2 max). Participants' physical activity status was self-reported. Plasma hs-CRP levels were measured using a standardized immunoassay, and the diagnostic criteria for MetS were based on guidelines established by the International Diabetes Federation (IDF). RESULTS: An inverse association was observed between hs-CRP levels and estimated VO2 max (p<0.01). Additionally, hs-CRP increased linearly with the number of MetS criteria present (p<0.01), while the estimated VO2 max decreased as the number of MetS criteria increased (p<0.01). Moreover, higher estimated VO2 max correlated with increased self-reported physical activity levels (p<0.01). Notably, participants engaging in two to three hours of exercise per week had hs-CRP levels ≤2.5 mg/L (p=0.018), considered a low-to-moderate risk range. CONCLUSION: Higher CRF, reflected by an estimated VO2 max, ≥45 ml/kg/min, is associated with lower hs-CRP levels and fewer MetS criteria. Additionally, regular physical activity, corresponding to higher VO2 max, appears to reduce systemic inflammation and ameliorate MetS risk factors. These findings support the mechanisms by which improved CRF and exercise may lower the risk of cardiovascular diseases (CVD) and type 2 diabetes (T2DM).

10.
Int J Nanomedicine ; 19: 7473-7492, 2024.
Article in English | MEDLINE | ID: mdl-39071504

ABSTRACT

Background: Gigantocellular reticular nucleus (GRNs) executes a vital role in locomotor recovery after spinal cord injury. However, due to its unique anatomical location deep within the brainstem, intervening in GRNs for spinal cord injury research is challenging. To address this problem, this study adopted an extracorporeal magnetic stimulation system to observe the effects of selective magnetic stimulation of GRNs with iron oxide nanoparticles combined treadmill training on locomotor recovery after spinal cord injury, and explored the possible mechanisms. Methods: Superparamagnetic iron oxide (SPIO) nanoparticles were stereotactically injected into bilateral GRNs of mice with moderate T10 spinal cord contusion. Eight-week selective magnetic stimulation produced by extracorporeal magnetic stimulation system (MSS) combined with treadmill training was adopted for the animals from one week after surgery. Locomotor function of mice was evaluated by the Basso Mouse Scale, Grid-walking test and Treadscan analysis. Brain MRI, anterograde virus tracer and immunofluorescence staining were applied to observe the tissue compatibility of SPIO in GRNs, trace GRNs' projections and evaluate neurotransmitters' expression in spinal cord respectively. Motor-evoked potentials and H reflex were collected for assessing the integrity of cortical spinal tract and the excitation of motor neurons in anterior horn. Results: (1) SPIO persisted in GRNs for a minimum of 24 weeks without inducing apoptosis of GRN cells, and degraded slowly over time. (2) MSS-enabled treadmill training dramatically improved locomotor performances of injured mice, and promoted cortico-reticulo-spinal circuit reorganization. (3) MSS-enabled treadmill training took superimposed roles through both activating GRNs to drive more projections of GRNs across lesion site and rebalancing neurotransmitters' expression in anterior horn of lumbar spinal cord. Conclusion: These results indicate that selective MSS intervention of GRNs potentially serves as an innovative strategy to promote more spared fibers of GRNs across lesion site and rebalance neurotransmitters' expression after spinal cord injury, paving the way for the structural remodeling of neural systems collaborating with exercise training, thus ultimately contributing to the reconstruction of cortico-reticulo-spinal circuit.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Magnetic Iron Oxide Nanoparticles/chemistry , Mice , Locomotion/physiology , Recovery of Function/physiology , Spinal Cord , Physical Conditioning, Animal , Reticular Formation , Magnetic Field Therapy/methods , Mice, Inbred C57BL , Female , Evoked Potentials, Motor/physiology
11.
Front Nutr ; 11: 1398108, 2024.
Article in English | MEDLINE | ID: mdl-39027664

ABSTRACT

Background: Peripheral arterial disease (PAD) is a prevalent vascular disorder characterized by atherosclerotic occlusion of peripheral arteries, resulting in reduced blood flow to the lower extremities and poor walking ability. Older patients with PAD are also at a markedly increased risk of cardiovascular events, including myocardial infarction. Recent evidence indicates that inorganic nitrate supplementation, which is abundant in certain vegetables, augments nitric oxide (NO) bioavailability and may have beneficial effects on walking, blood pressure, and vascular function in patients with PAD. Objective: We sought to determine if short-term nitrate supplementation (via beetroot juice) improves peak treadmill time and coronary hyperemic responses to plantar flexion exercise relative to placebo (nitrate-depleted juice) in older patients with PAD. The primary endpoints were peak treadmill time and the peak coronary hyperemic response to plantar flexion exercise. Methods: Eleven PAD patients (52-80 yr.; 9 men/2 women; Fontaine stage II) were randomized (double-blind) to either nitrate-rich (Beet-IT, 0.3 g inorganic nitrate twice/day; BRnitrate) or nitrate-depleted (Beet-IT, 0.04 g inorganic nitrate twice/day, BRplacebo) beetroot juice for 4 to 6 days, followed by a washout of 7 to 14 days before crossing over to the other treatment. Patients completed graded plantar flexion exercise with their most symptomatic leg to fatigue, followed by isometric handgrip until volitional fatigue at 40% of maximum on day 4 of supplementation, and a treadmill test to peak exertion 1-2 days later while continuing supplementation. Hemodynamics and exercise tolerance, and coronary blood flow velocity (CBV) responses were measured. Results: Although peak walking time and claudication onset time during treadmill exercise did not differ significantly between BRplacebo and BRnitrate, the diastolic blood pressure response at the peak treadmill walking stage was significantly lower in the BRnitrate condition. Increases in CBV from baseline to peak plantar flexion exercise after BRplacebo and BRnitrate showed a trend for a greater increase in CBV at the peak workload of plantar flexion with BRnitrate (p = 0.06; Cohen's d = 0.56). Conclusion: Overall, these preliminary findings suggest that inorganic nitrate supplementation in PAD patients is safe, well-tolerated, and may improve the coronary hyperemic and blood pressure responses when their calf muscles are most predisposed to ischemia.Clinical trial registration:https://clinicaltrials.gov/, identifier NCT02553733.

12.
Brain Behav ; 14(7): e3633, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054262

ABSTRACT

OBJECTIVE: In vascular dementia (VD), memory impairment caused by the damage of synaptic plasticity is the most prominent feature that afflicts patients and their families. Treadmill exercise has proven beneficial for memory by enhancing synaptic plasticity in animal models including stroke, dementia, and mental disorders. The aim of this study was to examine the effects of treadmill exercise on recognition memory and structural synaptic plasticity in VD rat model. METHODS: Male Sprague-Dawley rats were randomly assigned into four groups: control group (C group, n = 6), vascular dementia group (VD group, n = 6), treadmill exercise and vascular dementia group (Exe-VD group, n = 6), and treadmill exercise group (Exe group, n = 6). Four-week treadmill exercise was performed in the Exe-VD and Exe groups. Then, the common carotid arteries of rats in the VD and Exe-VD groups were identified to establish the VD model. Behavior tests (open-field test and novel recognition memory test) were adopted to evaluate anxiety-like behavior and recognition memory. Transmission electron microscopy and Golgi staining were performed to observe synaptic ultrastructure and spine density in the hippocampus. RESULTS: Our study demonstrated that VD rat exhibited significantly anxiety-like behavior and recognition impairment (p < .01), while treadmill exercise significantly alleviated anxiety-like behavior and improved recognition memory in VD rat (p < .01). Transmission electron microscopy revealed that hippocampal synapse numbers were significantly decreased in the VD group compared to the control group (p < .05). These alterations were reversed by treadmill exercise, and the rats exhibited healthier synaptic ultrastructure, including significantly increased synapse (p < .05). Meanwhile, golgi staining revealed that the spine numbers of the hippocampus were significantly decreased in the VD group compared to the control group (p < .05). When compared with the VD group, hippocampal spine numbers were significantly increased in the Exe-VD group (p < .05). CONCLUSION: The improvement of VD-associated recognition memory by treadmill exercises is associated with enhanced structural synaptic plasticity in VD rat model.


Subject(s)
Dementia, Vascular , Disease Models, Animal , Hippocampus , Memory Disorders , Neuronal Plasticity , Physical Conditioning, Animal , Rats, Sprague-Dawley , Recognition, Psychology , Animals , Neuronal Plasticity/physiology , Male , Hippocampus/physiopathology , Recognition, Psychology/physiology , Rats , Physical Conditioning, Animal/physiology , Memory Disorders/physiopathology , Memory Disorders/etiology , Memory Disorders/therapy , Dementia, Vascular/physiopathology , Dementia, Vascular/therapy , Synapses/physiology , Anxiety/therapy , Anxiety/physiopathology
13.
Mol Biol Rep ; 51(1): 862, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073659

ABSTRACT

BACKGROUND: Understanding how healthy articular cartilage responds to mechanical loading is critical. Moderate mechanical loading has positive effects on the cartilage, such as maintaining cartilage homeostasis. The degree of mechanical loading is determined by a combination of intensity, frequency, and duration; however, the best combination of these parameters for knee cartilage remains unclear. This study aimed to determine which combination of intensity, frequency, and duration provides the best mechanical loading on healthy knee articular cartilage in vitro and in vivo. METHODS AND RESULTS: In this study, 33 male mice were used. Chondrocytes isolated from mouse knee joints were subjected to different cyclic tensile strains (CTSs) and assessed by measuring the expression of cartilage matrix-related genes. Furthermore, the histological characteristics of mouse tibial cartilages were quantified using different treadmill exercises. Chondrocytes and mice were divided into the control group and eight intervention groups: high-intensity, high-frequency, and long-duration; high-intensity, high-frequency, and short-duration; high-intensity, low-frequency, and long-duration; high-intensity, low-frequency, and short-duration; low-intensity, high-frequency, and long-duration; low-intensity, high-frequency, and short-duration; low-intensity, low-frequency, and long-duration; low-intensity, low-frequency, and short-duration. In low-intensity CTSs, chondrocytes showed anabolic responses by altering the mRNA expression of COL2A1 in short durations and SOX9 in long durations. Furthermore, low-intensity, low-frequency, and long-duration treadmill exercises minimized chondrocyte hypertrophy and enhanced aggrecan synthesis in tibial cartilages. CONCLUSION: Low-intensity, low-frequency, and long-duration mechanical loading is the best combination for healthy knee cartilage to maintain homeostasis and activate anabolic responses. Our findings provide a significant scientific basis for exercise and lifestyle instructions.


Subject(s)
Cartilage, Articular , Chondrocytes , Stress, Mechanical , Weight-Bearing , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/physiology , Mice , Chondrocytes/metabolism , Male , Weight-Bearing/physiology , Physical Conditioning, Animal/physiology , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Collagen Type II/metabolism , Collagen Type II/genetics , Knee Joint/metabolism , Knee Joint/physiology , Mice, Inbred C57BL
14.
J Neurophysiol ; 132(2): 531-543, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38985935

ABSTRACT

Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.


Subject(s)
High-Intensity Interval Training , Hippocampus , Rats, Wistar , Signal Transduction , rho-Associated Kinases , Animals , Male , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Hippocampus/metabolism , Signal Transduction/physiology , Rats , Hypoxia/metabolism , Hypoxia/physiopathology , Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Neuronal Plasticity/physiology , rhoA GTP-Binding Protein/metabolism , Spinal Cord/metabolism , Spinal Cord/physiology , rho GTP-Binding Proteins
15.
Front Mol Neurosci ; 17: 1345864, 2024.
Article in English | MEDLINE | ID: mdl-38989156

ABSTRACT

Neuropathic pain is a type of chronic pain caused by an injury or somatosensory nervous system disease. Drugs and exercise could effectively relieve neuropathic pain, but no treatment can completely stop neuropathic pain. The integration of exercise into neuropathic pain management has attracted considerable interest in recent years, and treadmill training is the most used among exercise therapies. Neuropathic pain can be effectively treated if its mechanism is clarified. In recent years, the association between neuroinflammation and neuropathic pain has been explored. Neuroinflammation can trigger proinflammatory cytokines, activate microglia, inhibit descending pain modulatory systems, and promote the overexpression of brain-derived neurotrophic factor, which lead to the generation of neuropathic pain and hypersensitivity. Treadmill exercise can alleviate neuropathic pain mainly by regulating neuroinflammation, including inhibiting the activity of pro-inflammatory factors and over activation of microglia in the dorsal horn, regulating the expression of mu opioid receptor expression in the rostral ventromedial medulla and levels of γ-aminobutyric acid to activate the descending pain modulatory system and the overexpression of brain-derived neurotrophic factor. This article reviews and summarizes research on the effect of treadmill exercise on neuropathic pain and its role in the regulation of neuroinflammation to explore its benefits for neuropathic pain treatment.

16.
Function (Oxf) ; 5(4)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38984994

ABSTRACT

While regular physical activity is a cornerstone of health, wellness, and vitality, the impact of endurance exercise training on molecular signaling within and across tissues remains to be delineated. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) was established to characterize molecular networks underlying the adaptive response to exercise. Here, we describe the endurance exercise training studies undertaken by the Preclinical Animal Sites Studies component of MoTrPAC, in which we sought to develop and implement a standardized endurance exercise protocol in a large cohort of rats. To this end, Adult (6-mo) and Aged (18-mo) female (n = 151) and male (n = 143) Fischer 344 rats were subjected to progressive treadmill training (5 d/wk, ∼70%-75% VO2max) for 1, 2, 4, or 8 wk; sedentary rats were studied as the control group. A total of 18 solid tissues, as well as blood, plasma, and feces, were collected to establish a publicly accessible biorepository and for extensive omics-based analyses by MoTrPAC. Treadmill training was highly effective, with robust improvements in skeletal muscle citrate synthase activity in as little as 1-2 wk and improvements in maximum run speed and maximal oxygen uptake by 4-8 wk. For body mass and composition, notable age- and sex-dependent responses were observed. This work in mature, treadmill-trained rats represents the most comprehensive and publicly accessible tissue biorepository, to date, and provides an unprecedented resource for studying temporal-, sex-, and age-specific responses to endurance exercise training in a preclinical rat model.


Subject(s)
Adaptation, Physiological , Aging , Physical Conditioning, Animal , Rats, Inbred F344 , Animals , Male , Female , Physical Conditioning, Animal/physiology , Adaptation, Physiological/physiology , Rats , Aging/physiology , Physical Endurance/physiology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Endurance Training
17.
Neuroscience ; 555: 1-10, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032807

ABSTRACT

Obesity continues to rise in prevalence and financial burden despite strong evidence linking it to an increased risk of developing several chronic diseases. Dopamine response and receptor density are shown to decrease under conditions of obesity. However, it is unclear if this could be a potential mechanism for treatment without drugs that have a potential for abuse. Therefore, the aim of this study was to investigate whether moderate-intensity exercise could reduce body weight gain and the associated decreases in dopamine signaling observed with high-fat diet-induced adiposity. We hypothesized that exercise would attenuate body weight gain and diet-induced inflammation in high-fat (HF)-fed mice, resulting in dopamine signaling (release and reuptake rate) comparable to sedentary, low-fat (LF)-fed counterparts. This hypothesis was tested using a mouse model of diet-induced obesity (DIO) and fast-scan cyclic voltammetry to measure evoked dopamine release and reuptake rates. Although the exercise protocol employed in this study was not sufficient to prevent significant body weight gain, there was an enhancement of dopamine signaling observed in female mice fed a HF diet that underwent treadmill running. Additionally, aerobic treadmill exercise enhanced the sensitivity to amphetamine (AMPH) in this same group of exercised, HF-fed females. The estrous cycle might influence the ability of exercise to enhance dopamine signaling in females, an effect not observed in male groups. Further research into females by estrous cycle phase, in addition to determining the optimal intensity and duration of aerobic exercise, are logical next steps.

18.
Sci Rep ; 14(1): 15996, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987609

ABSTRACT

Alzheimer's disease (AD) is a neurological condition that is connected with a decline in a person's memory as well as their cognitive ability. One of the key topics of AD research has been the exploration of metabolic causes. We investigated the effects of treadmill exercise and intranasal insulin on learning and memory impairment and the expression of IGF1, BDNF, and GLUT4 in hypothalamus. The animals were put into 9 groups at random. In this study, we examined the impact of insulin on spatial memory in male Wistar rats and analyzed the effects of a 4-week pretreatment of moderate treadmill exercise and insulin on the mechanisms of improved hypothalamic glucose metabolism through changes in gene and protein expression of IGF1, BDNF, and GLUT4. We discovered that rat given Aß25-35 had impaired spatial learning and memory, which was accompanied by higher levels of Aß plaque burden in the hippocampus and lower levels of IGF1, BDNF, and GLUT4 mRNA and protein expression in the hypothalamus. Additionally, the administration of exercise training and intranasal insulin results in the enhancement of spatial learning and memory impairments, the reduction of plaque burden in the hippocampus, and the enhancement of the expression of IGF1, BDNF, and GLUT4 in the hypothalamus of rats that were treated with Aß25-35. Our results show that the improvement of learning and spatial memory due to the improvement of metabolism and upregulation of the IGF1, BDNF, and GLUT4 pathways can be affected by pretreatment exercise and intranasal insulin.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Glucose Transporter Type 4 , Hypothalamus , Insulin-Like Growth Factor I , Insulin , Physical Conditioning, Animal , Rats, Wistar , Signal Transduction , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/therapy , Insulin-Like Growth Factor I/metabolism , Male , Insulin/metabolism , Rats , Hypothalamus/metabolism , Signal Transduction/drug effects , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Amyloid beta-Peptides/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Hippocampus/metabolism , Hippocampus/drug effects , Administration, Intranasal , Peptide Fragments , Spatial Memory/drug effects , Spatial Learning/drug effects
19.
Sensors (Basel) ; 24(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931563

ABSTRACT

The investigation of gait and its neuronal correlates under more ecologically valid conditions as well as real-time feedback visualization is becoming increasingly important in neuro-motor rehabilitation research. The Gait Real-time Analysis Interactive Lab (GRAIL) offers advanced opportunities for gait and gait-related research by creating more naturalistic yet controlled environments through immersive virtual reality. Investigating the neuronal aspects of gait requires parallel recording of brain activity, such as through mobile electroencephalography (EEG) and/or mobile functional near-infrared spectroscopy (fNIRS), which must be synchronized with the kinetic and /or kinematic data recorded while walking. This proof-of-concept study outlines the required setup by use of the lab streaming layer (LSL) ecosystem for real-time, simultaneous data collection of two independently operating multi-channel EEG and fNIRS measurement devices and gait kinetics. In this context, a customized approach using a photodiode to synchronize the systems is described. This study demonstrates the achievable temporal accuracy of synchronous data acquisition of neurophysiological and kinematic and kinetic data collection in the GRAIL. By using event-related cerebral hemodynamic activity and visually evoked potentials during a start-to-go task and a checkerboard test, we were able to confirm that our measurement system can replicate known physiological phenomena with latencies in the millisecond range and relate neurophysiological and kinetic data to each other with sufficient accuracy.


Subject(s)
Electroencephalography , Gait Analysis , Gait , Spectroscopy, Near-Infrared , Humans , Biomechanical Phenomena/physiology , Electroencephalography/methods , Spectroscopy, Near-Infrared/methods , Gait/physiology , Male , Gait Analysis/methods , Adult , Female , Virtual Reality , Walking/physiology , Brain/physiology , Proof of Concept Study , Young Adult
20.
Front Neurol ; 15: 1401256, 2024.
Article in English | MEDLINE | ID: mdl-38882698

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. It is the second most common chronic progressive neurodegenerative disease. PD still lacks a known cure or prophylactic medication. Current treatments primarily address symptoms without halting the progression of PD, and the side effects of dopaminergic therapy become more apparent over time. In contrast, physical therapy, with its lower risk of side effects and potential cardiovascular benefits, may provide greater benefits to patients. The Anti-Gravity Treadmill is an emerging rehabilitation therapy device with high safety, which minimizes patients' fear and allows them to focus more on a normal, correct gait, and has a promising clinical application. Based on this premise, this study aims to summarize and analyze the relevant studies on the application of the anti-gravity treadmill in PD patients, providing a reference for PD rehabilitation practice and establishing a theoretical basis for future research in this area.

SELECTION OF CITATIONS
SEARCH DETAIL