Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.560
Filter
1.
Int J Oral Sci ; 16(1): 53, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085196

ABSTRACT

Periodontitis is a critical risk factor for the occurrence and development of diabetes. Porphyromonas gingivalis may participate in insulin resistance (IR) caused by periodontal inflammation, but the functional role and specific mechanisms of P. gingivalis in IR remain unclear. In the present study, clinical samples were analysed to determine the statistical correlation between P. gingivalis and IR occurrence. Through culturing of hepatocytes, myocytes, and adipocytes, and feeding mice P. gingivalis orally, the functional correlation between P. gingivalis and IR occurrence was further studied both in vitro and in vivo. Clinical data suggested that the amount of P. gingivalis isolated was correlated with the Homeostatic Model Assessment for IR score. In vitro studies suggested that coculture with P. gingivalis decreased glucose uptake and insulin receptor (INSR) protein expression in hepatocytes, myocytes, and adipocytes. Mice fed P. gingivalis tended to undergo IR. P. gingivalis was detectable in the liver, skeletal muscle, and adipose tissue of experimental mice. The distribution sites of gingipain coincided with the downregulation of INSR. Gingipain proteolysed the functional insulin-binding region of INSR. Coculture with P. gingivalis significantly decreased the INSR-insulin binding ability. Knocking out gingipain from P. gingivalis alleviated the negative effects of P. gingivalis on IR in vivo. Taken together, these findings indicate that distantly migrated P. gingivalis may directly proteolytically degrade INSR through gingipain, thereby leading to IR. The results provide a new strategy for preventing diabetes by targeting periodontal pathogens and provide new ideas for exploring novel mechanisms by which periodontal inflammation affects the systemic metabolic state.


Subject(s)
Gingipain Cysteine Endopeptidases , Insulin Resistance , Porphyromonas gingivalis , Receptor, Insulin , Porphyromonas gingivalis/metabolism , Receptor, Insulin/metabolism , Animals , Mice , Gingipain Cysteine Endopeptidases/metabolism , Humans , Male , Adhesins, Bacterial/metabolism , Cysteine Endopeptidases/metabolism , Proteolysis , Female , Adipocytes/metabolism , Periodontitis/microbiology , Coculture Techniques
2.
Microb Pathog ; 193: 106752, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880315

ABSTRACT

Arcobacter butzleri is a foodborne pathogen that mainly causes enteritis in humans, but the number of cases of bacteraemia has increased in recent years. However, there is still limited knowledge on the pathogenic mechanisms of this bacterium. To investigate how A. butzleri causes disease, single knockout mutants were constructed in the cadF, ABU_RS00335, ciaB, and flaAB genes, which might be involved in adhesion and invasion properties. These mutants and the isogenic wild-type (WT) were then tested for their ability to adhere and invade human Caco-2 and HT29-MTX cells. The adhesion and invasion of A. butzleri RM4018 strain was also visualized by a Leica CTR 6500 confocal microscope. The adhesion and invasion abilities of mutants lacking the invasion antigen CiaB or a functional flagellum were lower than those of the WTs. However, the extent of the decrease varied depending on the strain and/or cell line. Mutants lacking the fibronectin (FN)-binding protein CadF consistently exhibited reduced abilities, while the inactivation of the other studied FN-binding protein, ABU_RS00335, led to a reduction in only one of the two strains tested. Therefore, the ciaB and flaAB genes appear to be important for A. butzleri adhesion and invasion properties, while cadF appears to be indispensable.


Subject(s)
Adhesins, Bacterial , Arcobacter , Bacterial Adhesion , Flagella , Bacterial Adhesion/genetics , Humans , Arcobacter/genetics , Caco-2 Cells , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Flagella/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Knockout Techniques , HT29 Cells , Fibronectins/metabolism , Fibronectins/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Genes, Bacterial/genetics , Epithelial Cells/microbiology , Virulence/genetics
3.
Microb Pathog ; 193: 106754, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897361

ABSTRACT

B. parapertussis is a bacterium that causes whooping cough, a severe respiratory infection disease, that has shown an increased incidence in the population. Upon transmission through aerosol droplets, the initial steps of host colonization critically depend on the bacterial adhesins. We here described BPP0974, a B. parapertussis protein that exhibits the typical domain architecture of the large repetitive RTX adhesin family. BPP0974 was found to be retained in the bacterial membrane and secreted into the culture medium. This protein was found overexpressed in the avirulent phase of B. parapertussis, the phenotype proposed for initial host colonization. Interestingly, BPP0974 was found relevant for the biofilm formation as well as involved in the bacterial attachment to and survival within the respiratory epithelial cells. Taken together, our results suggest a role for BPP0974 in the early host colonization and pathogenesis of B. parapertussis.


Subject(s)
Adhesins, Bacterial , Bacterial Adhesion , Biofilms , Bordetella parapertussis , Epithelial Cells , Biofilms/growth & development , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Bordetella parapertussis/genetics , Bordetella parapertussis/metabolism , Humans , Epithelial Cells/microbiology , Microbial Viability , Whooping Cough/microbiology , Gene Expression Regulation, Bacterial , Cell Line
4.
BMC Microbiol ; 24(1): 221, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909237

ABSTRACT

BACKGROUND: Group B Streptococcus (GBS) is a commensal of healthy adults and an important pathogen in newborns, the elderly and immunocompromised individuals. GBS displays several virulence factors that promote colonisation and host infection, including the ST-17 strain-specific adhesin Srr2, previously characterised for its binding to fibrinogen. Another common target for bacterial adhesins and for host colonization is fibronectin, a multi-domain glycoprotein found ubiquitously in body fluids, in the extracellular matrix and on the surface of cells. RESULTS: In this study, fibronectin was identified as a novel ligand for the Srr2 adhesin of GBS. A derivative of the ST-17 strain BM110 overexpressing the srr2 gene showed an increased ability to bind fibrinogen and fibronectin, compared to the isogenic wild-type strain. Conversely, the deletion of srr2 impaired bacterial adhesion to both ligands. ELISA assays and surface plasmon resonance studies using the recombinant binding region (BR) form of Srr2 confirmed a direct interaction with fibronectin with an estimated Kd of 92 nM. Srr2-BR variants defective in fibrinogen binding also exhibited no interaction with fibronectin, suggesting that Srr2 binds this ligand through the dock-lock-latch mechanism, previously described for fibrinogen binding. The fibronectin site responsible for recombinant Srr2-BR binding was identified and localised in the central cell-binding domain of the protein. Finally, in the presence of fibronectin, the ability of a Δsrr2 mutant to adhere to human cervico-vaginal epithelial cells was significantly lower than that of the wild-type strain. CONCLUSION: By combining genetic and biochemical approaches, we demonstrate a new role for Srr2, namely interacting with fibronectin. We characterised the molecular mechanism of this interaction and demonstrated that it plays a role in promoting the adhesion of GBS to human cervico-vaginal epithelial cells, further substantiating the role of Srr2 as a factor responsible for the hypervirulence of GBS ST-17 strains. The discovery of the previously undescribed interaction between Srr2 and fibronectin establishes this adhesin as a key factor for GBS colonisation of host tissues.


Subject(s)
Adhesins, Bacterial , Bacterial Adhesion , Fibronectins , Protein Binding , Streptococcus agalactiae , Streptococcus agalactiae/genetics , Streptococcus agalactiae/metabolism , Streptococcus agalactiae/pathogenicity , Fibronectins/metabolism , Humans , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/genetics , Fibrinogen/metabolism , Fibrinogen/genetics , Epithelial Cells/microbiology , Female , Streptococcal Infections/microbiology , Virulence Factors/metabolism , Virulence Factors/genetics
5.
Protein Sci ; 33(7): e5030, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864696

ABSTRACT

Bacterial adhesins are cell-surface proteins that anchor to the cell wall of the host. The first stage of infection involves the specific attachment to fibrinogen (Fg), a protein found in human blood. This attachment allows bacteria to colonize tissues causing diseases such as endocarditis. The study of this family of proteins is hence essential to develop new strategies to fight bacterial infections. In the case of the Gram-positive bacterium Staphylococcus aureus, there exists a class of adhesins known as microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). Here, we focus on one of them, the clumping factor A (ClfA), which has been found to bind Fg through the dock-lock-latch mechanism. Interestingly, it has recently been discovered that MSCRAMM proteins employ a catch-bond to withstand forces exceeding 2 nN, making this type of interaction as mechanically strong as a covalent bond. However, it is not known whether this strength is an evolved feature characteristic of the bacterial protein or is typical only of the interaction with its partner. Here, we combine single-molecule force spectroscopy, biophysical binding assays, and molecular simulations to study the intrinsic mechanical strength of ClfA. We find that despite the extremely high forces required to break its interactions with Fg, ClfA is not by itself particularly strong. Integrating the results from both theory and experiments we dissect contributions to the mechanical stability of this protein.


Subject(s)
Coagulase , Fibrinogen , Staphylococcus aureus , Staphylococcus aureus/metabolism , Staphylococcus aureus/chemistry , Coagulase/metabolism , Coagulase/chemistry , Fibrinogen/chemistry , Fibrinogen/metabolism , Protein Binding , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/chemistry , Humans , Protein Stability
6.
Infect Immun ; 92(6): e0054023, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38727242

ABSTRACT

Anaplasma marginale is an obligate, intracellular, tick-borne bacterial pathogen that causes bovine anaplasmosis, an often severe, production-limiting disease of cattle found worldwide. Methods to control this disease are lacking, in large part due to major knowledge gaps in our understanding of the molecular underpinnings of basic host-pathogen interactions. For example, the surface proteins that serve as adhesins and, thus, likely play a role in pathogen entry into tick cells are largely unknown. To address this knowledge gap, we developed a phage display library and screened 66 A. marginale proteins for their ability to adhere to Dermacentor andersoni tick cells. From this screen, 17 candidate adhesins were identified, including OmpA and multiple members of the Msp1 family, including Msp1b, Mlp3, and Mlp4. We then measured the transcript of ompA and all members of the msp1 gene family through time, and determined that msp1b, mlp2, and mlp4 have increased transcript during tick cell infection, suggesting a possible role in host cell binding or entry. Finally, Msp1a, Msp1b, Mlp3, and OmpA were expressed as recombinant protein. When added to cultured tick cells prior to A. marginale infection, all proteins except the C-terminus of Msp1a reduced A. marginale entry by 2.2- to 4.7-fold. Except OmpA, these adhesins lack orthologs in related pathogens of humans and animals, including Anaplasma phagocytophilum and the Ehrlichia spp., thus limiting their utility in a universal tick transmission-blocking vaccine. However, this work greatly advances efforts toward developing methods to control bovine anaplasmosis and, thus, may help improve global food security.


Subject(s)
Adhesins, Bacterial , Anaplasma marginale , Dermacentor , Animals , Anaplasma marginale/genetics , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/genetics , Dermacentor/microbiology , Cattle , Bacterial Adhesion/physiology , Anaplasmosis/microbiology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Cell Surface Display Techniques , Host-Pathogen Interactions , Cattle Diseases/microbiology
7.
Mar Drugs ; 22(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786623

ABSTRACT

Mycoplasma pneumoniae, a notable pathogen behind respiratory infections, employs specialized proteins to adhere to the respiratory epithelium, an essential process for initiating infection. The role of glycosaminoglycans, especially heparan sulfate, is critical in facilitating pathogen-host interactions, presenting a strategic target for therapeutic intervention. In this study, we assembled a glycan library comprising heparin, its oligosaccharide derivatives, and a variety of marine-derived sulfated glycans to screen the potential inhibitors for the pathogen-host interactions. By using Surface Plasmon Resonance spectroscopy, we evaluated the library's efficacy in inhibiting the interaction between M. pneumoniae adhesion proteins and heparin. Our findings offer a promising avenue for developing novel therapeutic strategies against M. pneumoniae infections.


Subject(s)
Heparin , Mycoplasma pneumoniae , Polysaccharides , Mycoplasma pneumoniae/drug effects , Heparin/pharmacology , Heparin/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Aquatic Organisms , Humans , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/drug effects , Bacterial Adhesion/drug effects , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Host-Pathogen Interactions , Sulfates/chemistry , Sulfates/pharmacology
8.
Cell Commun Signal ; 22(1): 250, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698410

ABSTRACT

Single nucleotide polymorphisms (SNPs) account for significant genomic variability in microbes, including the highly diverse gastric pathogen Helicobacter pylori. However, data on the effects of specific SNPs in pathogen-host interactions are scarce. Recent functional studies unravelled how a serine/leucine polymorphism in serine protease HtrA affects the formation of proteolytically active trimers and modulates cleavage of host cell-to-cell junction proteins during infection. A similar serine/leucine mutation in the carbohydrate binding domain of the adhesin BabA controls binding of ABO blood group antigens, enabling binding of either only the short Lewis b/H antigens of blood group O or also the larger antigens of blood groups A and B. Here we summarize the functional importance of these two remarkable bacterial SNPs and their effect on the outcome of pathogen-host interactions.


Subject(s)
Adhesins, Bacterial , Helicobacter pylori , Leucine , Serine , Helicobacter pylori/genetics , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Humans , Serine/genetics , Serine/metabolism , Leucine/genetics , Leucine/metabolism , Polymorphism, Single Nucleotide/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/genetics , Animals
9.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 5): 92-97, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38699970

ABSTRACT

The Rib domain, which is often found as tandem-repeat structural modules in surface proteins of Gram-positive bacteria, plays important roles in mediating interactions of bacteria with their environments and hosts. A comprehensive structural analysis of various Rib domains is essential to fully understand their impact on the structure and functionality of these bacterial adhesins. To date, structural information has been limited for this expansive group of domains. In this study, the high-resolution crystal structure of the second member of the long Rib domain, a unique subclass within the Rib-domain family, derived from Limosilactobacillus reuteri is presented. The data not only demonstrate a highly conserved structure within the long Rib domain, but also highlight an evolutionary convergence in structural architecture with other modular domains found in cell-adhesion molecules.


Subject(s)
Limosilactobacillus reuteri , Models, Molecular , Protein Domains , Limosilactobacillus reuteri/chemistry , Limosilactobacillus reuteri/metabolism , Limosilactobacillus reuteri/genetics , Crystallography, X-Ray , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
10.
Nat Commun ; 15(1): 3078, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594280

ABSTRACT

The bacterium Bdellovibrio bacteriovorus is a predator of other Gram-negative bacteria. The predator invades the prey's periplasm and modifies the prey's cell wall, forming a rounded killed prey, or bdelloplast, containing a live B. bacteriovorus. Redundancy in adhesive processes makes invasive mutants rare. Here, we identify a MIDAS adhesin family protein, Bd0875, that is expressed at the predator-prey invasive junction and is important for successful invasion of prey. A mutant strain lacking bd0875 is still able to form round, dead bdelloplasts; however, 10% of the bdelloplasts do not contain B. bacteriovorus, indicative of an invasion defect. Bd0875 activity requires the conserved MIDAS motif, which is linked to catch-and-release activity of MIDAS proteins in other organisms. A proteomic analysis shows that the uninvaded bdelloplasts contain B. bacteriovorus proteins, which are likely secreted into the prey by the Δbd0875 predator during an abortive invasion period. Thus, secretion of proteins into the prey seems to be sufficient for prey killing, even in the absence of a live predator inside the prey periplasm.


Subject(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Bdellovibrio bacteriovorus/genetics , Bdellovibrio/genetics , Proteomics , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism
11.
Proteins ; 92(8): 933-945, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38591850

ABSTRACT

Bacterial adhesins attach their hosts to surfaces that the bacteria will colonize. This surface adhesion occurs through specific ligand-binding domains located towards the distal end of the long adhesin molecules. However, recognizing which of the many adhesin domains are structural and which are ligand binding has been difficult up to now. Here we have used the protein structure modeling program AlphaFold2 to predict structures for these giant 0.2- to 1.5-megadalton proteins. Crystal structures previously solved for several adhesin regions are in good agreement with the models. Whereas most adhesin domains are linked in a linear fashion through their N- and C-terminal ends, ligand-binding domains can be recognized by budding out from a companion core domain so that their ligand-binding sites are projected away from the axis of the adhesin for maximal exposure to their targets. These companion domains are "split" in their continuity by projecting the ligand-binding domain outwards. The "split domains" are mostly ß-sandwich extender modules, but other domains like a ß-solenoid can serve the same function. Bioinformatic analyses of Gram-negative bacterial sequences revealed wide variety ligand-binding domains are used in their Repeats-in-Toxin adhesins. The ligands for many of these domains have yet to be identified but known ligands include various cell-surface glycans, proteins, and even ice. Recognizing the ligands to which the adhesins bind could lead to ways of blocking colonization by bacterial pathogens. Engineering different ligand-binding domains into an adhesin has the potential to change the surfaces to which bacteria bind.


Subject(s)
Adhesins, Bacterial , Models, Molecular , Protein Domains , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Binding Sites , Protein Binding , Bacterial Adhesion , Ligands , Crystallography, X-Ray
12.
Biochem Biophys Res Commun ; 707: 149783, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38493746

ABSTRACT

Ingestion of Porphyromonas gingivalis, a periodontal pathogen, disrupts the intestinal barrier in mice. However, the involvement of outer membrane vesicles (OMVs) secreted from P. gingivalis in the destruction of the intestinal barrier remains unclear. In this study, we tested the hypothesis that OMVs carrying gingipains, the major cysteine proteases produced by P. gingivalis, affects the intestinal barrier function. OMVs increased the permeability of the Caco-2 cell monolayer, a human intestinal epithelial cell line, accompanied by degradation of the tight junction protein occludin. In contrast, OMVs prepared from mutant strains devoid of gingipains failed to induce intestinal barrier dysfunction or occludin degradation in Caco-2 cells. A close histological examination revealed the intracellular localization of gingipain-carrying OMVs. Gingipain activity was detected in the cytosolic fraction of Caco-2 cells after incubation with OMVs. These results suggest that gingipains were internalized into intestinal cells through OMVs and transported into the cytosol, where they then directly degraded occludin from the cytosolic side. Thus, P. gingivalis OMVs might destroy the intestinal barrier and induce systemic inflammation via OMV itself or intestinal substances leaked into blood vessels, causing various diseases.


Subject(s)
Adhesins, Bacterial , Porphyromonas gingivalis , Animals , Mice , Humans , Gingipain Cysteine Endopeptidases/metabolism , Caco-2 Cells , Porphyromonas gingivalis/physiology , Cytosol/metabolism , Occludin/metabolism , Adhesins, Bacterial/metabolism
13.
Proc Natl Acad Sci U S A ; 121(13): e2320410121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38498718

ABSTRACT

Biofilms of sulfate-reducing bacterium (SRB) like Desulfovibrio vulgaris Hildenborough (DvH) can facilitate metal corrosion in various industrial and environmental settings leading to substantial economic losses. Although the mechanisms of biofilm formation by DvH are not yet well understood, recent studies indicate the large adhesin, DvhA, is a key determinant of biofilm formation. The dvhA gene neighborhood resembles the biofilm-regulating Lap system of Pseudomonas fluorescens but is curiously missing the c-di-GMP-binding regulator LapD. Instead, DvH encodes an evolutionarily unrelated c-di-GMP-binding protein (DVU1020) that we hypothesized is functionally analogous to LapD. To study this unusual Lap system and overcome experimental limitations with the slow-growing anaerobe DvH, we reconstituted its predicted SRB Lap system in a P. fluorescens strain lacking its native Lap regulatory components (ΔlapGΔlapD). Our data support the model that DvhA is a cell surface-associated LapA-like adhesin with a N-terminal "retention module" and that DvhA is released from the cell surface upon cleavage by the LapG-like protease DvhG. Further, we demonstrate DVU1020 (named here DvhD) represents a distinct class of c-di-GMP-binding, biofilm-regulating proteins that regulates DvhG activity in response to intracellular levels of this second messenger. This study provides insight into the key players responsible for biofilm formation by DvH, thereby expanding our understanding of Lap-like systems.


Subject(s)
Pseudomonas fluorescens , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism , Sulfates/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Biofilms , Carrier Proteins/metabolism , Cyclic GMP/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial
14.
PLoS Pathog ; 20(3): e1012076, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466738

ABSTRACT

Candida auris is a fungal pathogen of humans responsible for nosocomial infections with high mortality rates. High levels of resistance to antifungal drugs and environmental persistence mean these infections are difficult to treat and eradicate from a healthcare setting. Understanding the life cycle and the genetics of this fungus underpinning clinically relevant traits, such as antifungal resistance and virulence, is of the utmost importance to develop novel treatments and therapies. Epidemiological and genomic studies have identified five geographical clades (I-V), which display phenotypic and genomic differences. Aggregation of cells, a phenotype primarily of clade III strains, has been linked to reduced virulence in some infection models. The aggregation phenotype has thus been associated with conferring an advantage for (skin) colonisation rather than for systemic infection. However, strains with different clade affiliations were compared to infer the effects of different morphologies on virulence. This makes it difficult to distinguish morphology-dependent causes from clade-specific or even strain-specific genetic factors. Here, we identify two different types of aggregation: one induced by antifungal treatment which is a result of a cell separation defect; and a second which is controlled by growth conditions and only occurs in strains with the ability to aggregate. The latter aggregation type depends on an ALS-family adhesin which is differentially expressed during aggregation in an aggregative C. auris strain. Finally, we demonstrate that macrophages cannot clear aggregates, suggesting that aggregation might after all provide a benefit during systemic infection and could facilitate long-term persistence in the host.


Subject(s)
Antifungal Agents , Candida , Humans , Antifungal Agents/therapeutic use , Candida/genetics , Candida auris , Virulence , Drug Resistance, Fungal , Adhesins, Bacterial/metabolism , Microbial Sensitivity Tests
15.
Nucleic Acids Res ; 52(10): 5572-5595, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38499492

ABSTRACT

Adaptation to variations in pH is crucial for the ability of Helicobacter pylori to persist in the human stomach. The acid responsive two-component system ArsRS, constitutes the global regulon that responds to acidic conditions, but molecular details of how transcription is affected by the ArsR response regulator remains poorly understood. Using a combination of DNA-binding studies, in vitro transcription assays, and H. pylori mutants, we demonstrate that phosphorylated ArsR (ArsR-P) forms an active protein complex that binds DNA with high specificity in order to affect transcription. Our data showed that DNA topology is key for DNA binding. We found that AT-rich DNA sequences direct ArsR-P to specific sites and that DNA-bending proteins are important for the effect of ArsR-P on transcription regulation. The repression of sabA transcription is mediated by ArsR-P with the support of Hup and is affected by simple sequence repeats located upstream of the sabA promoter. Here stochastic events clearly contribute to the fine-tuning of pH-dependent gene regulation. Our results reveal important molecular aspects for how ArsR-P acts to repress transcription in response to acidic conditions. Such transcriptional control likely mediates shifts in bacterial positioning in the gastric mucus layer.


Subject(s)
Adhesins, Bacterial , Bacterial Proteins , Gene Expression Regulation, Bacterial , Helicobacter pylori , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Hydrogen-Ion Concentration , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Transcription, Genetic/genetics , Mutation
16.
mBio ; 15(5): e0063224, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38534159

ABSTRACT

Bordetella species that cause respiratory infections in mammals include B. pertussis, which causes human whooping cough, and B. bronchiseptica, which infects nearly all mammals. Both bacterial species produce filamentous hemagglutinin (FhaB) and adenylate cyclase toxin (ACT), prominent surface-associated and secreted virulence factors that contribute to persistence in the lower respiratory tract by inhibiting clearance by phagocytic cells. FhaB and ACT proteins interact with themselves, each other, and host cells. Using immunoblot analyses, we showed that ACT binds to FhaB on the bacterial surface before it can be detected in culture supernatants. We determined that SphB1, a surface protease identified based on its requirement for FhaB cleavage, is also required for ACT cleavage, and we determined that the presence of ACT blocks SphB1-dependent and -independent cleavage of FhaB, but the presence of FhaB does not affect SphB1-dependent cleavage of ACT. The primary SphB1-dependent cleavage site on ACT is proximal to ACT's active site, in a region that is critical for ACT activity. We also determined that FhaB-bound ACT on the bacterial surface can intoxicate host cells producing CR3, the receptor for ACT. In addition to increasing our understanding of FhaB, ACT, and FhaB-ACT interactions on the Bordetella surface, our data are consistent with a model in which FhaB functions as a novel toxin delivery system by binding to ACT and allowing its release upon binding of ACT to its receptor, CR3, on phagocytic cells.IMPORTANCEBacteria need to control the variety, abundance, and conformation of proteins on their surface to survive. Members of the Gram-negative bacterial genus Bordetella include B. pertussis, which causes whooping cough in humans, and B. bronchiseptica, which causes respiratory infections in a broad range of mammals. These species produce two prominent virulence factors, the two-partner secretion (TPS) effector FhaB and adenylate cyclase toxin (ACT), that interact with themselves, each other, and host cells. Here, we determined that ACT binds FhaB on the bacterial surface before being detected in culture supernatants and that ACT bound to FhaB can be delivered to eukaryotic cells. Our data are consistent with a model in which FhaB delivers ACT specifically to phagocytic cells. This is the first report of a TPS system facilitating the delivery of a separate polypeptide toxin to target cells and expands our understanding of how TPS systems contribute to bacterial pathogenesis.


Subject(s)
Adenylate Cyclase Toxin , Phagocytes , Virulence Factors, Bordetella , Adenylate Cyclase Toxin/metabolism , Adenylate Cyclase Toxin/genetics , Phagocytes/metabolism , Phagocytes/microbiology , Virulence Factors, Bordetella/metabolism , Virulence Factors, Bordetella/genetics , Humans , Bordetella pertussis/metabolism , Bordetella pertussis/genetics , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/genetics , Bordetella bronchiseptica/metabolism , Bordetella bronchiseptica/genetics , Protein Binding , Animals
17.
J Clin Periodontol ; 51(7): 818-839, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38414291

ABSTRACT

AIM: Blood-brain barrier (BBB) disorder is one of the early findings in cognitive impairments. We have recently found that Porphyromonas gingivalis bacteraemia can cause cognitive impairment and increased BBB permeability. This study aimed to find out the possible key virulence factors of P. gingivalis contributing to the pathological process. MATERIALS AND METHODS: C57/BL6 mice were infected with P. gingivalis or gingipains or P. gingivalis lipopolysaccharide (P. gingivalis LPS group) by tail vein injection for 8 weeks. The cognitive behaviour changes in mice, the histopathological changes in the hippocampus and cerebral cortex, the alternations of BBB permeability, and the changes in Mfsd2a and Cav-1 levels were measured. The mechanisms of Ddx3x-induced regulation on Mfsd2a by arginine-specific gingipain A (RgpA) in BMECs were explored. RESULTS: P. gingivalis and gingipains significantly promoted mice cognitive impairment, pathological changes in the hippocampus and cerebral cortex, increased BBB permeability, inhibited Mfsd2a expression and up-regulated Cav-1 expression. After RgpA stimulation, the permeability of the BBB model in vitro increased, and the Ddx3x/Mfsd2a/Cav-1 regulatory axis was activated. CONCLUSIONS: Gingipains may be one of the key virulence factors of P. gingivalis to impair cognition and enhance BBB permeability by the Ddx3x/Mfsd2a/Cav-1 axis.


Subject(s)
Blood-Brain Barrier , Gingipain Cysteine Endopeptidases , Mice, Inbred C57BL , Porphyromonas gingivalis , Virulence Factors , Animals , Porphyromonas gingivalis/pathogenicity , Blood-Brain Barrier/microbiology , Mice , Virulence Factors/metabolism , Adhesins, Bacterial/metabolism , Male , Disease Models, Animal , Permeability , Cognitive Dysfunction/microbiology , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Bacteroidaceae Infections/microbiology , Bacteroidaceae Infections/complications
18.
Appl Microbiol Biotechnol ; 108(1): 231, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396242

ABSTRACT

The acidic environment and enzyme degradation lead to oral vaccines often having little immune effect. Therefore, it is an attractive strategy to study an effective and safe oral vaccine delivery system that can promote gastrointestinal mucosal immune responses and inhibit antigen degradation. Moreover, the antigens uptake by microfold cells (M cells) is the determining step in initiating efficient immune responses. Therefore, M cell-targeting is one promising approach for enhancing oral vaccine potency. In the present study, an M cell-targeting L. lactis surface display system (plSAM) was built to favor the multivalent epitope vaccine antigen (FAdE) to achieve effective gastrointestinal mucosal immunity against Helicobacter pylori. Therefore, a recombinant Lactococcus lactic acid vaccine (LL-plSAM-FAdE) was successfully prepared, and its immunological properties and protective efficacy were analyzed. The results showed that LL-plSAM-FAdE can secretively express the recombinant proteins SAM-FAdE and display the SAM-FAdE on the bacterial cell surface. More importantly, LL-plSAM-FAdE effectively promoted the phagocytosis and transport of vaccine antigen by M cells in the gastrointestinal tract of mice, and simulated high levels of cellular and humoral immune responses against four key H. pylori adhesins (Urease, CagL, HpaA, and Lpp20) in the gastrointestinal tract, thus enabling effective prevention of H. pylori infection and to some extent eliminating H. pylori already present in the gastrointestinal tract. KEY POINTS: • M-cell-targeting L. lactis surface display system LL- plSAM was designed • This system displays H. pylori vaccine-promoted phagocytosis and transport of M cell • A promising vaccine candidate for controlling H. pylori infection was verified.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Lactococcus lactis , Animals , Mice , Helicobacter pylori/genetics , M Cells , Antigens, Bacterial , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Vaccines, Synthetic , Bacterial Vaccines , Helicobacter Infections/prevention & control , Mice, Inbred BALB C , Antibodies, Bacterial , Lactococcus lactis/genetics , Lactococcus lactis/metabolism
19.
Microb Pathog ; 188: 106537, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211834

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides spp. The interaction mediated by the presence of adhesins on the fungal surface and receptors in the extracellular matrix of the host, as well as the biofilm formation, is essential in its pathogenesis. Adhesins such as gp43, enolase, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and 14-3-3 have been demonstrated in the Paracoccidioides brasiliensis (Pb18) strain and recognized as necessary in the fungus-host interaction. The Pb 18 strain silenced to 14-3-3 showed changes in morphology, virulence, and adhesion capacity. The study aimed to evaluate the role of adhesin 14-3-3 in P. brasiliensis biofilm formation and the differential expression of genes related to adhesins, comparing planktonic and biofilm forms. The presence of biofilm was also verified in sutures in vitro and in vivo. The silenced strain (Pb14-3-3 aRNA) was compared with the wild type Pb18, determining the differential metabolic activity between the strains by the XTT reduction assay; the biomass by violet crystal and the polysaccharides by safranin, even as morphological differences by microscopic techniques. Differential gene expression for adhesins was also analyzed, comparing the relative expression of these in planktonic and biofilm forms at different times. The results suggested that the silencing of 14-3-3 protein altered the ability to form biofilm and its metabolism. The quantity of biomass was similar in both strains; however, the formation of exopolymeric substances and polysaccharide material was lower in the silenced strain. Our results showed increased expression of enolase, GAPDH, and 14-3-3 genes in the first periods of biofilm formation in the Pb18 strain. In contrast, the silenced strain showed a lower expression of these genes, indicating that gene silencing can influence the expression of other genes and be involved in the biofilm formation of P. brasiliensis. In vitro and in vivo assays using sutures confirmed this yeast's ability to form biofilm and may be implicated in the pathogenesis of paracoccidioidomycosis.


Subject(s)
Paracoccidioides , Paracoccidioidomycosis , Paracoccidioides/genetics , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases , Biofilms , Adhesins, Bacterial/metabolism , Phosphopyruvate Hydratase/genetics
20.
Mol Oral Microbiol ; 39(1): 1-11, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38171827

ABSTRACT

Breast cancer is among the most prevalent malignancies in women worldwide. Epidemiological findings suggested that periodontal diseases may be associated with breast cancer, among which Fusobacterium nucleatum is considered an important cross-participant. In this work, we comprehensively summarize the known mechanisms of how F. nucleatum translocates to, colonizes in mammary tumors, and promotes the carcinogenesis. Specifically, F. nucleatum translocates to mammary tissue through the mammary-intestinal axis, direct nipple contact, and hematogenous transmission. Subsequently, F. nucleatum takes advantage of fusobacterium autotransporter protein 2 to colonize breast cancer and uses virulence factors fusobacterium adhesin A and lipopolysaccharide to promote proliferation. Moreover, the upregulated matrix metalloproteinase-9 induced by F. nucleatum does not only trigger the inflammatory response but also facilitates the tumor-promoting microenvironment. Aside from the pro-inflammatory effect, F. nucleatum may also be engaged in tumor immune evasion, which is achieved through the action of virulence factors on immune checkpoint receptors highly expressed on T cells, natural killer cells, and tumor-infiltrating lymphocytes. Taking breast cancer as an example, more relevant research studies may expand our current knowledge of how oral microbes affect systemic health. Hopefully, exploring these mechanisms in depth could provide new strategies for safer and more effective biologic and targeted therapies targeted at breast cancer.


Subject(s)
Breast Neoplasms , Colorectal Neoplasms , Fusobacterium Infections , Humans , Female , Fusobacterium nucleatum/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Adhesins, Bacterial/metabolism , Virulence Factors/metabolism , Fusobacterium Infections/microbiology , Fusobacterium Infections/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL