Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.006
Filter
1.
J Inorg Biochem ; 261: 112707, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39217822

ABSTRACT

Tryptophan dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO) belong to a unique class of heme-based enzymes that insert dioxygen into the essential amino acid, L-tryptophan (Trp), to generate N-formylkynurenine (NFK), a critical metabolite in the kynurenine pathway. Recently, the two dioxygenases were recognized as pivotal cancer immunotherapeutic drug targets, which triggered a great deal of drug discovery targeting them. The advancement of the field is however hampered by the poor understanding of the structural properties of the two enzymes and the mechanisms by which the structures dictate their functions. In this review, we summarize recent findings centered on the structure, function, and dynamics of the human isoforms of the two enzymes.

2.
Front Plant Sci ; 15: 1451839, 2024.
Article in English | MEDLINE | ID: mdl-39224855

ABSTRACT

Tetrahydrofolate and its derivatives participate in one-carbon transfer reactions in all organisms. The cellular form of tetrahydrofolate (THF) is modified by multiple glutamate residues and polyglutamylation plays a key role in organellar and cellular folate homeostasis. In addition, polyglutamylation of THF is known to increase the binding affinity to enzymes in the folate cycle, many of which can utilize polyglutamylated THF as a substrate. Here, we use X-ray crystallography to provide a high-resolution view of interactions between the enzyme serine hydroxymethyltransferase (SHMT), which provides one carbon precursors for the folate cycle, and a polyglutamylated form of THF. Our 1.7 Å crystal structure of soybean SHMT8 in complex with diglutamylated 5-formyl-THF reveals, for the first time, a structural rearrangement of a loop at the entrance to the folate binding site accompanied by the formation of novel specific interactions between the enzyme and the diglutamyl tail of the ligand. Biochemical assays show that additional glutamate moieties on the folate ligand increase both enzyme stability and binding affinity. Together these studies provide new information on SHMT structure and function and inform the design of anti-folate agents.

3.
FEBS J ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206623

ABSTRACT

Anti-immunocomplex (Anti-IC) antibodies have been used in developing noncompetitive immunoassays for detecting small molecule analytics (haptens). These antibodies bind specifically to the primary antibody in complex with hapten. Although several anti-IC antibody-based immunoassays have been developed, structural studies of these systems are very limited. In this study, we determined the crystal structures of anti-testosterone Fab220 in complex with testosterone and the corresponding anti-IC antibody FabB12. The structure of the ternary complex of testosterone, Fab220, and FabB12 was predicted using LightDock and AlphaFold. The ternary complex has a large (~ 1100 Å2) interface between antibodies. The A-ring of the testosterone bound by Fab220 also participates in the binding of the anti-IC antibody. The structural analysis was complemented by native mass spectrometry. The affinities for testosterone (TES) and three cross-reactive steroids [dihydrotestosterone (DHT), androstenedione (A4), and dehydroepiandrosterone sulfate (DHEA-S)] were measured, and ternary complex formation was studied. The results clearly show the ternary complex formation in the solution. Although DHT showed significant cross-reactivity, A4 and DHEA-S exhibited minor cross-reactivity.

4.
Article in English | MEDLINE | ID: mdl-39207895

ABSTRACT

Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent ß-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms.

5.
Steroids ; 211: 109501, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39208923

ABSTRACT

The androgen receptor (AR) is a type I nuclear receptor and master transcription factor responsible for development and maintenance of male secondary sex characteristics. Aberrant AR activity is associated with numerous diseases, including prostate cancer, androgen insensitivity syndrome, spinal and bulbar muscular atrophy, and androgenic alopecia. Recent studies have shown that AR adopts numerous conformations that can modulate its ability to bind and transcribe its target DNA substrates, a feature that can be hijacked in the context of cancer. Here, we summarize a series of structural observations describing how this elusive shape-shifter binds to multiple partners, including self-interactions, DNA, and steroid and non-steroidal ligands. We present evidence that AR's pervasive structural plasticity confers an ability to broadly bind and transcribe numerous ligands in the normal and disease state, and explain the structural basis for adaptive resistance mutations to antiandrogen treatment. These evolutionary features are integral to receptor function, and are commonly lost in androgen insensitivity syndrome, or reinforced in cancer.

6.
Structure ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39216472

ABSTRACT

Non-heme iron-dependent sulfoxide/selenoxide synthases (NHISS) constitute a unique metalloenzyme class capable of installing a C-S/Se bond onto histidine to generate thio/selenoimidazole antioxidants, such as ergothioneine and ovothiol. These natural products are increasingly recognized for their health benefits. Among associated ergothioneine-biosynthetic enzymes, type IV EgtBs stand out, as they exhibit low sequence similarity with other EgtB subfamilies due to their recent divergence from the ovothiol-biosynthetic enzyme OvoA. Herein, we present crystal structures of two representative EgtB-IV enzymes, offering insights into the basis for this evolutionary convergence and enhancing our understanding of NHISS active site organization more broadly. The ability to interpret how key residues modulate substrate specificity and regioselectivity has implications for downstream identification of divergent reactivity within the NHISS family. To this end, we identify a previously unclassified clade of OvoA-like enzymes with a seemingly hybrid set of characteristics, suggesting they may represent an evolutionary intermediate between OvoA and EgtB-IV.

7.
J Pharm Sci ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39216536

ABSTRACT

N-hydroxy-5-methylfuran-2-sulfonamide (BMS-986231, Cimlanod) was being developed as a pH-sensitive prodrug of HNO (nitroxyl) for the treatment of acute decompensated heart failure. During a stressed study of Cimlanod in a prototype formulation solution (pH 4.5) at 40°C, a predominant unknown degradant along with three previously identified degradants were observed. The unknown degradant was isolated from the stressed solution via preparative HPLC but totally decomposed during freeze-drying. LC-HRMS analysis of the isolated unknown degradant, prior to freeze-drying, revealed an empirical formula equivalent to the adduct of Cimlanod with SO2 even though SO2 was not added in the prototype formulation solution. The unknown degradant was synthesized from Cimlanod and DABSO ((1,4-diazabiscyclo[2,2,2]octane bis(sulfur dioxide) adduct) and isolated as a crystalline DABCO (1,4-diazabiscyclo[2,2,2]octane) salt for single crystal X-ray structure elucidation. The degradation of Cimlanod increased when the solution was exposed to air, as compared to N2 atmosphere. A plausible mechanism was postulated for the unexpected degradation pathway of Cimlanod. This study provided in-depth stability knowledge of Cimlanod, which will be beneficial to the subsequent stability indicating method development and validation as well as the registrational applications on the content and qualification of impurities in new drug products.

8.
Chemistry ; : e202402647, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158114

ABSTRACT

Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi-technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal-based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well-known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic-mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin-1 (AP-1).

9.
FEBS Open Bio ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123319

ABSTRACT

Pectocin M1 (PM1), the bacteriocin from phytopathogenic Pectobacterium carotovorum which causes soft rot disease, has a unique ferredoxin domain that allows it to use FusA of the plant ferredoxin uptake system. To probe the structure-based mechanism of PM1 uptake, we determined the X-ray structure of full-length PM1, containing an N-terminal ferredoxin and C-terminal catalytic domain connected by helical linker, at 2.04 Å resolution. Based on published FusA structure and NMR data for PM1 ferredoxin domain titrated with FusA, we modeled docking of the ferredoxin domain with FusA. Combining the docking models with the X-ray structures of PM1 and FusA enables us to propose the mechanism by which PM1 undergoes dynamic domain rearrangement to translocate across the target cell outer membrane.

10.
J Biol Chem ; : 107673, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128722

ABSTRACT

In all domains of life, the ribosome-translocon complex inserts nascent transmembrane proteins into, and processes and transports signal peptide-containing proteins across, membranes. Eukaryotic translocons are anchored in the endoplasmic reticulum, while the prokaryotic complexes reside in cell membranes. Phylogenetic analyses indicate inheritance of eukaryotic Sec61/OST/TRAP translocon subunits from an Asgard archaea ancestor. However, the mechanism for translocon migration from a peripheral membrane to an internal cellular compartment (the proto-endoplasmic reticulum) during eukaryogenesis is unknown. Here we show compatibility between the eukaryotic ribosome-translocon complex and Asgard signal peptides and transmembrane proteins. We find that Asgard translocon proteins from Candidatus Prometheoarchaeum syntrophicum strain MK-D1, a Lokiarchaeon confirmed to contain no internal cellular membranes, are targeted to the eukaryotic endoplasmic reticulum on ectopic expression. Furthermore, we show that the cytoplasmic domain of MK-D1 OST1 (ribophorin I) can interact with eukaryotic ribosomes. Our data indicate that the location of existing ribosome-translocon complexes, at the protein level, determines the future placement of yet to be translated translocon subunits. This principle predicts that during eukaryogenesis, under positive selection pressure, the relocation of a few translocon complexes to the proto-endoplasmic reticulum will have contributed to propagating the new translocon location, leading to their loss from the cell membrane.

11.
Protein Sci ; 33(7): e5072, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39133178

ABSTRACT

Δ1-pyrroline-5-carboxylate reductase isoform 1 (PYCR1) is the last enzyme of proline biosynthesis and catalyzes the NAD(P)H-dependent reduction of Δ1-pyrroline-5-carboxylate to L-proline. High PYCR1 gene expression is observed in many cancers and linked to poor patient outcomes and tumor aggressiveness. The knockdown of the PYCR1 gene or the inhibition of PYCR1 enzyme has been shown to inhibit tumorigenesis in cancer cells and animal models of cancer, motivating inhibitor discovery. We screened a library of 71 low molecular weight compounds (average MW of 131 Da) against PYCR1 using an enzyme activity assay. Hit compounds were validated with X-ray crystallography and kinetic assays to determine affinity parameters. The library was counter-screened against human Δ1-pyrroline-5-carboxylate reductase isoform 3 and proline dehydrogenase (PRODH) to assess specificity/promiscuity. Twelve PYCR1 and one PRODH inhibitor crystal structures were determined. Three compounds inhibit PYCR1 with competitive inhibition parameter of 100 µM or lower. Among these, (S)-tetrahydro-2H-pyran-2-carboxylic acid (70 µM) has higher affinity than the current best tool compound N-formyl-l-proline, is 30 times more specific for PYCR1 over human Δ1-pyrroline-5-carboxylate reductase isoform 3, and negligibly inhibits PRODH. Structure-affinity relationships suggest that hydrogen bonding of the heteroatom of this compound is important for binding to PYCR1. The structures of PYCR1 and PRODH complexed with 1-hydroxyethane-1-sulfonate demonstrate that the sulfonate group is a suitable replacement for the carboxylate anchor. This result suggests that the exploration of carboxylic acid isosteres may be a promising strategy for discovering new classes of PYCR1 and PRODH inhibitors. The structure of PYCR1 complexed with l-pipecolate and NADH supports the hypothesis that PYCR1 has an alternative function in lysine metabolism.


Subject(s)
Enzyme Inhibitors , Proline , Pyrroline Carboxylate Reductases , delta-1-Pyrroline-5-Carboxylate Reductase , Pyrroline Carboxylate Reductases/metabolism , Pyrroline Carboxylate Reductases/antagonists & inhibitors , Pyrroline Carboxylate Reductases/chemistry , Pyrroline Carboxylate Reductases/genetics , Humans , Crystallography, X-Ray , Proline/chemistry , Proline/analogs & derivatives , Proline/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Molecular Weight , Proline Oxidase/metabolism , Proline Oxidase/chemistry , Proline Oxidase/antagonists & inhibitors , Proline Oxidase/genetics , Models, Molecular
12.
Protein Sci ; 33(9): e5101, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39149996

ABSTRACT

Aberrant formation and deposition of human transthyretin (TTR) aggregates causes transthyretin amyloidosis. To initialize aggregation, transthyretin tetramers must first dissociate into monomers that partially unfold to promote entry into the aggregation pathway. The native TTR tetramer (T) is stabilized by docking of the F87 sidechain into an interfacial cavity enclosed by several hydrophobic residues including A120. We have previously shown that an alternative tetramer (T*) with mispacked F87 sidechains is more prone to dissociation and aggregation than the native T state. However, the molecular basis for the reduced stability in T* remains unclear. Here we report characterization of the A120L mutant, where steric hindrance is introduced into the F87 binding site. The x-ray structure of A120L shows that the F87 sidechain is displaced from its docking site across the subunit interface. In A120S, a naturally occurring pathogenic mutant that is less aggregation-prone than A120L, the F87 sidechain is correctly docked, as in the native TTR tetramer. Nevertheless, 19F-NMR aggregation assays show an elevated population of a monomeric aggregation intermediate in A120S relative to a control containing the native A120, due to accelerated tetramer dissociation and slowed monomer tetramerization. The mispacking of the F87 sidechain is associated with enhanced exchange dynamics for interfacial residues. At 298 K, the T* populations of various naturally occurring mutants fall between 4% and 7% (ΔG ~ 1.5-1.9 kcal/mol), consistent with the free energy change expected for undocking and solvent exposure of one of the four F87 sidechains in the tetramer (ΔG ~ 1.6 kcal/mol). Our data provide a molecular-level picture of the likely universal F87 sidechain mispacking in tetrameric TTR that promotes interfacial conformational dynamics and increases aggregation propensity.


Subject(s)
Prealbumin , Prealbumin/chemistry , Prealbumin/genetics , Prealbumin/metabolism , Humans , Models, Molecular , Crystallography, X-Ray , Protein Conformation , Protein Multimerization , Protein Aggregates , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/metabolism , Binding Sites , Amino Acid Substitution
13.
IUCrJ ; 11(Pt 5): 871-877, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39141478

ABSTRACT

Identifying and characterizing metal-binding sites (MBS) within macromolecular structures is imperative for elucidating their biological functions. CheckMyMetal (CMM) is a web based tool that facilitates the interactive validation of MBS in structures determined through X-ray crystallography and cryo-electron microscopy (cryo-EM). Recent updates to CMM have significantly enhanced its capability to efficiently handle large datasets generated from cryo-EM structural analyses. In this study, we address various challenges inherent in validating MBS within both X-ray and cryo-EM structures. Specifically, we examine the difficulties associated with accurately identifying metals and modeling their coordination environments by considering the ongoing reproducibility challenges in structural biology and the critical importance of well annotated, high-quality experimental data. CMM employs a sophisticated framework of rules rooted in the valence bond theory for MBS validation. We explore how CMM validation parameters correlate with the resolution of experimentally derived structures of macromolecules and their complexes. Additionally, we showcase the practical utility of CMM by analyzing a representative cryo-EM structure. Through a comprehensive examination of experimental data, we demonstrate the capability of CMM to advance MBS characterization and identify potential instances of metal misassignment.


Subject(s)
Cryoelectron Microscopy , Metals , Cryoelectron Microscopy/methods , Binding Sites , Crystallography, X-Ray/methods , Metals/chemistry , Metals/metabolism , Reproducibility of Results , Models, Molecular , Software , Macromolecular Substances/chemistry
14.
Structure ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39121852

ABSTRACT

Mind bomb 1 (MIB1) is a RING E3 ligase that ubiquitinates Notch ligands, a necessary step for induction of Notch signaling. The structural basis for binding of the JAG1 ligand by the N-terminal region of MIB1 is known, yet how the ankyrin (ANK) and RING domains of MIB1 cooperate to catalyze ubiquitin transfer from E2∼Ub to Notch ligands remains unclear. Here, we show that the third RING domain and adjacent coiled coil region (ccRING3) drive MIB1 dimerization and that MIB1 ubiquitin transfer activity relies solely on ccRING3. We report X-ray crystal structures of a UbcH5B-ccRING3 complex and the ANK domain. Directly tethering the MIB1 N-terminal region to ccRING3 forms a minimal MIB1 protein sufficient to induce a Notch response in receiver cells and rescue mib knockout phenotypes in flies. Together, these studies define the functional elements of an E3 ligase needed for ligands to induce a Notch signaling response.

15.
J Biol Chem ; : 107663, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128725

ABSTRACT

Ferrous iron (Fe2+) is required for the growth and virulence of many pathogenic bacteria, including Vibrio cholerae (Vc), the causative agent of the disease cholera. For this bacterium, Feo is the primary system that transports Fe2+ into the cytosol. FeoB, the main component of this system, is regulated by a soluble cytosolic domain termed NFeoB. Recent reanalysis has shown that NFeoBs can be classified as either GTP-specific or NTP-promiscuous, but the structural and mechanistic bases for these differences were not known. To explore this intriguing property of FeoB, we solved the X-ray crystal structures of VcNFeoB in both the apo and GDP-bound forms. Surprisingly, this promiscuous NTPase displayed a canonical NFeoB G-protein fold like GTP-specific NFeoBs. Using structural bioinformatics, we hypothesized that residues surrounding the nucleobase could be important for both nucleotide affinity and specificity. We then solved the X-ray crystal structures of N150T VcNFeoB in the apo and GDP-bound forms to reveal H-bonding differences surround the guanine nucleobase. Interestingly, isothermal titration calorimetry revealed similar binding thermodynamics of the WT and N150T proteins to guanine nucleotides, while the behavior in the presence of adenine nucleotides was dramatically different. AlphaFold models of VcNFeoB in the presence of ADP and ATP showed important conformational changes that contribute to nucleotide specificity among FeoBs. Combined, these results provide a structural framework for understanding FeoB nucleotide promiscuity, which could be an adaptive measure utilized by pathogens to ensure adequate levels of intracellular iron across multiple metabolic landscapes.

16.
Article in English | MEDLINE | ID: mdl-39196706

ABSTRACT

The immunoglobulin (Ig)-like domain is found in a broad range of proteins with diverse functional roles. While an essential ß-sandwich fold is maintained, considerable structural variations exist and are critical for functional diversity. The Rib-domain family, primarily found as tandem-repeat modules in the surface proteins of Gram-positive bacteria, represents another significant structural variant of the Ig-like fold. However, limited structural and functional exploration of this family has been conducted, which significantly restricts the understanding of its evolution and significance within the Ig superclass. In this work, a high-resolution crystal structure of a Rib domain derived from the probiotic bacterium Limosilactobacillus reuteri is presented. This protein, while sharing significant structural similarity with homologous domains from other bacteria, exhibits a significantly increased thermal resistance. The potential structural features contributing to this stability are discussed. Moreover, the presence of two copper-binding sites, with one positioned on the interface, suggests potential functional roles that warrant further investigation.

17.
Structure ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39191250

ABSTRACT

KCTD family proteins typically assemble into cullin-RING E3 ligases. KCTD1 is an atypical member that functions instead as a transcriptional repressor. Mutations in KCTD1 cause developmental abnormalities and kidney fibrosis in scalp-ear-nipple syndrome. Here, we present unexpected mechanistic insights from the structure of human KCTD1. Disease-causing mutation P20S maps to an unrecognized extension of the BTB domain that contributes to both its pentameric structure and TFAP2A binding. The C-terminal domain (CTD) shares its fold and pentameric assembly with the GTP cyclohydrolase I feedback regulatory protein (GFRP) despite lacking discernible sequence similarity. Most surprisingly, the KCTD1 CTD establishes a central channel occupied by alternating sodium and iodide ions that restrict TFAP2A dissociation. The elucidation of the structure redefines the KCTD1 BTB domain fold and identifies an unexpected ion-binding site for future study of KCTD1's function in the ectoderm, neural crest, and kidney.

18.
Article in English | MEDLINE | ID: mdl-39177701

ABSTRACT

Protein tyrosine phosphatase non-receptor type 2 (PTPN2) has recently been recognized as a promising target for cancer immunotherapy. Despite extensive structural and functional studies of other protein tyrosine phosphatases, there is limited structural understanding of PTPN2. Currently, there are only five published PTPN2 structures and none are truly unbound due to the presence of a mutation, an inhibitor or a loop (related to crystal packing) in the active site. In this report, a novel crystal packing is revealed that resulted in a true apo PTPN2 crystal structure with an unbound active site, allowing the active site to be observed in a native apo state for the first time. Key residues related to accommodation in the active site became identifiable upon comparison with previously published PTPN2 structures. Structures of PTPN2 in complex with an established PTPN1 active-site inhibitor and an allosteric inhibitor were achieved through soaking experiments using these apo PTPN2 crystals. The increased structural understanding of apo PTPN2 and the ability to soak in inhibitors will aid the development of future PTPN2 inhibitors.

19.
Protein Sci ; 33(9): e5151, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39167040

ABSTRACT

Insulin-regulated aminopeptidase (IRAP) is an enzyme with important biological functions and the target of drug-discovery efforts. We combined in silico screening with a medicinal chemistry optimization campaign to discover a nanomolar inhibitor of IRAP based on a pyrazolylpyrimidine scaffold. This compound displays an excellent selectivity profile versus homologous aminopeptidases, and kinetic analysis suggests it utilizes an uncompetitive mechanism of action when inhibiting the cleavage of a typical dipeptidic substrate. Surprisingly, the compound is a poor inhibitor of the processing of the physiological cyclic peptide substrate oxytocin and a 10mer antigenic epitope precursor but displays a biphasic inhibition profile for the trimming of a 9mer antigenic peptide. While the compound reduces IRAP-dependent cross-presentation of an 8mer epitope in a cellular assay, it fails to block in vitro trimming of select epitope precursors. To gain insight into the mechanism and basis of this unusual selectivity for this inhibitor, we solved the crystal structure of its complex with IRAP. The structure indicated direct zinc(II) engagement by the pyrazolylpyrimidine scaffold and revealed that the compound binds to an open conformation of the enzyme in a pose that should block the conformational transition to the enzymatically active closed conformation previously observed for other low-molecular-weight inhibitors. This compound constitutes the first IRAP inhibitor targeting the active site that utilizes a conformation-specific mechanism of action, provides insight into the intricacies of the IRAP catalytic cycle, and highlights a novel approach to regulating IRAP activity by blocking its conformational rearrangements.


Subject(s)
Cystinyl Aminopeptidase , Cystinyl Aminopeptidase/antagonists & inhibitors , Cystinyl Aminopeptidase/chemistry , Cystinyl Aminopeptidase/metabolism , Humans , Crystallography, X-Ray , Substrate Specificity , Pyrimidines/chemistry , Pyrimidines/pharmacology , Models, Molecular , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protein Conformation
20.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125848

ABSTRACT

Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.


Subject(s)
Aminoacyltransferases , Zinc , Humans , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Zinc/metabolism , Zinc/chemistry , Binding Sites , Cobalt/metabolism , Cobalt/chemistry , Protein Binding , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL