Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 422
Filter
1.
Am J Physiol Cell Physiol ; 327(4): C869-C883, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39099426

ABSTRACT

The expansion of cancer cell mass in solid tumors generates a harsh environment characterized by dynamically varying levels of acidosis, hypoxia, and nutrient deprivation. Because acidosis inhibits glycolytic metabolism and hypoxia inhibits oxidative phosphorylation, cancer cells that survive and grow in these environments must rewire their metabolism and develop a high degree of metabolic plasticity to meet their energetic and biosynthetic demands. Cancer cells frequently upregulate pathways enabling the uptake and utilization of lipids and other nutrients derived from dead or recruited stromal cells, and in particular lipid uptake is strongly enhanced in acidic microenvironments. The resulting lipid accumulation and increased reliance on ß-oxidation and mitochondrial metabolism increase susceptibility to oxidative stress, lipotoxicity, and ferroptosis, in turn driving changes that may mitigate such risks. The spatially and temporally heterogeneous tumor microenvironment thus selects for invasive, metabolically flexible, and resilient cancer cells capable of exploiting their local conditions and of seeking out more favorable surroundings. This phenotype relies on the interplay between metabolism, acidosis, and oncogenic mutations, driving metabolic signaling pathways such as peroxisome proliferator-activated receptors (PPARs). Understanding the particular vulnerabilities of such cells may uncover novel therapeutic liabilities of the most aggressive cancer cells.


Subject(s)
Acidosis , Lipid Metabolism , Neoplasms , Oxidative Phosphorylation , Tumor Microenvironment , Humans , Acidosis/metabolism , Acidosis/pathology , Lipid Metabolism/physiology , Neoplasms/metabolism , Neoplasms/pathology , Animals , Mitochondria/metabolism , Mitochondria/pathology , Signal Transduction , Oxidative Stress
2.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L439-L451, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39104320

ABSTRACT

In pulmonary hypertension (PHTN), a metabolic shift to aerobic glycolysis promotes a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs). Enhanced glycolysis induces extracellular acidosis, which can activate proton-sensing membrane receptors and ion channels. We previously reported that activation of the proton-gated cation channel acid-sensing ion channel 1a (ASIC1a) contributes to the development of hypoxic PHTN. Therefore, we hypothesize that enhanced glycolysis and subsequent acidification of the PASMC extracellular microenvironment activate ASIC1a in hypoxic PHTN. We observed decreased oxygen consumption rate and increased extracellular acidification rate in PASMCs from chronic hypoxia (CH)-induced PHTN rats, indicating a shift to aerobic glycolysis. In addition, we found that intracellular alkalization and extracellular acidification occur in PASMCs following CH and in vitro hypoxia, which were prevented by the inhibition of glycolysis with 2-deoxy-d-glucose (2-DG). Inhibiting H+ transport/secretion through carbonic anhydrases, Na+/H+ exchanger 1, or vacuolar-type H+-ATPase did not prevent this pH shift following hypoxia. Although the putative monocarboxylate transporter 1 (MCT1) and -4 (MCT4) inhibitor syrosingopine prevented the pH shift, the specific MCT1 inhibitor AZD3965 and/or the MCT4 inhibitor VB124 were without effect, suggesting that syrosingopine targets the glycolytic pathway independent of H+ export. Furthermore, 2-DG and syrosingopine prevented enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMCs from CH rats. These data suggest that multiple H+ transport mechanisms contribute to extracellular acidosis and that inhibiting glycolysis-rather than specific H+ transporters-more effectively prevents extracellular acidification and ASIC1a activation. Together, these data reveal a novel pathological relationship between glycolysis and ASIC1a activation in hypoxic PHTN.NEW & NOTEWORTHY In pulmonary hypertension, a metabolic shift to aerobic glycolysis drives a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells. We demonstrate that this enhanced glycolysis induces extracellular acidosis and activates the proton-gated ion channel, acid-sensing ion channel 1a (ASIC1a). Although multiple H+ transport/secretion mechanisms are upregulated in PHTN and likely contribute to extracellular acidosis, inhibiting glycolysis with 2-deoxy-d-glucose or syrosingopine effectively prevents extracellular acidification and ASIC1a activation, revealing a promising therapeutic avenue.


Subject(s)
Acid Sensing Ion Channels , Glycolysis , Hypertension, Pulmonary , Hypoxia , Myocytes, Smooth Muscle , Pulmonary Artery , Animals , Acid Sensing Ion Channels/metabolism , Glycolysis/drug effects , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypoxia/metabolism , Rats , Male , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Sodium-Hydrogen Exchanger 1/metabolism , Hydrogen-Ion Concentration , Rats, Sprague-Dawley , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/antagonists & inhibitors , Acidosis/metabolism , Acidosis/pathology , Symporters
3.
Cell Rep ; 43(7): 114409, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38944837

ABSTRACT

Harsh environments in poorly perfused tumor regions may select for traits driving cancer aggressiveness. Here, we investigated whether tumor acidosis interacts with driver mutations to exacerbate cancer hallmarks. We adapted mouse organoids from normal pancreatic duct (mN10) and early pancreatic cancer (mP4, KRAS-G12D mutation, ± p53 knockout) from extracellular pH 7.4 to 6.7, representing acidic niches. Viability was increased by acid adaptation, a pattern most apparent in wild-type (WT) p53 organoids, and exacerbated upon return to pH 7.4. This led to increased survival of acid-adapted organoids treated with gemcitabine and/or erlotinib, and, in WT p53 organoids, acid-induced attenuation of drug effects. New genetic variants became dominant during adaptation, yet they were unlikely to be its main drivers. Transcriptional changes induced by acid and drug adaptation differed overall, but acid adaptation increased the expression of gemcitabine resistance genes. Thus, adaptation to acidosis increases cancer cell viability after chemotherapy.


Subject(s)
Deoxycytidine , Drug Resistance, Neoplasm , Gemcitabine , Organoids , Pancreatic Neoplasms , Tumor Microenvironment , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Animals , Organoids/drug effects , Organoids/metabolism , Organoids/pathology , Drug Resistance, Neoplasm/genetics , Mice , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Humans , Hydrogen-Ion Concentration , Acidosis/pathology , Acidosis/metabolism , Adaptation, Physiological/drug effects , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cell Survival/drug effects
4.
Neoplasia ; 52: 100999, 2024 06.
Article in English | MEDLINE | ID: mdl-38631214

ABSTRACT

In many tumors pronounced extracellular acidosis resulting from glycolytic metabolism is found. Since several environmental stress factors affect the mitochondrial activity the aim of the study was to analyze the impact of acidosis on cellular oxygen consumption and which signaling pathways may be involved in the regulation. In two tumor cell lines and normal fibroblasts cellular oxygen consumption rate (OCR) and mitochondrial function were measured after 3 h at pH 6.6. Besides the activation of ERK1/2, p38 and PI3K signaling in the cytosolic and mitochondrial compartment, the mitochondrial structure and proteins related to mitochondria fission were analyzed. The acidic extracellular environment increased OCR in tumor cells but not in fibroblasts. In parallel, the mitochondrial membrane potential increased at low pH. In both tumor lines (but not in fibroblasts), the phosphorylation of ERK1/2 and PI3K/Akt was significantly increased, and both cascades were involved in OCR modulation. The activation of signaling pathways was located predominantly in the mitochondrial compartment of the cells. At low pH, the mitochondrial structure in tumor cells showed structural changes related to elongation whereas mitochondria fragmentation was reduced indicating mitochondria fusion. However, these morphological changes were not related to ERK1/2 or PI3K signaling. Acidic stress seems to induce an increased oxygen consumption, which might further aggravate tumor hypoxia. Low pH also induces mitochondria fusion that is not mediated by ERK1/2 or PI3K signaling. The mechanism by which these signaling cascades modulate the respiratory activity of tumor cells needs further investigation.


Subject(s)
Acidosis , Fibroblasts , Mitochondria , Oxygen Consumption , Phosphatidylinositol 3-Kinases , Signal Transduction , Humans , Acidosis/metabolism , Acidosis/pathology , Mitochondria/metabolism , Fibroblasts/metabolism , Hydrogen-Ion Concentration , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Membrane Potential, Mitochondrial , Proto-Oncogene Proteins c-akt/metabolism , Phosphorylation , Neoplasms/metabolism , Neoplasms/pathology
5.
Cancer Sci ; 115(5): 1405-1416, 2024 May.
Article in English | MEDLINE | ID: mdl-38413363

ABSTRACT

Hypoxia is a common feature of solid tumors. However, the impact of hypoxia on immune cells within tumor environments remains underexplored. Carbonic anhydrase 9 (CA9) is a hypoxia-responsive tumor-associated enzyme. We previously noted that regardless of human CA9 (hCA9) expression, hCA9-expressing mouse renal cell carcinoma RENCA (RENCA/hCA9) presented as a "cold" tumor in syngeneic aged mice. This study delves into the mechanisms behind this observation. Gene microarray analyses showed that RENCA/hCA9 cells exhibited elevated mouse serpinB9, an inhibitor of granzyme B, relative to RENCA cells. Corroborating this, RENCA/hCA9 cells displayed heightened resistance to antigen-specific cytotoxic T cells compared with RENCA cells. Notably, siRNA-mediated serpinB9 knockdown reclaimed this sensitivity. In vivo tests showed that serpinB9 inhibitor administration slowed RENCA tumor growth, but this effect was reduced in RENCA/hCA9 tumors, even with adjunctive immune checkpoint blockade therapy. Further, inducing hypoxia or introducing the mouse CA9 gene upregulated serpinB9 expression, and siRNA-mediated knockdown of the mouse CA9 gene inhibited the hypoxia-induced induction of serpinB9 in the original RENCA cells. Supernatants from RENCA/hCA9 cultures had lower pH than those from RENCA, suggesting acidosis. This acidity enhanced serpinB9 expression and T cell apoptosis. Moreover, coculturing with RENCA/hCA9 cells more actively prompted T cell apoptosis than with RENCA cells. Collectively, these findings suggest hypoxia-associated CA9 not only boosts serpinB9 in cancer cells but also synergistically intensifies T cell apoptosis via acidosis, characterizing RENCA/hCA9 tumors as "cold."


Subject(s)
Acidosis , Apoptosis , Carbonic Anhydrase IX , Carcinoma, Renal Cell , Kidney Neoplasms , Serpins , Animals , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/genetics , Mice , Serpins/metabolism , Serpins/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/immunology , Cell Line, Tumor , Humans , Acidosis/metabolism , Acidosis/pathology , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
6.
Cir Cir ; 91(5): 627-632, 2023.
Article in English | MEDLINE | ID: mdl-37844888

ABSTRACT

OBJECTIVE: Acidosis is the most dangerous complication in subarachnoid hemorrhage (SAH). This study aimed to investigate the effect of acidic cerebrospinal fluid on central canal structures after SAH. MATERIALS AND METHODS: Twenty-eight hybrid rabbits were studied. Blood and cerebrospinal fluid pH values were recorded before/during/after the experimental procedures. The structures related to the central canals at the level of C5 of the cervical spinal cord were then examined histopathologically. The relationship between pH values of ependymal cells and degenerated epithelial cell densities was statistically analyzed. RESULTS: Mean blood pH values and degenerated ependymal cell density (n/mm2) were as follows: 7.351 ± 0.033/23 ± 7 in control, 7.322 ± 0.059/78 ± 13 in SHAM, and 7.261 ± 0.048/254 ± 62 in study animals. Gross examinations revealed swelling, edema, pia-arachnoid adhesions, ventral canal dilatation, arachnoiditis, central canal hemorrhage, occlusions, and dilatation in the spinal cord. CONCLUSION: Cerebrospinal fluid acidosis-induced central channel pathologies should be considered an important complication of SAH following SAH.


OBJETIVO: La acidosis es la complicación más peligrosa en la hemorragia subaracnoidea (HSA). El objetivo de este estudio fue investigar el efecto del líquido cefalorraquídeo ácido en las estructuras del canal central tras la HSA. MATERIALES Y MÉTODOS: Se estudiaron 28 conejos híbridos. Se registraron los valores de pH de la sangre y del líquido cefalorraquídeo antes, durante y después de los procedimientos experimentales. A continuación se examinaron histopatológicamente las estructuras relacionadas con los canales centrales a nivel de C5 de la médula espinal cervical. Se analizó estadísticamente la relación entre los valores de pH de las células ependimarias y las densidades de células epiteliales degeneradas. RESULTADOS: Los valores medios de pH en sangre y la densidad de células ependimarias degeneradas (n/mm2) fueron los siguientes: 7.351 ± 0.033/23 ± 7 en el control, 7.322 ± 0.059/78 ± 13 en el SHAM, 7.261 ± 0.048/254 ± 62 en los animales del estudio. Los exámenes macroscópicos revelaron hinchazón, edema, adherencias pia-aracnoideas, dilatación del canal ventral, aracnoiditis, hemorragia del canal central, oclusiones y dilatación en la médula espinal. CONCLUSIONES: Las patologías del canal central inducidas por la acidosis del líquido cefalorraquídeo deben considerarse como una complicación importante de la HSA tras una hemorragia subaracnoidea.


Subject(s)
Acidosis , Subarachnoid Hemorrhage , Animals , Rabbits , Subarachnoid Hemorrhage/complications , Spinal Cord , Acidosis/complications , Acidosis/pathology
7.
Methods Mol Biol ; 2614: 287-311, 2023.
Article in English | MEDLINE | ID: mdl-36587132

ABSTRACT

Magnetic resonance imaging (MRI) is a noninvasive imaging technique that allows for physiological and functional studies of the tumor microenvironment. Within MRI, the emerging field of chemical exchange saturation transfer (CEST) has been largely exploited for assessing a salient feature of all solid tumors, extracellular acidosis. Iopamidol-based tumor pH imaging has been demonstrated to provide accurate and high spatial resolution extracellular tumor pH maps to elucidate tumor aggressiveness and for assessing response to therapy, with a high potential for clinical translation. Here, we describe the overall setup and steps for measuring tumor extracellular pH of tumor models in mice by exploiting MRI-CEST pH imaging with a preclinical MRI scanner following the administration of iopamidol. We address issues of pH calibration curve setup, animal handling, pH-responsive contrast agent injection, acquisition protocol, and image processing for accurate quantification and visualization of tumor acidosis.


Subject(s)
Acidosis , Neoplasms , Mice , Animals , Iopamidol , Hydrogen-Ion Concentration , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/pathology , Contrast Media , Acidosis/pathology , Tumor Microenvironment
8.
Int Immunopharmacol ; 113(Pt A): 109328, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36279671

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia and progressive joint destruction in the middle and late stages. Notably, activated rheumatoid arthritis synovial fibroblasts (RASFs) exhibit tumor-like features, including an increased proliferation rate that largely contributes to pannus formation and joint destruction. Our previous studies have demonstrated that acid-sensing ion channel 1a (ASIC1a) was highly expressed in RASFs, and acidic microenvironment of synovial fluid in patients with RA can activate ASIC1a to promote synovial inflammation, leading to the progression of RA. However, the role and possible mechanism of ASIC1a in RASF proliferation remains unclear. The present study aimed to investigate the effect of ASIC1a activation upon acidosis on RASF proliferation and its molecular mechanism in vivo and in vitro. The results of in vitro experiments showed that activation of ASIC1a upon acidosis promoted the proliferation of RASFs, which could be attenuated by the specific ASIC1a inhibitor Psalmotoxin-1 (PcTx-1) or specific siRNA for ASIC1a. Mechanistically, Wnt/ß-catenin/c-Myc signaling pathway was involved in ASIC1a-induced RASF proliferation. The results of in vivo experiments indicated that intra-articular injection of PcTx-1 reduced synovial hyperplasia and ameliorated cartilage degradation in rats with adjuvant arthritis (AA). Collectively, these results suggest that activation of ASIC1a upon acidosis promotes RASF proliferation, and the mechanism may be related to Wnt/ß-catenin/c-Myc pathway.


Subject(s)
Acid Sensing Ion Channels , Acidosis , Arthritis, Rheumatoid , Animals , Rats , Acid Sensing Ion Channels/genetics , Acid Sensing Ion Channels/metabolism , Acidosis/metabolism , Acidosis/pathology , Arthritis, Rheumatoid/genetics , beta Catenin/metabolism , Catenins/metabolism , Catenins/pharmacology , Cell Proliferation , Cells, Cultured , Fibroblasts , Hyperplasia/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Synovial Membrane/pathology , Wnt Signaling Pathway
9.
Lab Invest ; 102(8): 859-871, 2022 08.
Article in English | MEDLINE | ID: mdl-35292759

ABSTRACT

Nesfatin-1, a newly identified energy-regulating peptide, has been reported to possess antioxidant, anti-inflammatory, and antiapoptotic properties; however, to date, its effect on rheumatoid arthritis (RA) has not been previously explored in detail. We previously showed that activation of acid-sensing ion channel 1a (ASIC1a) by acidosis plays an important role in RA pathogenesis. Therefore, in this study, we evaluated the effects of nesfatin-1 on acidosis-stimulated chondrocyte injury in vitro and in vivo and examined the involvement of ASIC1a and the mechanism underlying the effects of nesfatin-1 on RA. Acid-stimulated articular chondrocytes were used to examine one of the several possible mechanisms underlying RA pathogenesis in vitro. The mRNA expression profile of acid-induced chondrocytes treated or not treated with nesfatin-1 was investigated by RNA sequencing. The effects of nesfatin-1 on oxidative stress, inflammation, and apoptosis in acid-induced chondrocytes were measured. The mechanistic effect of nesfatin-1 on ASIC1a expression and intracellular Ca2+ in acid-stimulated chondrocytes was studied. Rats with adjuvant-induced arthritis (AA) were used for in vivo analysis of RA pathophysiology. Cartilage degradation and ASIC1a expression in chondrocytes were detected in rats with AA after intraarticular nesfatin-1 injection. The in vitro experiments showed that nesfatin-1 decreased acidosis-induced cytotoxicity and elevation of intracellular Ca2+ levels in chondrocytes. Moreover, it attenuated acid-induced oxidative stress, inflammation, and apoptosis in chondrocytes. Nesfatin-1 decreased ASIC1a protein levels in acid-stimulated chondrocytes via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and nuclear factor kappa-B (NF-κB) signaling pathways. In vivo analysis showed that nesfatin-1 ameliorated cartilage degradation and decreased ASIC1a expression in the chondrocytes of rats with AA. Collectively, nesfatin-1 suppressed acidosis-induced oxidative stress, inflammation, and apoptosis in acid-stimulated chondrocytes and alleviated arthritis symptoms in rats with AA, and its mechanism may be related to its ability to decrease ASIC1a protein levels via the MAPK/ERK and NF-κB pathways.


Subject(s)
Acid Sensing Ion Channels , Acidosis , Arthritis, Experimental , Cartilage, Articular , Nucleobindins , Acid Sensing Ion Channels/metabolism , Acidosis/metabolism , Acidosis/pathology , Animals , Arthritis, Experimental/metabolism , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Nucleobindins/metabolism , Rats , Rats, Sprague-Dawley
10.
Biosci Trends ; 16(1): 58-72, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-34732613

ABSTRACT

Due to continuous bone remodeling, the bone tissue is dynamic and constantly being updated. Bone remodeling is precisely regulated by the balance between osteoblast-induced bone formation and osteoclast-induced bone resorption. As a giant multinucleated cell, formation and activities of osteoclasts are regulated by macrophage colony-stimulating factor (M-CSF), receptor activator of nuclear factor-kappaB ligand (RANKL), and by pathological destabilization of the extracellular microenvironment. Microenvironmental acidosis, as the prime candidate, is a driving force of multiple biological activities of osteoclast precursor and osteoclasts. The mechanisms involved in these processes, especially acid-sensitive receptors/channels, are of great precision and complicated. Recently, remarkable progress has been achieved in the field of acid-sensitive mechanisms of osteoclasts. It is important to elucidate the relationship between microenvironmental acidosis and excessive osteoclasts activity, which will help in understanding the pathophysiology of diseases that are associated with excess bone resorption. This review summarizes physiological consequences and in particular, potential mechanisms of osteoclast precursor or osteoclasts in the context of acidosis microenvironments.


Subject(s)
Acidosis , Bone Resorption , Acidosis/pathology , Biology , Bone Resorption/pathology , Cell Differentiation , Humans , Osteoblasts , Osteoclasts , RANK Ligand/pharmacology
11.
Oxid Med Cell Longev ; 2021: 9932311, 2021.
Article in English | MEDLINE | ID: mdl-34413930

ABSTRACT

Despite remarkable scientific advances in the understanding of molecular mechanisms for sepsis, therapeutic options are far from satisfactory. High mobility group box 1 (HMGB1), one of the ligands of receptor for advanced glycation end products (RAGE), is a late mediator of lethality in septic mice. We have recently found that the DNA-aptamer raised against RAGE (RAGE-aptamer) significantly blocks experimental diabetic nephropathy and melanoma growth and metastasis. We examined the effects of RAGE-aptamer on sepsis score, survival rate, and inflammatory and oxidative stress responses in serum, peripheral monocytes, kidneys and livers of lipopolysaccharide- (LPS-) injected mice, and on LPS-exposed THP-1 cells. RAGE-aptamer inhibited the binding of HMGB1 to RAGE in vitro. RAGE-aptamer significantly (P = 0.002) improved sepsis score at 8 hours after LPS injection and survival rate at 24 hours (P < 0.01, 70%) in septic mice compared with LPS+vehicle- or LPS+control-aptamer-treated mice. RAGE-aptamer treatment significantly decreased expression of p-NF-κB p65, an active form of redox-sensitive transcriptional factor, NF-κB and gene or protein expression of TNF-α, IL-1ß, IL-6, and HMGB1 in serum, peripheral monocytes, and kidneys of septic mice in association with the reduction of oxidative stress and improvement of metabolic acidosis, renal and liver damage. LPS-induced oxidative stress, inflammatory reactions, and growth suppression in THP-1 cells were significantly blocked by RAGE-aptamer. Our present study suggests that RAGE-aptamer could attenuate multiple organ damage in LPS-injected septic mice partly by inhibiting the inflammatory reactions via suppression of HMGB1-RAGE interaction.


Subject(s)
Aptamers, Nucleotide/pharmacology , Glycation End Products, Advanced/genetics , Oxidative Stress , Sepsis/drug therapy , Acidosis/metabolism , Acidosis/pathology , Acidosis/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/prevention & control , Animals , Aptamers, Nucleotide/chemistry , Glycation End Products, Advanced/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Lipopolysaccharides/toxicity , Liver Failure, Acute/metabolism , Liver Failure, Acute/pathology , Liver Failure, Acute/prevention & control , Male , Mice , Mice, Inbred BALB C , NF-kappa B/genetics , NF-kappa B/metabolism , Sepsis/chemically induced , Sepsis/genetics , Sepsis/metabolism , Survival Rate
12.
Cells ; 10(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-34359883

ABSTRACT

While sudden loss of perfusion is responsible for ischemia, failure to supply the required amount of oxygen to the tissues is defined as hypoxia. Among several pathological conditions that can impair brain perfusion and oxygenation, cardiocirculatory arrest is characterized by a complete loss of perfusion to the brain, determining a whole brain ischemic-anoxic injury. Differently from other threatening situations of reduced cerebral perfusion, i.e., caused by increased intracranial pressure or circulatory shock, resuscitated patients after a cardiac arrest experience a sudden restoration of cerebral blood flow and are exposed to a massive reperfusion injury, which could significantly alter cellular metabolism. Current evidence suggests that cell populations in the central nervous system might use alternative metabolic pathways to glucose and that neurons may rely on a lactate-centered metabolism. Indeed, lactate does not require adenosine triphosphate (ATP) to be oxidated and it could therefore serve as an alternative substrate in condition of depleted energy reserves, i.e., reperfusion injury, even in presence of adequate tissue oxygen delivery. Lactate enriched solutions were studied in recent years in healthy subjects, acute heart failure, and severe traumatic brain injured patients, showing possible benefits that extend beyond the role as alternative energetic substrates. In this manuscript, we addressed some key aspects of the cellular metabolic derangements occurring after cerebral ischemia-reperfusion injury and examined the possible rationale for the administration of lactate enriched solutions in resuscitated patients after cardiac arrest.


Subject(s)
Acidosis/prevention & control , Brain Injuries, Traumatic/prevention & control , Heart Arrest/complications , Hypoxia-Ischemia, Brain/prevention & control , Lactic Acid/therapeutic use , Neuroprotective Agents/therapeutic use , Reperfusion Injury/prevention & control , Acidosis/etiology , Acidosis/pathology , Animals , Brain Injuries, Traumatic/etiology , Brain Injuries, Traumatic/pathology , Cell Death/drug effects , Cerebrovascular Circulation/drug effects , Energy Metabolism/drug effects , Heart Arrest/pathology , Heart Arrest/therapy , Humans , Hypertonic Solutions , Hypoxia-Ischemia, Brain/etiology , Hypoxia-Ischemia, Brain/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Oxidative Stress/drug effects , Reperfusion Injury/etiology , Reperfusion Injury/pathology , Resuscitation/methods
13.
Cells ; 10(5)2021 05 13.
Article in English | MEDLINE | ID: mdl-34067971

ABSTRACT

Many invasive cancers emerge through a years-long process of somatic evolution, characterized by an accumulation of heritable genetic and epigenetic changes and the emergence of increasingly aggressive clonal populations. In solid tumors, such as breast ductal carcinoma, the extracellular environment for cells within the nascent tumor is harsh and imposes different types of stress on cells, such as hypoxia, nutrient deprivation, and cytokine inflammation. Acidosis is a constant stressor of most cancer cells due to its production through fermentation of glucose to lactic acid in hypoxic or normoxic regions (Warburg effect). Over a short period of time, acid stress can have a profound effect on the function of lysosomes within the cells exposed to this environment, and after long term exposure, lysosomal function of the cancer cells can become completely dysregulated. Whether this dysregulation is due to an epigenetic change or evolutionary selection has yet to be determined, but understanding the mechanisms behind this dysregulation could identify therapeutic opportunities.


Subject(s)
Acidosis/metabolism , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Lysosomes/metabolism , Tumor Microenvironment , Acidosis/drug therapy , Acidosis/genetics , Acidosis/pathology , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/drug therapy , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Energy Metabolism , Female , Humans , Hydrogen-Ion Concentration , Lysosomes/drug effects , Lysosomes/pathology , Molecular Targeted Therapy , Warburg Effect, Oncologic
14.
Article in English | MEDLINE | ID: mdl-34117073

ABSTRACT

Variants in the X-linked gene AIFM1 (apoptosis-inducing factor mitochondria-associated 1) are associated with a highly variable clinical presentation that encompasses motor neuropathy, ataxia, encephalopathies, deafness, and cognitive impairment. AIFM1 encodes a mitochondrial flavin adenine dinucleotide (FAD)-dependent nicotinamide adenine dinucleotide (NADH) oxidoreductase, with roles in the regulation of respiratory complex assembly and function, production of reactive oxygen species, and the coordination of a caspase-independent type of apoptosis known as parthanatos. In this report, we describe a missense AIFM1 variant (absent in reference population databases; c.506C > T, p.Pro169Leu) identified in the proband and sibling of a family with three affected males. The proband, his brother, and their maternal uncle all exhibited severe multisystem pathology, metabolic acidosis, and early demise. Metabolic testing on the proband revealed normal activity of the pyruvate dehydrogenase complex in skin fibroblasts. Absent or partial deficiency of cytochrome c oxidase was found in muscle fibers, however, supporting a Complex IV mitochondrial deficiency. Functional studies carried out on fibroblasts from the proband demonstrated reduced steady state levels of the AIFM1 protein, decreased Complex I subunit abundance, elevated sensitivity to the apoptosis inducer staurosporine, and increased nuclear condensation when grown in galactose-containing media. The reduced abundance of AIFM1 in the patient cells could not be stabilized with riboflavin or protease inhibitor treatment. Together, these findings suggest that the normal function of the AIFM1 gene product within mitochondria, and its response to apoptotic stimuli, are impaired by this variant, likely accounting for the severity of the phenotype seen in these patients. These findings also imply tissue-specific effects of this variant on different mitochondrial complexes. This study expands the genetic and phenotypic spectrum associated with AIFM1 variants, with the combination of exome sequencing and functional studies allowing a diagnosis to finally be confirmed for this family.


Subject(s)
Acidosis/genetics , Acidosis/pathology , Apoptosis Inducing Factor/genetics , Genes, X-Linked/genetics , Mitochondria/genetics , Mitochondria/metabolism , Acidosis/metabolism , Adolescent , Adult , Apoptosis , Ataxia/genetics , Cerebellar Ataxia/genetics , Child , Female , Humans , Male , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Myopathies/genetics , Mutation, Missense , Pedigree , Phenotype
15.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972436

ABSTRACT

Metabolic changes associated with tissue inflammation result in significant extracellular acidosis (EA). Within mucosal tissues, intestinal epithelial cells (IEC) have evolved adaptive strategies to cope with EA through the up-regulation of SLC26A3 to promote pH homeostasis. We hypothesized that EA significantly alters IEC gene expression as an adaptive mechanism to counteract inflammation. Using an unbiased RNA sequencing approach, we defined the impact of EA on IEC gene expression to define molecular mechanisms by which IEC respond to EA. This approach identified a unique gene signature enriched in cyclic AMP response element-binding protein (CREB)-regulated gene targets. Utilizing loss- and gain-of-function approaches in cultured epithelia and murine colonoids, we demonstrate that EA elicits prominent CREB phosphorylation through cyclic AMP-independent mechanisms that requires elements of the mitogen-activated protein kinase signaling pathway. Further analysis revealed that EA signals through the G protein-coupled receptor GPR31 to promote induction of FosB, NR4A1, and DUSP1. These studies were extended to an in vivo murine model in conjunction with colonization of a pH reporter Escherichia coli strain that demonstrated significant mucosal acidification in the TNFΔARE model of murine ileitis. Herein, we observed a strong correlation between the expression of acidosis-associated genes with bacterial reporter sfGFP intensity in the distal ileum. Finally, the expression of this unique EA-associated gene signature was increased during active inflammation in patients with Crohn's disease but not in the patient control samples. These findings establish a mechanism for EA-induced signals during inflammation-associated acidosis in both murine and human ileitis.


Subject(s)
Acidosis/genetics , Antiporters/genetics , Crohn Disease/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Ileitis/genetics , Receptors, G-Protein-Coupled/genetics , Sulfate Transporters/genetics , Acidosis/metabolism , Acidosis/pathology , Animals , Antiporters/metabolism , Crohn Disease/metabolism , Crohn Disease/pathology , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Dual Specificity Phosphatase 1/genetics , Dual Specificity Phosphatase 1/metabolism , Gene Expression Regulation , Humans , Ileitis/metabolism , Ileitis/pathology , Ileum/metabolism , Ileum/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Organoids/metabolism , Organoids/pathology , Phosphorylation , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Receptors, G-Protein-Coupled/metabolism , Sequence Analysis, RNA , Signal Transduction , Sulfate Transporters/metabolism
16.
Eur J Hum Genet ; 29(10): 1566-1569, 2021 10.
Article in English | MEDLINE | ID: mdl-33840812

ABSTRACT

KCNJ16 encodes Kir5.1 and acts in combination with Kir4.1, encoded by KCNJ10, to form an inwardly rectifying K+ channel expressed at the basolateral membrane of epithelial cells in the distal nephron. This Kir4.1/Kir5.1 channel is critical for controlling basolateral membrane potential and K+ recycling, the latter coupled to Na-K-ATPase activity, which determines renal Na+ handling. Previous work has shown that Kcnj16-/- mice and SSKcnj16-/- rats demonstrate hypokalemic, hyperchloremic metabolic acidosis. Here, we present the first report of a patient identified to have biallelic loss-of-function variants in KCNJ16 by whole exome sequencing who presented with chronic metabolic acidosis with exacerbations triggered by minor infections.


Subject(s)
Acidosis/genetics , Hypokalemia/genetics , Loss of Function Mutation , Potassium Channels, Inwardly Rectifying/genetics , Acidosis/pathology , Alleles , Child, Preschool , Female , Humans , Hypokalemia/pathology
17.
Cell Death Dis ; 12(3): 277, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723244

ABSTRACT

Glioma stem cells (GSCs) contribute to therapy resistance and poor outcomes for glioma patients. A significant feature of GSCs is their ability to grow in an acidic microenvironment. However, the mechanism underlying the rewiring of their metabolism in low pH remains elusive. Here, using metabolomics and metabolic flux approaches, we cultured GSCs at pH 6.8 and pH 7.4 and found that cells cultured in low pH exhibited increased de novo purine nucleotide biosynthesis activity. The overexpression of glucose-6-phosphate dehydrogenase, encoded by G6PD or H6PD, supports the metabolic dependency of GSCs on nucleotides when cultured under acidic conditions, by enhancing the pentose phosphate pathway (PPP). The high level of reduced glutathione (GSH) under acidic conditions also causes demand for the PPP to provide NADPH. Taken together, upregulation of G6PD/H6PD in the PPP plays an important role in acidic-driven purine metabolic reprogramming and confers a predilection toward glioma progression. Our findings indicate that targeting G6PD/H6PD, which are closely related to glioma patient survival, may serve as a promising therapeutic target for improved glioblastoma therapeutics. An integrated metabolomics and metabolic flux analysis, as well as considering microenvironment and cancer stem cells, provide a precise insight into understanding cancer metabolic reprogramming.


Subject(s)
Acidosis/metabolism , Brain Neoplasms/metabolism , Energy Metabolism , Glioma/metabolism , Neoplastic Stem Cells/metabolism , Purines/metabolism , Acidosis/genetics , Acidosis/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Carbohydrate Dehydrogenases/genetics , Carbohydrate Dehydrogenases/metabolism , Cell Line, Tumor , Glioma/genetics , Glioma/pathology , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , Humans , Hydrogen-Ion Concentration , Metabolomics , Neoplastic Stem Cells/pathology , Tumor Microenvironment
18.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658363

ABSTRACT

Blood pH is tightly maintained between 7.35 and 7.45, and acidosis (pH <7.3) indicates poor prognosis in sepsis, wherein lactic acid from anoxic tissues overwhelms the buffering capacity of blood. Poor sepsis prognosis is also associated with low zinc levels and the release of High mobility group box 1 (HMGB1) from activated and/or necrotic cells. HMGB1 added to whole blood at physiological pH did not bind leukocyte receptors, but lowering pH with lactic acid to mimic sepsis conditions allowed binding, implying the presence of natural inhibitor(s) preventing binding at normal pH. Testing micromolar concentrations of divalent cations showed that zinc supported the robust binding of sialylated glycoproteins with HMGB1. Further characterizing HMGB1 as a sialic acid-binding lectin, we found that optimal binding takes place at normal blood pH and is markedly reduced when pH is adjusted with lactic acid to levels found in sepsis. Glycan array studies confirmed the binding of HMGB1 to sialylated glycan sequences typically found on plasma glycoproteins, with binding again being dependent on zinc and normal blood pH. Thus, HMGB1-mediated hyperactivation of innate immunity in sepsis requires acidosis, and micromolar zinc concentrations are protective. We suggest that the potent inflammatory effects of HMGB1 are kept in check via sequestration by plasma sialoglycoproteins at physiological pH and triggered when pH and zinc levels fall in late stages of sepsis. Current clinical trials independently studying zinc supplementation, HMGB1 inhibition, or pH normalization may be more successful if these approaches are combined and perhaps supplemented by infusions of heavily sialylated molecules.


Subject(s)
Acidosis/blood , HMGB1 Protein/blood , Sepsis/blood , Sialoglycoproteins/blood , Zinc/blood , Acidosis/immunology , Acidosis/metabolism , Acidosis/pathology , Carrier Proteins , HMGB1 Protein/pharmacology , Humans , Hydrogen-Ion Concentration , Immunity, Innate , Lipopolysaccharides/pharmacology , Polysaccharides/chemistry , Sepsis/immunology , Sepsis/pathology , Sialic Acids/chemistry , Sialoglycoproteins/chemistry , Zinc/metabolism
19.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Article in English | MEDLINE | ID: mdl-33602819

ABSTRACT

Acid-sensing ion channels (ASICs) are expressed in the nervous system, activated by acidosis, and implicated in pain pathways. Mambalgins are peptide inhibitors of ASIC1 and analgesic in rodents via inhibition of centrally expressed ASIC1a and peripheral ASIC1b. This activity has generated interest in mambalgins as potential therapeutics. However, most mechanism and structure-activity relationship work on mambalgins has focused on ASIC1a, and neglected the peripheral analgesic target ASIC1b. Here, we compare mambalgin potency and mechanism of action at heterologously expressed rat and human ASIC1 variants. Unlike the nanomolar inhibition at ASIC1a and rodent ASIC1b, we find mambalgin-3 only weakly inhibits human ASIC1b and ASIC1b/3 under severe acidosis, but potentiates currents under mild/moderate acidosis. Our data highlight the importance of understanding the activity of potential ASIC-targeting pharmaceuticals at human channels.


Subject(s)
Acid Sensing Ion Channels/chemistry , Acidosis/pathology , Analgesics/pharmacology , Oocytes/drug effects , Peptide Fragments/pharmacology , Snake Venoms/pharmacology , Acid Sensing Ion Channels/metabolism , Acidosis/chemically induced , Acidosis/metabolism , Animals , Humans , Oocytes/metabolism , Rats , Xenopus laevis
20.
Med Sci Law ; 61(3): 215-226, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33629624

ABSTRACT

Deaths occurring among agitated or violent individuals subjected to physical restraint have been attributed to positional asphyxia. Restraint in the prone position has been shown to alter respiratory and cardiac physiology, although this is thought not to be to the degree that would cause asphyxia in a healthy, adult individual. This comprehensive review identifies and summarizes the current scientific literature on prone position and restraint, including experiments that assess physiology on individuals restrained in a prone position. Some of these experimental approaches have attempted to replicate situations in which prone restraint would be used. Overall, most findings revealed that individuals subjected to physical prone restraint experienced a decrease in ventilation and/or cardiac output (CO) in prone restraint. Metabolic acidosis is noted with increased physical activity, in restraint-associated cardiac arrest and simulated encounters. A decrease in ventilation and CO can significantly worsen acidosis and hemodynamics. Given these findings, deaths associated with prone physical restraint are not the direct result of asphyxia but are due to cardiac arrest secondary to metabolic acidosis compounded by inadequate ventilation and reduced CO. As such, the cause of death in these circumstances would be more aptly referred to as "prone restraint cardiac arrest" as opposed to "restraint asphyxia" or "positional asphyxia."


Subject(s)
Acidosis/pathology , Death, Sudden/etiology , Heart Arrest/pathology , Prone Position/physiology , Respiratory Physiological Phenomena , Restraint, Physical/adverse effects , Cardiac Output , Cause of Death , Humans
SELECTION OF CITATIONS
SEARCH DETAIL