Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Chem Commun (Camb) ; 60(16): 2212-2215, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38305731

ABSTRACT

To further understand the specificity of muramyl dipeptide (MDP) sensing by NOD2, we evaluated the compatibility of synthetic MDP analogues for cellular uptake and NAGK phosphorylation, the pre-requisite steps of intracellular NOD2 activation. Our results revealed that these two prior steps do not confer ligand stereoselectivity; yet NAGK strictly discriminates against the disaccharide NOD2 agonists for phosphorylation in vitro, despite it being indispensable for the cellular NOD2-stimulating effects of these analogues, implying potential glycosidase cleavage as a novel intermediate step for cellular activation of NOD2.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Nod2 Signaling Adaptor Protein , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Ligands , Nod2 Signaling Adaptor Protein/metabolism
2.
Adv Exp Med Biol ; 1415: 521-526, 2023.
Article in English | MEDLINE | ID: mdl-37440081

ABSTRACT

Peptidoglycan (PGN) recognition protein 2 (PGRP2; N-acetylmuramyl-L-alanine amidase (NAMAA)) activity in corneal epithelial cells is thought to inhibit corneal inflammation by reducing the PGN-induced cytokines. PGRP2 has not been reported in human retinal pigment epithelial (RPE) cells. RPE cell lysate NAMAA activity was measured densitometrically via cleavage of FITC-tagged muramyl dipeptide (FITCMDP). RPE lysate degradation of the cytopathic activity of nucleotide-binding oligomerization domain (NOD) receptor agonists was assessed by caspase-3 activation and DNA ladder detection and quantitation. PGRP2/NAMAA protein was detected in RPE cells by immunofluorescent antibody assay. RPE lysate NAMAA cleaved FITCMDP in a dose- and time-dependent manner. RPE lysate selectively inhibited PGN cytopathic activity of NOD1 agonists containing D-γ-glutamyl-meso-diaminopimelic acid and NOD2 containing L-alanyl-D-isoglutamine. The results suggest RPE PGRP2 amidase selectively degrades PGN that stimulate NOD-mediated cytopathic activity. The failure of RPE NAMAA to degrade pro-inflammatory PGN may play a role in bacterial retinopathies.


Subject(s)
Cytokines , Peptidoglycan , Humans , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Fluorescein-5-isothiocyanate , Cytokines/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Amidohydrolases/metabolism , Retina/metabolism , Nod2 Signaling Adaptor Protein/metabolism
3.
J Pathol ; 260(2): 137-147, 2023 06.
Article in English | MEDLINE | ID: mdl-36811349

ABSTRACT

Wnt signaling is a positive regulator of bone formation through the induction of osteoblast differentiation and down-regulation of osteoclast differentiation. We previously reported that muramyl dipeptide (MDP) increases bone volume by increasing osteoblast activity and attenuating osteoclast activity in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoporotic model mice. In this study, we investigated whether MDP could alleviate post-menopausal osteoporosis through Wnt signaling regulation in an ovariectomy (OVX)-induced mouse osteoporosis model. MDP-administered OVX mice exhibited higher bone volume and bone mineral density than mice of the control group. MDP significantly increased P1NP in the serum of OVX mice, implying increased bone formation. The expression of pGSK3ß and ß-catenin in the distal femur of OVX mice was lower than that in the distal femur of sham-operated mice. Yet, the expression of pGSK3ß and ß-catenin was increased in MDP-administered OVX mice compared with OVX mice. In addition, MDP increased the expression and transcriptional activity of ß-catenin in osteoblasts. MDP inhibited the proteasomal degradation of ß-catenin via the down-regulation of its ubiquitination by GSK3ß inactivation. When osteoblasts were pretreated with Wnt signaling inhibitors, DKK1 or IWP-2, the induction of pAKT, pGSK3ß, and ß-catenin was not observed. In addition, nucleotide oligomerization domain-containing protein 2-deficient osteoblasts were not sensitive to MDP. MDP-administered OVX mice exhibited fewer tartrate-resistant acid phosphatase (TRAP)-positive cells than did OVX mice, attributed to a decrease in the RANKL/OPG ratio. In conclusion, MDP alleviates estrogen deficiency-induced osteoporosis through canonical Wnt signaling and could be an effective therapeutic for the treatment of post-menopausal bone loss. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Osteoporosis, Postmenopausal , Osteoporosis , Humans , Female , Mice , Animals , Wnt Signaling Pathway , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Acetylmuramyl-Alanyl-Isoglutamine/therapeutic use , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control , Bone Density , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/prevention & control , Osteoporosis, Postmenopausal/metabolism , Cell Differentiation , Osteoclasts/metabolism , Osteoblasts/pathology , Estrogens/metabolism
4.
Exp Eye Res ; 227: 109383, 2023 02.
Article in English | MEDLINE | ID: mdl-36634837

ABSTRACT

Noninfectious exudative conjunctivitis can be experimentally produced in rabbits by application of the apoptogenic bacterial cell wall peptidoglycan, muramyl dipeptide (MDP) to the ocular surface. The purpose of this study was to investigate the acute conjunctival cytopathology induced by unilateral ocular surface exposure to MDP. Hematoxylin and eosin staining assessed bilateral tear cytopathology and conjunctival histopathology. The caspases levels in conjunctival tissue and tears were measured in standard assays utilizing p-nitroanaline tagged caspase-specific substrates. Immunofluorescent antibody identified intracellular caspase-3, nuclear factor-κß (NF-κß), and oxidative DNA damage (8-OHdG; 8-oxo-2'-deoxyguanosine) in tear and conjunctiva cells. DNA extracted from conjunctival tissues and pooled tear fluids were visualized by ethydium bromide agarose gel electrophoresis. Onset of ipsilateral conjunctivitis was due to an epitheliopathy characterized by loss of conjunctival epithelial cell adherence, exuviation of conjunctival epithelial cells, and neutrophil infiltration. Caspase-3 levels were significantly higher in exuviated cells in ipsilateral than contralateral tear (p's ≤ 0.001) collected at 3-5 h post MDP. Significantly higher caspase-2, -3, -6, -8 and -9 (p's ≤ 0.03) levels were detected in ipsilateral than contralateral conjunctival tissue at 5 h. Polymeric DNA was detected in ipsilateral but not contralateral conjunctival tissue and tears. Caspase-3, NF-κß, and 8-OHdG positive neutrophils were detected in bilateral conjunctiva and tear. The caspase-3/NF-κß epithelial cells and polymeric DNA in conjunctival tissue and shedding of caspase positive cells and polymeric DNA into ipsilateral tears support MDP induction of acute programmed cell death in vivo. The results suggest that ipsilateral exudative conjunctivitis is due to acute caspase-mediated conjunctival epitheliopathy induced by topical exposure to the bacterial peptidoglycan MDP.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Conjunctivitis , Animals , Rabbits , Acetylmuramyl-Alanyl-Isoglutamine/toxicity , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Caspase 3/metabolism , Peptidoglycan/metabolism , Conjunctiva/metabolism , Conjunctivitis/metabolism , Bacteria , Tears/metabolism
5.
J Crohns Colitis ; 17(1): 111-122, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-35917251

ABSTRACT

BACKGROUND AND AIMS: NOD2 has emerged as a critical player in the induction of both Th1 and Th2 responses for potentiation and polarisation of antigen-dependent immunity. Loss-of-function mutations in the NOD2-encoding gene and deregulation of its downstream signalling pathway have been linked to Crohn's disease. Although it is well documented that NOD2 is capable of sensing bacterial muramyl dipeptide, it remains counter-intuitive to link development of overt intestinal inflammation to a loss of bacterial-induced inflammatory response. We hypothesised that a T helper bias could also contribute to an autoimmune-like colitis different from inflammation that is fully fledged by Th1 type cells. METHODS: An oedematous bowel wall with a mixed Th1/Th2 response was induced in mice by intrarectal instillation of the haptenating agent oxazolone. Survival and clinical scoring were evaluated. At several time points after instillation, colonic damage was assessed by macroscopic and microscopic observations. To evaluate the involvement of NOD2 in immunochemical phenomena, quantitative polymerase chain reaction [PCR] and flow cytometry analysis were performed. Bone marrow chimera experimentation allowed us to evaluate the role of haematopoietic/non-hematopoietic NOD2-expressing cells. RESULTS: Herein, we identified a key regulatory circuit whereby NOD2-mediated sensing of a muramyl dipeptide [MDP] by radio-resistant cells improves colitis with a mixed Th1/Th2 response that is induced by oxazolone. Genetic ablation of either Nod2 or Ripk2 precipitated oxazolone colitis that is predominantly linked to a lack of interferon-gamma. Bone marrow chimera experiments revealed that inactivation of Nod2 signalling in non-haematopoietic cells is causing a biased M1-M2 polarisation of macrophages and a decreased frequency of splenic regulatory T cells that correlates with an impaired activation of CD4 + T cells within mesenteric lymph nodes. Mechanistically, mice were protected from oxazolone-induced colitis upon administration of MDP in an interleukin-1- and interleukin-23-dependent manner. CONCLUSIONS: These findings indicate that Nod2 signalling may prevent pathological conversion of T helper cells for maintenance of tissue homeostasis.


Subject(s)
Colitis , Oxazolone , Mice , Animals , Oxazolone/adverse effects , Acetylmuramyl-Alanyl-Isoglutamine/adverse effects , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Colitis/metabolism , Inflammation , Signal Transduction , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism
6.
Int Immunol ; 35(2): 79-94, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36171063

ABSTRACT

Mutations in nucleotide-binding oligomerization domain 2 (NOD2) are associated with Crohn's disease (CD). Although NOD2 activation contributes to the maintenance of intestinal homeostasis through the negative regulation of pro-inflammatory cytokine responses mediated by Toll-like receptors (TLRs), the effects of NOD2 activation on interferon (IFN)-α responses induced by TLR9 have been poorly defined. To explore the cross-talk between NOD2 and TLR9, human monocytes or dendritic cells (DCs) were stimulated with NOD2 and/or TLR9 ligands to measure IFN-α production. The severity of dextran sodium sulfate (DSS)-induced colitis was compared in mice treated with NOD2 and/or TLR9 ligands. Expression of IFN-α and IFN-stimulated genes (ISGs) was examined in the colonic mucosa of patients with inflammatory bowel disease (IBD). NOD2 activation reduced TLR9-induced IFN-α production by monocytes and DCs in a deubiquitinating enzyme A (DUBA)-dependent manner. Activation of DUBA induced by the co-stimulation of TLR9 and NOD2 inhibited Lys63-linked polyubiquitination of TRAF3 and suppressed TLR9-mediated IFN-α production. NOD2 activation in hematopoietic cells protected mice from TLR9-induced exacerbation of DSS-induced colitis by down-regulating IFN-α responses and up-regulating DUBA expression. Colonic mucosa of patients with active and remitted IBD phases was characterized by the enhanced and reduced expression of ISGs, respectively. Expression levels of IFN-α and IL-6 positively correlated in the active colonic mucosa of patients with ulcerative colitis and CD, whereas DUBA expression inversely correlated with that of IFN-α in patients with CD. Collectively, these data suggest that DUBA-dependent negative effect of NOD2 on TLR9-mediated IFN-α responses contributes to the maintenance of intestinal homeostasis.


Subject(s)
Colitis , Crohn Disease , Inflammatory Bowel Diseases , Animals , Humans , Mice , Acetylmuramyl-Alanyl-Isoglutamine/adverse effects , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Colitis/chemically induced , Colitis/metabolism , Crohn Disease/genetics , Deubiquitinating Enzymes/metabolism , Inflammation , Interferon-alpha/metabolism , Ligands , Nod2 Signaling Adaptor Protein/genetics , Toll-Like Receptor 9/metabolism
7.
Cell Host Microbe ; 30(10): 1435-1449.e9, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36049483

ABSTRACT

The pattern-recognition receptor NOD2 senses bacterial muropeptides to regulate host immunity and maintain homeostasis. Loss-of-function mutations in NOD2 are associated with Crohn's disease (CD), but how the variations in microbial factors influence NOD2 signaling and host pathology is elusive. We demonstrate that the Firmicutes peptidoglycan remodeling enzyme, DL-endopeptidase, increased the NOD2 ligand level in the gut and impacted colitis outcomes. Metagenomic analyses of global cohorts (n = 857) revealed that DL-endopeptidase gene abundance decreased globally in CD patients and negatively correlated with colitis. Fecal microbiota from CD patients with low DL-endopeptidase activity predisposed mice to colitis. Administering DL-endopeptidase, but not an active site mutant, alleviated colitis via the NOD2 pathway. Therapeutically restoring NOD2 ligands with a DL-endopeptidase-producing Lactobacillus salivarius strain or mifamurtide, a clinical analog of muramyl dipeptide, exerted potent anti-colitis effects. Our study suggests that the depletion of DL-endopeptidase contributes to CD pathogenesis through NOD2 signaling, providing a therapeutically modifiable target.


Subject(s)
Colitis , Crohn Disease , Gastrointestinal Microbiome , Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Animals , Crohn Disease/metabolism , Endopeptidases , Ligands , Mice , Nod2 Signaling Adaptor Protein/genetics , Peptidoglycan/metabolism
8.
ACS Chem Biol ; 17(9): 2538-2550, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35968762

ABSTRACT

Candida albicans, the major fungal pathogen in humans, is under the strong influence of bacterial peptidoglycan fragments to undergo the yeast-to-hyphae transition, a key virulent step in C. albicans pathogenesis and infections. However, due to the synthetic difficulties of obtaining peptidoglycan fragments for biological studies, mechanistic details of how C. albicans recognizes and uptakes these peptidoglycan fragments have not been well elucidated. Notably, previous works have solely focused on the synthetic peptidoglycan ligand, muramyl dipeptide (MDP), despite its poor hyphal-inducing activity in C. albicans. In this work, we isolated and purified natural peptidoglycan fragments via enzymatic degradation of bacteria cell wall sacculi and chemoenzymatically installed a series of functional d-amino acids into the natural muropeptide, creating peptidoglycan probes that bear photoaffinity, bio-orthogonal, or fluorescent functionality. Using these chemoenzymatic peptidoglycan probes, we established that natural peptidoglycan fragments, which are potent hyphal-inducers, interact with the C. albicans Cyr1 sensor protein in the in-gel fluorescence assay as well as in in vitro pulldown studies. Moreover, we established that bacterial peptidoglycan probes enter C. albicans cells via an energy-dependent endocytic process.


Subject(s)
Candida albicans , Peptidoglycan , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Amino Acids/metabolism , Bacteria/metabolism , Candida albicans/metabolism , Cell Wall/metabolism , Humans , Ligands , Peptidoglycan/metabolism
9.
Nature ; 609(7927): 590-596, 2022 09.
Article in English | MEDLINE | ID: mdl-36002575

ABSTRACT

Bacterial cell wall components provide various unique molecular structures that are detected by pattern recognition receptors (PRRs) of the innate immune system as non-self. Most bacterial species form a cell wall that consists of peptidoglycan (PGN), a polymeric structure comprising alternating amino sugars that form strands cross-linked by short peptides. Muramyl dipeptide (MDP) has been well documented as a minimal immunogenic component of peptidoglycan1-3. MDP is sensed by the cytosolic nucleotide-binding oligomerization domain-containing protein 24 (NOD2). Upon engagement, it triggers pro-inflammatory gene expression, and this functionality is of critical importance in maintaining a healthy intestinal barrier function5. Here, using a forward genetic screen to identify factors required for MDP detection, we identified N-acetylglucosamine kinase (NAGK) as being essential for the immunostimulatory activity of MDP. NAGK is broadly expressed in immune cells and has previously been described to contribute to the hexosamine biosynthetic salvage pathway6. Mechanistically, NAGK functions upstream of NOD2 by directly phosphorylating the N-acetylmuramic acid moiety of MDP at the hydroxyl group of its C6 position, yielding 6-O-phospho-MDP. NAGK-phosphorylated MDP-but not unmodified MDP-constitutes an agonist for NOD2. Macrophages from mice deficient in NAGK are completely deficient in MDP sensing. These results reveal a link between amino sugar metabolism and innate immunity to bacterial cell walls.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Nod2 Signaling Adaptor Protein , Phosphotransferases (Alcohol Group Acceptor) , Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/immunology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Animals , Bacteria/chemistry , Bacteria/immunology , Cell Wall/chemistry , Hexosamines/biosynthesis , Immunity, Innate , Macrophages/enzymology , Macrophages/immunology , Mice , Nod2 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/metabolism , Peptidoglycan/chemistry , Peptidoglycan/immunology , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/deficiency , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
10.
J Med Chem ; 65(13): 9312-9327, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35709396

ABSTRACT

Receptor-interacting serine/threonine protein kinase 2 (RIPK2) has been demonstrated to be a promising target for treating inflammatory diseases. Herein, we describe the discovery and optimization of a series of RIPK2 inhibitors derived from an FLT3 inhibitor, CHMFL-FLT3-165. Compound 10w was identified to possess an IC50 value of 0.6 nM for RIPK2 and greater than 50,000-fold selectivity over its family homologous kinase RIPK1 (IC50 > 30 µM). It exhibited high kinase selectivity and inhibited RIPK2 to prevent NOD-induced cytokine production following muramyl dipeptide (MDP) stimulation. In an acute colitis model, compound 10w exerted better therapeutic effects than the JAK inhibitor filgotinib and the RIPK2 inhibitor WEHI-345. These robust results of in vitro and in vivo pharmacodynamic experiments demonstrate that RIPK2 as a therapeutic target shows potential abilities for the treatment of inflammatory bowel diseases.


Subject(s)
Inflammatory Bowel Diseases , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Humans , Inflammatory Bowel Diseases/drug therapy , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases , Serine , Threonine
11.
Mol Psychiatry ; 27(2): 1205-1216, 2022 02.
Article in English | MEDLINE | ID: mdl-34728799

ABSTRACT

Evidence suggests that complex interactions between the immune system and brain have important etiological and therapeutic implications in schizophrenia. However, the detailed cellular and molecular basis of immune dysfunction in schizophrenia remains poorly characterized. To better understand the immune changes and molecular pathways, we systemically compared the cytokine responses of peripheral blood mononuclear cells (PBMCs) derived from patients with schizophrenia and controls against bacterial, fungal, and purified microbial ligands, and identified aberrant cytokine response patterns to various pathogens, as well as reduced cytokine production after stimulation with muramyl dipeptide (MDP) in schizophrenia. Subsequently, we performed single-cell RNA sequencing on unstimulated and stimulated PBMCs from patients and controls and revealed widespread suppression of antiviral and inflammatory programs as well as impaired chemokine/cytokine-receptor interaction networks in various immune cell subpopulations of schizophrenic patients after MDP stimulation. Moreover, serum MDP levels were elevated in these patients and correlated with the course of the disease, suggesting increased bacterial translocation along with disease progression. In vitro assays revealed that MDP pretreatment altered the functional response of normal PBMCs to its re-stimulation, which partially recapitulated the impaired immune function in schizophrenia. In conclusion, we delineated the molecular and cellular landscape of impaired immune function in schizophrenia, and proposed a mutual interplay between innate immune impairment, reduced pathogen clearance, increased MDP translocation along schizophrenia development, and blunted innate immune response. These findings provide new insights into the pathogenic mechanisms that drive systemic immune activation, neuroinflammation, and brain abnormalities in schizophrenia.


Subject(s)
Cytokines , Schizophrenia , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Bacteria/metabolism , Cytokines/metabolism , Fungi/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Schizophrenia/metabolism
12.
J Med Chem ; 64(11): 7809-7838, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34043358

ABSTRACT

We report on the design, synthesis, and biological evaluation of a series of nucleotide-binding oligomerization-domain-containing protein 2 (NOD2) desmuramylpeptide agonists with improved in vitro and in vivo adjuvant properties. We identified two promising compounds: 68, a potent nanomolar in vitro NOD2 agonist, and the more lipophilic 75, which shows superior adjuvant activity in vivo. Both compounds had immunostimulatory effects on peripheral blood mononuclear cells at the protein and transcriptional levels, and augmented dendritic-cell-mediated activation of T cells, while 75 additionally enhanced the cytotoxic activity of peripheral blood mononuclear cells against malignant cells. The C18 lipophilic tail of 75 is identified as a pivotal structural element that confers in vivo adjuvant activity in conjunction with a liposomal delivery system. Accordingly, liposome-encapsulated 75 showed promising adjuvant activity in mice, surpassing that of muramyl dipeptide, while achieving a more balanced Th1/Th2 immune response, thus highlighting its potential as a vaccine adjuvant.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Adjuvants, Immunologic/chemistry , Nod2 Signaling Adaptor Protein/agonists , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Adjuvants, Immunologic/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Antibody Formation/drug effects , Cell Line , Drug Design , Humans , Immunoglobulin G/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Liposomes/chemistry , Lymphocyte Activation/drug effects , Mice , Mice, Inbred C57BL , Nod2 Signaling Adaptor Protein/metabolism , Ovalbumin/immunology , Structure-Activity Relationship , Th1 Cells/cytology , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/cytology , Th2 Cells/immunology , Th2 Cells/metabolism
13.
Sci China Life Sci ; 64(10): 1720-1731, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33521852

ABSTRACT

Commensal bacteria boost serum IgG production in response to oral immunization with antigen and cholera toxin (CT) in a manner that depends on Nod2 (nucleotide-binding oligomerization domain-containing protein 2). In this study, we examined the role of intestinal lysozyme (Lyz1) in adjuvant activity of CT. We found that Lyz1 released Nod2 ligand(s) from bacteria. Lyz1 deficiency reduced the level of circulating Nod2 ligand in mice. Lyz1 deficiency also reduced the production of IgG and T-cellspecific cytokines after oral immunization in mice. Supplementing Lyz1-deficient mice with MDP restored IgG production. Furthermore, overexpression of Lyz1 in intestinal epithelium boosted the antigen-specific IgG response induced by CT. Collectively, our results indicate that Lyz1 plays an important role in mediating the immune regulatory effect of commensal bacteria through the release of Nod2 ligand(s).


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Adjuvants, Immunologic/pharmacology , Cholera Toxin/pharmacology , Intestinal Mucosa/immunology , Muramidase/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Animals , Immunoglobulin G/immunology , Intestinal Mucosa/metabolism , Ligands , Mice , Muramidase/deficiency , Nod2 Signaling Adaptor Protein/deficiency , Nod2 Signaling Adaptor Protein/metabolism , Plasma Cells/immunology , T Follicular Helper Cells/immunology
14.
Br J Nutr ; 126(5): 641-651, 2021 09 14.
Article in English | MEDLINE | ID: mdl-33172510

ABSTRACT

Muramidases constitute a superfamily of enzymes that hydrolyse peptidoglycan (PGN) from bacterial cell walls. Recently, a fungal muramidase derived from Acremonium alcalophilum has been shown to increase broiler performance when added as a feed additive. However, the underlying mechanisms of action are not yet identified. Here, we investigated the hypothesis that this muramidase can cleave PGN to muramyl dipeptide (MDP), activating nucleotide-binding oligomerisation domain-containing protein 2 (NOD2) receptors in eukaryotic cells, potentially inducing anti-inflammatory host responses. Using Micrococcus luteus as a test bacterium, it was shown that muramidase from A. alcalophilum did not display antimicrobial activity, while it could cleave fluorescently labelled PGN. It was shown that the muramidase could degrade PGN down to its minimal bioactive structure MDP by using UPLC-MS/MS. Using HEK-Blue™-hNOD2 reporter cells, it was shown that the muramidase-treated PGN degradation mixture could activate NOD2. Muramidase supplementation to broiler feed increased the duodenal goblet cell and intraepithelial lymphocyte abundance while reducing duodenal wall CD3+ T lymphocyte levels. Muramidase supplementation to broiler feed only had moderate effects on the duodenal, ileal and caecal microbiome. It was shown that the newly discovered muramidase hydrolysed PGN, resulting in MDP that activates NOD2, potentially steering the host response for improved intestinal health.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Duodenum , Inflammation/prevention & control , Muramidase/administration & dosage , Peptidoglycan , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Animal Nutritional Physiological Phenomena , Animals , Bacteria/metabolism , Cell Wall/metabolism , Cells, Cultured , Chickens/metabolism , Chromatography, Liquid , Duodenum/microbiology , Muramidase/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Peptidoglycan/metabolism , Tandem Mass Spectrometry
15.
Cell ; 183(3): 786-801.e19, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33125893

ABSTRACT

Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunity , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Nanotechnology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Animals , Behavior, Animal , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Proliferation/drug effects , Cholesterol/metabolism , Female , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immunity/drug effects , Immunotherapy , Lipoproteins, HDL/metabolism , Mice, Inbred C57BL , Primates , Tissue Distribution/drug effects , Tumor Microenvironment/drug effects
16.
Cells ; 9(9)2020 09 16.
Article in English | MEDLINE | ID: mdl-32948003

ABSTRACT

Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and "innate memory-based vaccines" will be examined.


Subject(s)
Adaptive Immunity/drug effects , BCG Vaccine/administration & dosage , COVID-19/prevention & control , Epigenesis, Genetic/drug effects , Myeloid Cells/drug effects , SARS-CoV-2/pathogenicity , Tuberculosis, Pulmonary/prevention & control , Acetylmuramyl-Alanyl-Isoglutamine/immunology , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , COVID-19/immunology , COVID-19/virology , Cross Protection , Epigenesis, Genetic/immunology , Histones/genetics , Histones/immunology , Humans , Mycobacterium tuberculosis , Myeloid Cells/immunology , Myeloid Cells/pathology , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology
17.
J Am Chem Soc ; 142(25): 10926-10930, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32520538

ABSTRACT

Bacterial peptidoglycan (PG) is recognized by the human innate immune system to generate an appropriate response. To gain an appreciation of how this essential polymer is sensed, a surface plasmon resonance (SPR) assay using varied PG surface presentation was developed. PG derivatives were synthesized and immobilized on the surface at different positions on the molecule to assess effects of ligand orientation on the binding affinities of NOD-like receptors (NLRs). NLRP1 and NOD2 are cytosolic innate immune proteins known to generate an immune response to PG. Both possess conserved leucine rich repeat domains (LRR) as proposed sites of molecular recognition, though limited biochemical evidence exists regarding the mechanisms of PG recognition. Here direct biochemical evidence for the association of PG fragments to NOD2 and NLRP1 with nanomolar affinity is shown. The orientations in which the fragments were presented on the SPR surface influenced the strength of PG recognition by both NLRs. This assay displays fundamental differences in binding preferences for PG by innate immune receptors and reveals unique recognition mechanisms between the LRRs. Each receptor uses specific ligand structural features to achieve optimal binding, which will be critical information to manipulate these responses and combat diseases.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Peptidoglycan/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/analogs & derivatives , Amino Acid Sequence , Humans , Ligands , NLR Proteins , Protein Binding , Surface Plasmon Resonance
18.
Proc Natl Acad Sci U S A ; 117(20): 10946-10957, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32350141

ABSTRACT

Four decades ago, it was identified that muramyl dipeptide (MDP), a peptidoglycan-derived bacterial cell wall component, could display immunosuppressive functions in animals through mechanisms that remain unexplored. We sought to revisit these pioneering observations because mutations in NOD2, the gene encoding the host sensor of MDP, are associated with increased risk of developing the inflammatory bowel disease Crohn's disease, thus suggesting that the loss of the immunomodulatory functions of NOD2 could contribute to the development of inflammatory disease. Here, we demonstrate that intraperitoneal (i.p.) administration of MDP triggered regulatory T cells and the accumulation of a population of tolerogenic CD103+ dendritic cells (DCs) in the spleen. This was found to occur not through direct sensing of MDP by DCs themselves, but rather via the production of the cytokine GM-CSF, another factor with an established regulatory role in Crohn's disease pathogenesis. Moreover, we demonstrate that populations of CD103-expressing DCs in the gut lamina propria are enhanced by the activation of NOD2, indicating that MDP sensing plays a critical role in shaping the immune response to intestinal antigens by promoting a tolerogenic environment via manipulation of DC populations.


Subject(s)
Antigens, CD/metabolism , Dendritic Cells/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Immune Tolerance , Integrin alpha Chains/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/genetics , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Animals , Crohn Disease , Cytokines , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Nod2 Signaling Adaptor Protein/genetics , T-Lymphocytes, Regulatory/metabolism
19.
Sci Rep ; 10(1): 5874, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246076

ABSTRACT

Complete Freund's adjuvant (CFA) has historically been one of the most useful tools of immunologists. Essentially comprised of dead mycobacteria and mineral oil, we asked ourselves what is special about the mycobacterial part of this adjuvant, and could it be recapitulated synthetically? Here, we demonstrate the essentiality of N-glycolylated peptidoglycan plus trehalose dimycolate (both unique in mycobacteria) for the complete adjuvant effect using knockouts and chemical complementation. A combination of synthetic N-glycolyl muramyl dipeptide and minimal trehalose dimycolate motif GlcC14C18 was able to upregulate dendritic cell effectors, plus induce experimental autoimmunity qualitatively similar but quantitatively milder compared to CFA. This research outlines how to substitute CFA with a consistent, molecularly-defined adjuvant which may inform the design of immunotherapeutic agents and vaccines benefitting from cell-mediated immunity. We also anticipate using synthetic microbe-associated molecular patterns (MAMPs) to study mycobacterial immunity and immunopathogenesis.


Subject(s)
Freund's Adjuvant/metabolism , Mycobacterium/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Animals , Dendritic Cells/metabolism , Female , Freund's Adjuvant/pharmacology , Immunity, Cellular/drug effects , Lectins, C-Type/metabolism , Lymph Nodes/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nod2 Signaling Adaptor Protein/metabolism , Peptidoglycan/metabolism
20.
ACS Chem Biol ; 14(3): 405-414, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30735346

ABSTRACT

The peptidoglycan fragments γ-d-glutamyl- meso-diaminopimelic acid (iE-DAP) and muramyl-dipeptide (MDP) are microbial-specific metabolites that activate intracellular pattern recognition receptors and stimulate immune signaling pathways. While extensive structure-activity studies have demonstrated that these bacterial cell wall metabolites trigger NOD1- and NOD2-dependent signaling, their direct binding to these innate immune receptors or other proteins in mammalian cells has not been established. To characterize these fundamental microbial metabolite-host interactions, we synthesized a series of peptidoglycan metabolite photoaffinity reporters and evaluated their cross-linking to NOD1 and NOD2 in mammalian cells. We show that active iE-DAP and MDP photoaffinity reporters selectively cross-linked NOD1 and NOD2, respectively, and not their inactive mutants. We also discovered MDP reporter cross-linking to Arf GTPases, which interacted most prominently with GTP-bound Arf6 and coimmunoprecipitated with NOD2 upon MDP stimulation. Notably, MDP binding to NOD2 and Arf6 was abrogated with loss-of-function NOD2 mutants associated with Crohn's disease. Our studies demonstrate peptidoglycan metabolite photoaffinity reporters can capture their cognate immune receptors in cells and reveal unpredicted ligand-induced interactions with other cellular cofactors. These photoaffinity reporters should afford useful tools to discover and characterize other peptidoglycan metabolite-interacting proteins.


Subject(s)
ADP-Ribosylation Factors/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Diaminopimelic Acid/analogs & derivatives , Peptidoglycan/metabolism , Receptors, Pattern Recognition/metabolism , Cell Wall/metabolism , Cytokines/metabolism , Diaminopimelic Acid/metabolism , HEK293 Cells , Humans , Ligands , Mutant Proteins/metabolism , Mutation , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Protein Binding , Signal Transduction , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL