Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.583
Filter
1.
Food Chem ; 462: 140949, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213976

ABSTRACT

Hydrogels based on natural polymers have aroused interest from the scientific community. The aim of this investigation was to obtain natural extracts from mango peels and to evaluate their addition (1, 3, and 5%) on the rheological behavior of mango starch hydrogels. The total phenolic content, antioxidant activities, and phenolic acid profile of the natural extracts were evaluated. The viscoelastic and thixotropic behavior of hydrogels with the addition of natural extracts was evaluated. The total phenol content and antioxidant activity of the extracts increased significantly (p<0.05) with the variation of the ethanol-water ratio; the phenolic acid profile showed the contain of p-coumaric, ellagic, ferulic, chlorogenic acids, epicatechein, catechin, querecetin, and mangiferin. The viscoelastic behavior of the hydrogels showed that the storage modulus G' is larger than the loss modulus G'' indicating a viscoelastic solid behavior. The addition of extract improved the thermal stability of the hydrogels. 1% of the extracts increase viscoelastic and thixotropic properties, while concentrations of 3 to 5% decreased. The recovery percentage (%Re) decreases at concentrations from 0% to 1% of natural extracts, however, at concentrations from 3% to 5% increased.


Subject(s)
Antioxidants , Hydrogels , Mangifera , Plant Extracts , Rheology , Starch , Mangifera/chemistry , Hydrogels/chemistry , Plant Extracts/chemistry , Starch/chemistry , Antioxidants/chemistry , Viscosity , Fruit/chemistry , Phenols/chemistry
2.
Acta Biomater ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362447

ABSTRACT

The micro-pipette aspiration technique is a classical experiment used to characterize the physical properties of inert fluids and biological soft materials such as cellular aggregates. The physical parameters of the fluid, as viscosity and interfacial tension, are obtained by studying how the fluid enters the pipette when the suction pressure is increased and how it relaxes when the suction pressure is put to zero. A mathematical model representative of the experiment is needed to extrapolate the physical parameters of the fluid-like matter; however, for biological materials as cells or cell aggregates these models are always based on strong starting hypotheses that impact the significance of the identified parameters. In this article, starting from the bi-constituent nature of the cell aggregate, we derive a general mathematical model based of a Cahn-Hilliard-Navier-Stokes set of equations. The model is applied to describe quantitatively the aspiration-retraction dynamics of a cell-aggregate into and out of a pipette. We demonstrate the predictive capability of the model and highlight the impact of the assumptions made on the identified parameters by studying two cases: one with a non-wetting condition between the cells and the wall of the pipette (classical assumption in the literature) and the second one, which is more realistic, with a partial wetting condition (contact angle θs = 150°). Furthermore, our results provide a purely physical explanation to the asymmetry between the aspiration and retraction responses which is alternative to the proposed hypothesis of an mechano-responsive alteration of the surface tension of the cell aggregate. STATEMENT OF SIGNIFICANCE: Our study introduces a general mathematical model, based on the Cahn-Hilliard-Navier-Stokes equations, tailored to model micro-pipette aspiration of cell aggregates. The model accounts for the multi-component structure of the cell aggregate and its intrinsic viscoelastic rheology. By challenging prevailing assumptions, particularly regarding perfect non-wetting conditions and the mechano-responsive alteration of cell surface tension, we demonstrate the reliability of the mathematical model and elucidate the mechanisms at play, offering a purely physical explanation for observed asymmetries between the aspiration and retraction stages of the experiment.

3.
BJA Open ; 12: 100310, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39376894

ABSTRACT

Neonates, infants, and children undergoing major surgery or with trauma can develop severe coagulopathy perioperatively. Neonates and infants are at highest risk because their haemostatic system is not fully developed and underlying inherited bleeding disorders may not have been diagnosed before surgery. Historically, laboratory coagulation measurements have been used to diagnose and monitor coagulopathies. Contemporary dynamic monitoring strategies are evolving. Viscoelastic testing is increasingly being used to monitor coagulopathy, particularly in procedures with a high risk of bleeding. However, there is a lack of valid age-specific reference values for diagnosis and trigger or target values for appropriate therapeutic management. A promising screening tool of primary haemostasis that may be used to diagnose quantitative and qualitative platelet abnormalities is the in vitro closure time by platelet function analyser. Targeted individualised treatment strategies for haemostatic bleeding arising from inherited or acquired bleeding disorders may include measures such as tranexamic acid, administration of plasma, derived or recombinant factors such as fibrinogen concentrate, or allogeneic blood component transfusions (plasma, platelets, or cryoprecipitate). Herein we review current recommended perioperative guidelines, monitoring strategies, and treatment modalities for the paediatric patient with a coagulopathy. In the absence of data from adequately powered prospective studies, it is recommended that expert consensus be considered until additional research and validation of goal-directed perioperative bleeding management in paediatric patients is available.

4.
J Surg Res ; 303: 233-240, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39378792

ABSTRACT

INTRODUCTION: Dynamically titrated crystalloids are the standard of care for burn shock resuscitation. There are theoretical concerns that the adjunctive use of allogeneic plasma may perturb the patient's coagulation and inflammation status deleteriously. It was hypothesized that plasma-inclusive resuscitation (PIR) would not be associated with prothrombotic changes relative to baseline after thermal injury. METHODS: Patients admitted to a regional burn center who were treated with PIR as part of their burn resuscitation were enrolled. Whole blood samples were analyzed prospectively via rapid thromboelastography and rotational thromboelastometry to assess for coagulopathy at four time points throughout their acute burn resuscitation. The mixed-effect model for repeated measures followed by Tukey's post hoc test for comparisons was used to examine group differences. RESULTS: There were 35 patients in the analysis. Most were male (74.3%) with a median age of 43 y (32-55), concomitant inhalation injury of 28.6%, total body surface area burn size of 34% (27%-48.5%), and the overall mortality of the cohort was 28.6%. There were no transfusion reactions or thrombotic events. There were no differences in thromboelastography or rotational thromboelastometry parameters overall or when stratified by mortality, total body surface area burn, and inhalation injury. There were no significant differences between the fibrinolytic phenotypes over time. CONCLUSIONS: Data suggest that PIR was not associated with prothrombotic or lytic changes in burn patients relative to baseline. Further research is needed to confirm these findings and evaluate efficacy of PIR in acute burn resuscitation.

5.
Macromol Rapid Commun ; : e2400646, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39401290

ABSTRACT

Porous polymer composites (PPC) have developed rapidly recently, which are widely used in various industrial fields. Viscoelastic damping is an important behavior of porous polymer composites, and it can determine the sound absorption for noise reduction applications. This review has mainly covered the viscoelastic damping and sound absorption of porous polymer composites. Different fabrication approaches of porous polymer composites are gathered. The mechanism of viscoelastic damping behavior is described, and also the sound absorption properties. Followed by the introduction of enhanced sound absorption of viscoelastic damping porous polymer composites, including the incorporation of fillers, microstructures modification, combination with nanofibrous materials, and multilayer configuration, etc. The incorporated fillers can effectively adjust the interfacial area in composites, and obtain desired bonding conditions. Microstructures modification is an effective tool to improve the morphologies of both polymer matrix and fillers, which can be achieved by chemical treatment and surface coating. The combination with lightweight nanofibrous layer can increase the low frequency absorption. The configuration of multilayer composites can improve both acoustical and mechanical properties for engineering applications. It is hoped that this comprehensive review is benefit for the promising development of porous polymer composites in related fields.

6.
Colloids Surf B Biointerfaces ; 245: 114304, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39395212

ABSTRACT

Understanding protein adsorption and aggregation at the air-liquid interfaces of protein solutions is an important open challenge in biopharmaceutical, medical, and biotechnological applications, among others. Proteins, being amphiphilic, adsorb at the surface, partially unfold, and form a viscoelastic film through non-covalent interactions. Mechanical agitation of the surface can break this film up, releasing insoluble protein particles into the solution. These aggregates are usually highly undesirable and even toxic in cases, such as for biopharmaceutical application. Therefore, it is imperative to be able to predict the behavior of such solutions undergoing surface agitation during handling, usually transport or mixing. We apply the findings on the viscoelastic protein film, formed at the air-liquid interface, to the prediction of surface mediated aggregation in selected protein solutions of direct biopharmaceutical relevance. Our broad study of Brewster angle microscopy and aggregation monitoring across multiple size ranges by micro-flow imaging, light scattering, and size exclusion chromatography shows that formation of protein particles is driven by the adsorption rate as compared to the rate of surface turnover and that surface film dynamics in the quiescent phase directly affect aggregation. We demonstrate how these learnings can be directly applied to the design of a novel small scale biopharmaceutical stability study, simulating relevant transport conditions. More generally, we show the impact of adsorption dynamics at the air-liquid interface on the stability of a distinct protein solution, as a general contribution to understanding different colloidal and biological interfacial systems.

7.
Animals (Basel) ; 14(19)2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39409841

ABSTRACT

Viscoelastic monitoring of horse coagulation is increasing due to its advantages over traditional coagulation testing. The use of a point-of-care viscoelastic coagulation monitor (VCM Vet™) has been validated for use in horses using native whole blood (NWB) but has not been assessed using citrated whole blood (CWB), a technique that might have advantages in practicality and precision. Blood was collected from 70 horses, tested in duplicate immediately using NWB (T0), and stored at room temperature as CWB for testing in duplicate at 1 (T1) and 4 (T4) hours after venipuncture for comparison to NWB. Of these horses, 20 were classified as clinically healthy and used to determine reference intervals for CWB at 1 and 4 h post-collection. There were clinically relevant differences in all measured viscoelastic parameters of CWB compared to NWB meaning that they cannot be used interchangeably. These differences were not consistent at T1 and T4 meaning the resting time of CWB influences the results and should be kept consistent. The use of CWB in this study also resulted in more machine errors when compared to NWB resulting in measurements that might not be interpretable.

8.
Materials (Basel) ; 17(19)2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39410303

ABSTRACT

This paper aims to develop a theoretical model for a viscoelastic hard-magnetic elastomer membrane (HMEM) actuated by pressure and uniform magnetic field. The HMEM is initially a flat, circular film with a fixed boundary. The HMEM undergoes nonlinear large deformations in the transverse direction. The viscoelastic behaviors are characterized by using a rheological model composed of a spring in parallel with a Maxwell unit. The governing equations for magneto-visco-hyperelastic membrane under the axisymmetric large deformation are constructed. The Zeeman energy, which is related to the magnetization of the HMEM and the magnetic flux density, is employed. The governing equations are solved by the shooting method and the improved Euler method. Several numerical examples are implemented by varying the magnitude of the pre-stretch, pressure, and applied magnetic field. Under different magnetic fields, field variables such as latitudinal stress exhibit distinct curves in the radial direction. It is observed that these varying curves intersect at a point. The position of the intersection point is independent of the applied magnetic field and only controlled by pressure and pre-stretch. On the left side of the intersection point, the field variables increase as magnetic field strength increases. However, on the other side, this trend is reversed. During viscoelastic evolution, one can find that the magnetic field can be used to modulate the instability behaviors of the HMEM. These findings may provide valuable insights into the design of the hard-magnetic elastomer membrane structures and actuators.

9.
Front Bioeng Biotechnol ; 12: 1447340, 2024.
Article in English | MEDLINE | ID: mdl-39355275

ABSTRACT

Poly(glycerol adipate) (PGA) is one of the aliphatic polyesters of glycerol. The most studied biomedical application of poly(glycerol adipate) is the use of its nanoparticles as drug delivery carriers. The PGA prepolymer can be crosslinked to network materials. The biomedical application of PGA-based network materials has largely remained unexplored till recently. The PGA-based network materials, such as poly(glycerol sebacate) elastomers, can be used in soft tissue regeneration due to their mechanical properties. The modulus of elasticity of PGA elastomers is within the range of MPa, which corresponds to the mechanical properties of human soft tissues. This short review aims at briefly summarizing the possible applications of PGA-based elastomers in tissue engineering, as indicated in recent years in research publications.

10.
Ren Fail ; 46(2): 2407882, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39344493

ABSTRACT

BACKGROUND: This study aims to evaluate the clinical application value of ultrasound viscoelastic imaging in noninvasive quantitative assessment of chronic kidney disease (CKD). METHODS: A total of 332 patients with CKD and 190 healthy adults as a control group were prospectively enrolled. Before kidney biopsy, ultrasound viscoelastic imaging was performed to measure the mean stiffness value (Emean), mean viscosity coefficient (Vmean), and mean dispersion coefficient (Dmean) of the renal. CKD patients were divided into three groups based on estimated glomerular filtration rate. The differences in clinic, pathology, ultrasound image parameters between the control and patient groups, or among different CKD groups were compared. The correlation between viscoelastic parameters and pathology were analyzed. RESULTS: Emean, Vmean, and Dmean in the control group were less than the CKD group (p < 0.05). In the identification of CKD from control groups, the area under curve of Vmean, Dmean, Emean, and combining the three parameters is 0.90, 0.79, 0.69, 0.91, respectively. Dmean and Vmean were increased with the decline of renal function (p < 0.05). Vmean and Dmean were positively correlated with white blood cell, urea, serum creatinine, and uric acid (p < 0.05). Vmean is positively correlated with interstitial fibrosis and inflammatory cell infiltration grades (p < 0.001). CONCLUSIONS: Ultrasound viscoelastic imaging has advantages in noninvasive quantitative identification and evaluating renal function of CKD. Emean > 6.61 kPa, Vmean > 1.86 Pa·s, or Dmean > 7.51 m/s/kHz may suggest renal dysfunction. Combining Vmean, Dmean, and Emean can improve the efficiency of identifying CKD.


Subject(s)
Elasticity Imaging Techniques , Glomerular Filtration Rate , Kidney , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/diagnostic imaging , Male , Female , Middle Aged , Adult , Prospective Studies , Elasticity Imaging Techniques/methods , Kidney/diagnostic imaging , Kidney/pathology , Kidney/physiopathology , Case-Control Studies , Ultrasonography/methods , Aged
11.
Animals (Basel) ; 14(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39335304

ABSTRACT

Hydrocolloids are used in spreadable meat or poultry products to improve consistency, emulsion stability and water retention, resulting in products with desired functional and organoleptic properties. The scope of the work was to evaluate the addition of three divergent algal hydrocolloids (κ-carrageenan, ι-carrageenan, furcellaran) at four different concentrations (0.25, 0.50, 0.75, and 1.00% w/w) on the physicochemical, textural, rheological and organoleptic properties of model chicken liver pâté (CLP) samples. Overall, the highest hardness and viscoelastic moduli values of the CLP samples were reported when κ-carrageenan and furcellaran were utilized at a concentration of 0.75% w/w (p < 0.05). Furthermore, increasing the concentrations of the utilized hydrocolloids led to increase in the viscoelastic moduli and hardness values of CLP. Compared to the control sample, an increase in spreadability was reported in the CLP samples with the addition of hydrocolloids. Finally, the use of algal hydrocolloids proved to be an effective way to modify the techno-functional properties of CLP.

12.
Materials (Basel) ; 17(18)2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39336232

ABSTRACT

To provide a theoretical basis for eliminating resonance and optimizing the design of viscoelastically supported bridges, this paper investigates the analytical solutions of train-induced vibrations in railway bridges with low-stiffness and high-damping rubber bearings. First, the shape function of the viscoelastic bearing reinforced concrete (RC) beam is derived for the dynamic response of the viscoelastic bearing RC beam subjected to a single moving load. Furthermore, based on the simplified shape function, the dynamic response of the viscoelastic bearing RC beam under equidistant moving loads is studied. The results show that the stiffness and damping effect on the dynamic response of the supports cannot be neglected. The support stiffness might adversely increase the dynamic response. Further, due to the effect of support damping, the free vibration response of RC beams in resonance may be significantly suppressed. Finally, when the moving loads leave the bridge, the displacement amplitude of the viscoelastic support beam in free vibration is significantly larger than that of the rigid support beam.

13.
Materials (Basel) ; 17(18)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39336270

ABSTRACT

Moisture accelerates the degradation of asphalt properties, significantly impacting the service life of roads. Therefore, this study uses simplified viscoelastic continuous damage theory and employs frequency scanning, linear amplitude scanning, and fatigue-healing-fatigue tests with a dynamic shear rheometer. The objective is to investigate the effects of aging time, moisture conditions, and aging temperature on the fatigue and self-healing performance of SBS (Styrene-Butadiene-Styrene block copolymer)-modified asphalt, nano-SiO2-modified asphalt, and nano-SiO2/SBS composite modified asphalt in a moisture-rich environment. The results indicate that nano-SiO2 powder enhances the low-temperature performance of modified asphalt, whereas the SBS modifier reduces temperature sensitivity and increases the recovery percentage after deformation. Compared to SBS-modified asphalt, the deformation resistance of nano-SiO2/SBS composite modified asphalt has increased by about 30%, while nano-SiO2-modified asphalt shows relatively poor deformation resistance. The fatigue performance of SBS-modified asphalt deteriorates under moisture, whereas the addition of nano-SiO2 powder improves its fatigue life. Nano-SiO2/SBS composite modified asphalt exhibits strong self-healing capabilities. Although self-healing can enhance the fatigue life of modified asphalt, moisture inhibits this improvement after self-healing.

14.
Sensors (Basel) ; 24(18)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39338881

ABSTRACT

Although the physical properties of a structure, such as stiffness, can be determined using some statical tests, the identification of damping parameters requires a dynamic test. In general, both theoretical prediction and experimental identification of damping are quite difficult. There are many different techniques available for damping identification, and each method gives a different damping parameter. The dynamic indentation method, rheometry, atomic force microscopy, and resonant vibration tests are commonly used to identify the damping of materials, including soft materials. While the viscous damping ratio, loss factor, complex modulus, and viscosity are quite common to describe the damping of materials, there are also other parameters, such as the specific damping capacity, loss angle, half-power bandwidth, and logarithmic decrement, to describe the damping of various materials. Often, one of these parameters is measured, and the measured parameter needs to be converted into another damping parameter for comparison purposes. In this review, the theoretical derivations of different parameters for the description and quantification of damping and their relationships are presented. The expressions for both high damping and low damping are included and evaluated. This study is considered as the first comprehensive review article presenting the theoretical derivations of a large number of damping parameters and the relationships among many damping parameters, with a quantitative evaluation of accurate and approximate formulas. This paper could be a primary resource for damping research and teaching.

15.
Polymers (Basel) ; 16(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39339080

ABSTRACT

The aim of this study was to develop a material capable of rapidly absorbing bodily fluids and forming a resilient, adhesive, viscoelastic hydrogel in situ to prevent post-surgical adhesions. This material was formulated using O-carboxymethyl chitosan (O-CMCS), oxidized hyaluronic acid (OHA), and a crosslinking pigment derived from genipin and glutamic acid (G/GluP). Both crosslinked (O-CMCS/OHA-G/GluP) and non-crosslinked hydrogels (O-CMCS/OHA) were evaluated using a HAAKE™ MARS™ rheometer for their potential as post-surgical barriers. A rheological analysis, including dynamic oscillatory measurements, revealed that the crosslinked hydrogels exhibited significantly higher elastic moduli (G'), indicating superior gel formation and mechanical stability compared to non-crosslinked hydrogels. The G/GluP crosslinker enhanced gel stability by increasing the separation between G' and G″ and achieving a lower loss tangent (tan δ < 1.0), indicating robustness under dynamic physiological conditions. The rapid hydration and gelation properties of the hydrogels underscore their effectiveness as physical barriers. Furthermore, the O-CMCS/OHA-G/GluP hydrogel demonstrated rapid self-healing and efficient application via spraying or spreading, with tissue adherence and viscoelasticity to facilitate movement between tissues and organs, effectively preventing adhesions. Additionally, the hydrogel proved to be both cost effective and scalable, highlighting its potential for clinical applications aimed at preventing post-surgical adhesions.

16.
Ultrason Sonochem ; 111: 107061, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39316938

ABSTRACT

The viscoelastic tissue under dual-frequency ultrasound excitation affects the acoustic cavitation of a single gas-vapor bubble. To investigate the effect of the cavitation dynamics, the Gilmore-Akulichev-Zener (GAZ) model is coupled with the Peng-Robinson equation of state (PR EOS). Results indicate that the GAZ-PR EOS model can accurately estimate the bubble dynamics by comparing with the Gilmore PR EOS and GAZ-Van der Waals (VDW) EOS model. Furthermore, the acoustic cavitation effect in different viscoelastic tissues is investigated, including the radial stress at the bubble wall, the temperature, pressure, and the number of water molecules inside the bubble. Results show that the creep recovery and the relaxation of the stress caused by viscoelasticity can affect the acoustic cavitation of the bubble, which could inhibit the bubble's expansion and reduce the internal temperature and pressure within the bubble. Moreover, the effect of dual-frequency ultrasound on the cavitation of single gas-vapor bubbles is studied. Results suggest that dual-frequency ultrasound could increase the internal temperature of bubbles, the internal pressure of bubbles, and the radial stress at the bubble wall. More importantly, there is a specific optimal combination of frequencies for particular viscoelasticity by exploring the impact of different dual-frequency ultrasound combinations and tissue viscoelasticity on the acoustic cavitation of a single gas-vapor bubble. In conclusion, this study helps to provide theoretical guidance for dual-frequency ultrasound to improve acoustic chemical and mechanical effects, and further optimize its application in acoustic sonochemistry and ultrasound therapy.

17.
ACS Biomater Sci Eng ; 10(10): 6241-6249, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39316510

ABSTRACT

Microbial organisms react to their environment and are able to change it through biological and physical processes. For example, fungi exhibit various growth morphologies depending on their host material. Here, we show how the rheological properties of the host material influence the fungal wrinkling morphology. Rheological data of the host material was set in relation to the growth morphology. On host material with high storage modulus, the fungal film was flat, whereas on host material with low storage modulus, the fungus showed a morphology made of folds and wrinkles. We combined our findings with mechanical instability theories and found that the formation of wrinkles and folds is dependent on the storage modulus of the host material. The connection between the wrinkling morphology and the storage modulus of the host material is shown with simple scaling theories. The amplitude, number of wrinkles, and wrinkle length follow geometrical laws, and the mechanical properties of the fungal film are expected to increase with increasing host material elasticity. The obtained results show the connection between living biological films, how they react to their surroundings, and the underlying physical mechanisms. They can provide a framework to further design fungal materials with specific surface morphologies.


Subject(s)
Elasticity , Rheology , Viscosity , Fungi/physiology , Surface Properties
18.
Vet Ophthalmol ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39325057

ABSTRACT

OBJECTIVE: To describe the removal of an adherent, presumed plant-based, anterior chamber foreign body (ACFB) from the inferior iridocorneal angle in a dog using hydropulsion and ophthalmic viscoelastic device (OVD) capture. ANIMAL STUDIED: A 6-year-old female spayed pit bull terrier who was referred for further evaluation of a corneal opacity after being observed running into a thorned succulent plant 1 month earlier. On ophthalmic examination, no corneal foreign body was noted, though mild uveitis was present. Gonioscopy revealed a suspected plant foreign body (thorn tip) in the inferior iridocorneal angle. PROCEDURE: Under general anesthesia, the ACFB was dislodged from the inferior iridocorneal angle using hydropulsion with balanced salt solution. The superior half of the anterior chamber had been filled with 2% hydroxypropyl methylcellulose OVD to trap the foreign object. One month later, the uveitis had resolved and repeat gonioscopy confirmed the absence of any ACFB in the iridocorneal angle. CONCLUSION: In the absence of an intraoperative goniolens or endoscopy, hydropulsion and OVD capture of adherent ACFBs may be a feasible option for removal.

19.
Trials ; 25(1): 623, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334224

ABSTRACT

BACKGROUND: Tranexamic acid (TXA) effectively attenuates hyperfibrinolysis and preemptive administration has been employed to reduce bleeding and blood transfusions in various surgical settings. However, TXA administration could be associated with adverse effects, such as seizures and thromboembolic risks. While patients with fibrinolysis shutdown showed greater thromboembolic complications and mortality, TXA administration may aggravate the degree of shutdown in these patients. Selective TXA administration based on the results of rotational thromboelastometry (ROTEM) would be non-inferior to preemptive TXA administration in reducing postoperative bleeding and beneficial in reducing its risks in patients undergoing cardiovascular surgery. METHODS: This non-inferiority, randomized, double-blind, placebo-controlled, multicenter trial will be performed in 3 tertiary university hospitals from August 2023 to March 2025. Seven hundred sixty-four patients undergoing cardiovascular surgery will be randomly allocated to get TXA as a preemptive (Group-P) or goal-directed strategy (Group-GDT) in each institution (with a 1:1 allocation ratio). After anesthesia induction, TXA (10 mg/kg and 2 mg/kg/h) and a placebo are administered after anesthesia induction in Group-P and Group-GDT, respectively. ROTEM tests are performed immediately before weaning from CPB and at the considerable bleeding post-CPB period. After getting the test results, a placebo is administered in Group-P (regardless of the test results). In Group-GDT, placebo or TXA is administered according to the results: placebo is administered if the amplitude at 10 min (A10-EXTEM) is ≥ 40 mm and lysis within 60 min (LI60-EXTEM) of EXTEM assay is ≥ 85%, or TXA (20 mg/kg) is administered if A10-EXTEM is < 40 mm or LI60-EXTEM is < 85%. The primary outcome is inter-group comparisons of postoperative bleeding (for 24 h). The secondary measures include comparisons of perioperative blood transfusion, coagulation profiles, reoperation, thromboembolic complications, seizures, in-hospital mortality, fibrinolysis phenotypes, and hospital costs. DISCUSSION: The absence of inter-group differences in postoperative bleeding would support the selective strategy's non-inferiority in reducing postoperative bleeding in these patients. The possible reduction in thromboembolic risks, seizures, and fibrinolysis shutdown in Group-GDT would support its superiority in reducing TXA-induced adverse events and the cost of their management. TRIAL REGISTRATION: This trial was registered at ClinicalTrials.gov with the registration number NCT05806346 on March 28, 2023. TRIAL STATUS: recruiting. Issue date: 2023 March 28 (by Tae-Yop Kim, MD, PhD). The trial was registered in the clinical registration on March 28, 2023 (ClinicalTrials.gov, NCT05806346) and revised to the latest version of its protocol (version no. 8, August 26, 2024) approved by the institutional review boards (IRBs) of all 3 university hospitals (Konkuk University Medical Center, 2023-07-005-001, Asan Medical Center, 2023-0248, and Samsung Medical Center, SMC 2023-06-048-002). Its recruitment was started on August 1, 2023, and will be completed on December 31, 2024. Protocol amendment number: 08 (protocol version 08, August 26, 2024). Revision chronology: 2023 March 28:Original. 2023 April 10:Amendment No 01. The primary reason for the amendment is the modification of Arms (adding one arm for sub-group analyses) and Interventions, Outcome Measures, Study Design, Study Description, Study Status, Eligibility, and Study Identification. 2023 May 03:Amendment No 02. The primary reason for the amendment is to modify the Outcome Measures and update the study status. 2023 July 06:Amendment No 03. The primary reason for amendment is to update the chronological study status. 2023 July 07:Amendment No 04. The primary reason for the amendment is the modification of study information (the treatment category was changed to diagnostic, and Phase 4 was changed to not applicable) and a chronological update on the study status. 2023 September 12:Amendment No 06. The primary reason for the amendment is a chronological update in the study status and the inclusion of additional information regarding contacts/locations and oversight. 2023 December 29:Amendment No 07. The primary reason for the amendment is to modify the outcome measures (including detailed information on outcome measures, addition of extra secondary measures, and chronological updates in study status). 2024 August 26:Amendment No 08. The primary reason for the amendment is to add detailed descriptions regarding data handling and the names and roles of the participating institutions and to update the chronological process of the trial.


Subject(s)
Antifibrinolytic Agents , Postoperative Hemorrhage , Thrombelastography , Tranexamic Acid , Humans , Tranexamic Acid/administration & dosage , Tranexamic Acid/adverse effects , Double-Blind Method , Antifibrinolytic Agents/administration & dosage , Antifibrinolytic Agents/adverse effects , Postoperative Hemorrhage/prevention & control , Postoperative Hemorrhage/etiology , Cardiovascular Surgical Procedures/adverse effects , Treatment Outcome , Multicenter Studies as Topic , Equivalence Trials as Topic , Female , Male
20.
BMC Biomed Eng ; 6(1): 8, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218936

ABSTRACT

BACKGROUND: Restorative solutions designed for edentulous patients such as dentures and their accompanying denture adhesives operate in the complex and dynamic environment represented by human oral physiology. Developing material models accounting for the viscoelastic behavior of denture adhesives can facilitate their further optimization within that unique physiological environment. This study aims to statistically quantify the degree of significance of three physiological variables - namely: temperature, adhesive swelling, and pH - on denture adhesive mechanical behavior. Further, based on these statistical significance estimations, a previously-developed viscoelastic material modelling approach for such denture adhesives is further expanded and developed to capture these variables' effects on mechanical behavior. METHODS: In this study a comparable version of Denture adhesive Corega Comfort was analysed rheologically using the steady state frequency sweep tests. The experimentally derived rheological storage and loss modulus values for the selected physiological variables were statistically analyzed using multi parameter linear regression analysis and the Pearson's coefficient technique to understand the significance of each individual parameter on the relaxation spectrum of the denture adhesive. Subsequently, the parameters are incorporated into a viscoelastic material model based on Prony series discretization and time-temperature superposition, and the mathematical relationship for the loss modulus is deduced. RESULTS: The results of this study clearly indicated that the variation in both the storage and loss modulus values can be accurately predicted using the oral cavity physiological parameters of temperature, swelling ratio, and pH with an adjusted R2 value of 0.85. The R2 value from the multi-parameter regression analysis indicated that the predictor variables can estimate the loss and storage modulus with a reasonable accuracy for at least 85% of the rheologically determined continuous relaxation spectrum with a confidence level of 98%. The Pearson's coefficient for the independent variables indicated that temperature and swelling have a strong influence on the loss modulus, whereas pH had a weak influence. Based on statistical analysis, these mathematical relationships were further developed in this study. CONCLUSIONS: This multi-parameter viscoelastic material model is intended to facilitate future detailed numerical investigations performed with implementation of denture adhesives using the finite element method.

SELECTION OF CITATIONS
SEARCH DETAIL