Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
1.
Clin Transl Med ; 12(2): e665, 2022 02.
Article in English | MEDLINE | ID: mdl-35184387

ABSTRACT

Propionate is a gut microbial metabolite that has been reported to have controversial effects on metabolic health. Here we show that propionate is activated by acyl-CoA synthetase short-chain family member 3 (ACSS3), located on the mitochondrial inner membrane in brown adipocytes. Knockout of Acss3 gene (Acss3-/- ) in mice reduces brown adipose tissue (BAT) mass but increases white adipose tissue (WAT) mass, leading to glucose intolerance and insulin resistance that are exacerbated by high-fat diet (HFD). Intriguingly, Acss3-/- or HFD feeding significantly elevates propionate levels in BAT and serum, and propionate supplementation induces autophagy in cultured brown and white adipocytes. The elevated levels of propionate in Acss3-/- mice similarly drive adipocyte autophagy, and pharmacological inhibition of autophagy using hydroxychloroquine ameliorates obesity, hepatic steatosis and insulin resistance of the Acss3-/- mice. These results establish ACSS3 as the key enzyme for propionate metabolism and demonstrate that accumulation of propionate promotes obesity and Type 2 diabetes through triggering adipocyte autophagy.


Subject(s)
Adipose Tissue, Brown/drug effects , Coenzyme A Ligases/adverse effects , Adipocytes, Brown/drug effects , Adipocytes, Brown/metabolism , Adipocytes, White/drug effects , Adipocytes, White/metabolism , Adipose Tissue, Brown/growth & development , Animals , Coenzyme A Ligases/pharmacology , Disease Models, Animal , Mice , Mice, Knockout/metabolism , Propionates/metabolism , Propionates/pharmacology
2.
Cells ; 10(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34943961

ABSTRACT

Beta-3 adrenergic receptor activation via exercise or CL316,243 (CL) induces white adipose tissue (WAT) browning, improves glucose tolerance, and reduces visceral adiposity. Our aim was to determine if sex or adipose tissue depot differences exist in response to CL. Daily CL injections were administered to diet-induced obese male and female mice for two weeks, creating four groups: male control, male CL, female control, and female CL. These groups were compared to determine the main and interaction effects of sex (S), CL treatment (T), and WAT depot (D). Glucose tolerance, body composition, and energy intake and expenditure were assessed, along with perigonadal (PGAT) and subcutaneous (SQAT) WAT gene and protein expression. CL consistently improved glucose tolerance and body composition. Female PGAT had greater protein expression of the mitochondrial uncoupling protein 1 (UCP1), while SQAT (S, p < 0.001) was more responsive to CL in increasing UCP1 (S×T, p = 0.011) and the mitochondrial biogenesis induction protein, PPARγ coactivator 1α (PGC1α) (S×T, p = 0.026). Females also displayed greater mitochondrial OXPHOS (S, p < 0.05) and adiponectin protein content (S, p < 0.05). On the other hand, male SQAT was more responsive to CL in increasing protein levels of PGC1α (S×T, p = 0.046) and adiponectin (S, p < 0.05). In both depots and in both sexes, CL significantly increased estrogen receptor beta (ERß) and glucose-related protein 75 (GRP75) protein content (T, p < 0.05). Thus, CL improves systemic and adipose tissue-specific metabolism in both sexes; however, sex differences exist in the WAT-specific effects of CL. Furthermore, across sexes and depots, CL affects estrogen signaling by upregulating ERß.


Subject(s)
Adipose Tissue, Brown/metabolism , HSP70 Heat-Shock Proteins/genetics , Membrane Proteins/genetics , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Uncoupling Protein 1/genetics , Adipose Tissue/metabolism , Adipose Tissue, Brown/growth & development , Adipose Tissue, White/metabolism , Animals , Body Composition/genetics , Dioxoles/pharmacology , Energy Metabolism/genetics , Estrogen Receptor beta/genetics , Estrogens/genetics , Estrogens/metabolism , Female , Glucose Tolerance Test , Humans , Male , Mice , Mitochondria/genetics , Mitochondria/metabolism , Receptors, Adrenergic, beta-3/genetics , Receptors, Adrenergic, beta-3/metabolism , Sex Characteristics
3.
Biomolecules ; 11(10)2021 09 29.
Article in English | MEDLINE | ID: mdl-34680061

ABSTRACT

Sympathetic nervous system (SNS) innervation into brown adipose tissue (BAT) has been viewed as an impetus for brown fat thermogenesis. However, we surprisingly discovered that BAT SNS innervation is dispensable for mice to maintain proper body temperature during a prolonged cold exposure. Here we aimed to uncover the physiological factors compensating for maintaining brown fat thermogenesis in the absence of BAT innervation. After an initial decline of body temperature during cold exposure, mice with SNS surgical denervation in interscapular BAT gradually recovered their temperature comparable to that of sham-operated mice. The surgically denervated BAT also maintained a sizable uncoupling protein 1 (UCP1) protein along with basal norepinephrine (NE) at a similar level to that of sham controls, which were associated with increased circulating NE. Furthermore, the denervated mice exhibited increased free fatty acid levels in circulation. Indeed, surgical denervation of mice with CGI-58 deletion in adipocytes, a model lacking lipolytic capacity to release fatty acids from WAT, dramatically reduced BAT UCP1 protein and rendered the mice susceptible to cold. We conclude that circulating fatty acids and NE may serve as key factors for maintaining BAT thermogenic function and body temperature in the absence of BAT sympathetic innervation.


Subject(s)
Adipose Tissue, Brown/metabolism , Fatty Acids/metabolism , Sympathetic Nervous System/metabolism , Uncoupling Protein 1/genetics , Adipocytes/metabolism , Adipose Tissue, Brown/growth & development , Animals , Cold Temperature/adverse effects , Humans , Mice , Norepinephrine/genetics , Norepinephrine/metabolism , Thermogenesis/genetics
4.
Nat Metab ; 3(4): 469-484, 2021 04.
Article in English | MEDLINE | ID: mdl-33846639

ABSTRACT

Brown adipose tissue can expend large amounts of energy, and therefore increasing its size or activity is a promising therapeutic approach to combat metabolic disease. In humans, major deposits of brown fat cells are found intimately associated with large blood vessels, corresponding to perivascular adipose tissue (PVAT). However, the cellular origins of PVAT are poorly understood. Here, we determine the identity of perivascular adipocyte progenitors in mice and humans. In mice, thoracic PVAT develops from a fibroblastic lineage, consisting of progenitor cells (Pdgfra+, Ly6a+ and Pparg-) and preadipocytes (Pdgfra+, Ly6a+ and Pparg+), which share transcriptional similarity with analogous cell types in white adipose tissue. Interestingly, the aortic adventitia of adult animals contains a population of adipogenic smooth muscle cells (Myh11+, Pdgfra- and Pparg+) that contribute to perivascular adipocyte formation. Similarly, human PVAT contains presumptive fibroblastic and smooth muscle-like adipocyte progenitor cells, as revealed by single-nucleus RNA sequencing. Together, these studies define distinct populations of progenitor cells for thermogenic PVAT, providing a foundation for developing strategies to augment brown fat activity.


Subject(s)
Adipocytes, Brown/physiology , Adipose Tissue, Brown/physiology , Cell Lineage/physiology , Thermogenesis/physiology , Adipocytes, White/physiology , Adipogenesis/physiology , Adipose Tissue, Brown/growth & development , Animals , Animals, Newborn , Aorta/cytology , Aorta/physiology , Blood Vessels/physiology , Cell Lineage/genetics , Fibroblasts/physiology , Gene Expression Regulation/physiology , Humans , Infant, Newborn , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/physiology , Stem Cells/physiology , Thermogenesis/genetics
5.
Br J Nutr ; 126(3): 460-469, 2021 08 14.
Article in English | MEDLINE | ID: mdl-33054875

ABSTRACT

Intermittent food restriction (IFR) is used mainly for weight loss; however, its effects on adipose tissue are not known when alternating with an obesogenic diet. To demonstrate its effects on morphological dynamics of fat deposits, female Wistar rats were distributed into groups: standard control (ST-C), with commercial diet; DIO control (DIO-C), with a diet that induces obesity (DIO) during the first and last 15 d, replaced by a standard diet for thirty intermediate days; standard restricted (ST-R), with standard diet during the first and last 15 d, with six cycles of IFR at 50 % of ST-C; and DIO restricted (DIO-R), in DIO during the first and last 15 d, with six cycles of IFR at 50 % of DIO-C. At 105 d of life, white adipose tissue (WAT) and brown adipose tissue (BAT) deposits were collected, weighed and histology performed. The DIO-R group showed higher total food intake (DIO-R 10 768·0 (SEM 357·52) kJ/g v. DIO-C 8868·6 (SEM 249·25) kJ/g, P < 0·0001), energy efficiency during RAI (DIO-R 2·26 (SEM 0·05) g/kJ v. DIO-C 0·70 (SEM 0·03) g/kJ, P < 0·0001) and WAT (DIO-R 5·65 (SEM 0·30) g/100 g v. DIO-C 4·56 (SEM 0·30) g/100 g) than their respective control. Furthermore, IFR groups presented hypertrophy of WAT and BAT, as well as fibrosis in BAT. Thus, IFR can establish prospective resistance to weight loss by favouring changes in adipose tissue morphology, increased energy intake and efficiency. Finally, the DIO diet before and after IFR aggravates the damages caused by the restriction.


Subject(s)
Adipose Tissue, Brown , Adipose Tissue, White/growth & development , Fasting , Feeding Behavior , Adipose Tissue, Brown/growth & development , Animals , Female , Prospective Studies , Rats , Rats, Wistar , Weight Loss
6.
J Endocrinol ; 248(1): R19-R28, 2021 01.
Article in English | MEDLINE | ID: mdl-33232264

ABSTRACT

Adipose tissue is usually laid down in small amounts in the foetus and is characterised as possessing small amounts of the brown adipose tissue-specific mitochondrial uncoupling protein (UCP)1. In adults, a primary factor determining the abundance and function of UCP1 is ambient temperature. Cold exposure causes activation and the rapid generation of heat through the free flow of protons across the mitochondria with no requirement to convert ADP to ATP. In rodents, housing at an ambient temperature below thermoneutrality promotes the appearance of beige like adipocytes. These arise as discrete regions of UCP1 containing cells in white fat depots. There is increasing evidence to show that to gain credible translational results on brown and beige fat function in rodent models that they should be housed at thermoneutrality. This not only reflects the type of environment in which humans spend a majority of their time, but is in accord with the rise of global temperature caused by industrialisation and the uncontrolled burning of fossil fuels. There is now good evidence in adult humans, that stimulating brown fat can improve glucose homeostasis which can be achieved either by nutritional or pharmacological interventions. The challenge, therefore, is to establish credible developmental models in animals maintained at thermoneutrality which will elucidate the true impact of nutrition. The primary focus should fall specifically on the components of breast milk and how these modulate long term effects on brown or beige fat development and function.


Subject(s)
Adipose Tissue, Brown/growth & development , Temperature , Animals , Homeostasis , Humans , Milk/chemistry , Reproductive Health , Uncoupling Protein 1/physiology
7.
Sci Rep ; 10(1): 20335, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230135

ABSTRACT

Brown adipose tissue (BAT) is the primary non-shivering thermogenesis organ in mammals, which plays essential roles in maintaining the body temperature of infants. Although the development of BAT during embryogenesis has been well addressed in rodents, how BAT grows after birth remains unknown. Using mouse interscapular BAT (iBAT) as an example, we studied the cellular and molecular mechanisms that regulate postnatal BAT growth. By analyzing the developmental dynamics of brown adipocytes (BAs), we found that BAs size enlargement partially accounts for iBAT growth. By investigating the BAs cell cycle activities, we confirmed the presence of proliferative BAs in the neonatal mice. Two weeks after birth, most of the BAs exit cell cycle, and the further expansion of the BAT was mainly due to lipogenesis-mediated BAs volume increase. Microscopy and fluorescence-activated cell sorting analyses suggest that most BAs are mononuclear and diploid. Based on the developmental dynamics of brown adipocytes, we propose that the murine iBAT has two different growth phases between birth and weaning: increase of BAs size and number in the first two weeks, and BAs size enlargement thereafter. In summary, our data demonstrate that both lipogenesis and proliferation of BAs contribute to postnatal iBAT growth in mice.


Subject(s)
Adipocytes, Brown/metabolism , Adipose Tissue, Brown/growth & development , Cell Enlargement , Cell Proliferation/physiology , Lipogenesis/physiology , Animals , Animals, Newborn , Cell Size , Cells, Cultured , Energy Metabolism/physiology , Gene Expression , Mice , Mice, Inbred C57BL , Pediatric Obesity/metabolism , Thermogenesis/physiology , Triglycerides/metabolism
8.
Differentiation ; 115: 62-84, 2020.
Article in English | MEDLINE | ID: mdl-32891960

ABSTRACT

Adipogenesis has been extensively studied using in vitro models of cellular differentiation, enabling long-term regulation of fat cell metabolism in human adipose tissue (AT) material. Many studies promote the idea that manipulation of this process could potentially reduce the prevalence of obesity and its related diseases. It has now become essential to understand the molecular basis of fat cell development to tackle this pandemic disease, by identifying therapeutic targets and new biomarkers. This review explores murine cell models and their applications for study of the adipogenic differentiation process in vitro. We focus on the benefits and limitations of different cell line models to aid in interpreting data and selecting a good cell line model for successful understanding of adipose biology.


Subject(s)
Adipocytes/metabolism , Adipogenesis/genetics , Adipose Tissue, Brown/metabolism , Adipose Tissue/growth & development , Obesity/genetics , Adipose Tissue/metabolism , Adipose Tissue, Brown/growth & development , Animals , Cell Differentiation/genetics , Humans , In Vitro Techniques , Mice , Obesity/metabolism , Obesity/pathology
10.
PLoS One ; 15(4): e0231650, 2020.
Article in English | MEDLINE | ID: mdl-32315370

ABSTRACT

Exposure to ionizing radiation contributing to negative health outcomes is a widespread concern. However, the impact of low dose and sub-lethal dose radiation (SLDR) exposures remain contentious, particularly in pregnant women who represent a vulnerable group. The fetal programming hypothesis states that an adverse in utero environment or stress during development of an embryo or fetus can result in permanent physiologic changes often resulting in progressive metabolic dysfunction with age. To assess changes in gene expression profiles of glucose/insulin signaling and lipid metabolism caused by radiation exposure in utero, pregnant C57Bl/6J mice were irradiated using a dose response ranging from low dose to SLDR and compared to a Sham-irradiated group. mRNA expression analysis in 16 week old offspring (n = 84) revealed that genes involved in metabolic function including glucose metabolism, insulin signaling and lipid metabolism were unaffected by prenatal radiation exposures up to 300 mGy. However, female offspring of dams exposed to 1000 mGy had upregulated expression of genes contributing to insulin resistance and gluconeogenesis. In a second cohort of mice, the effects of SLDR on fetal programming of hepatic SOCS3 and PEPCK protein expression were assessed. 4 month old female offspring of dams irradiated at 1000 mGy had: 1) increased liver weights, 2) increased hepatic expression of proteins involved in glucose metabolism and 3) increased 18F-fluorodeoxyglucose (FDG) uptake in interscapular brown adipose tissue (IBAT) measured by positron emission tomography (PET) (n = 25). The results of this study indicate that prenatal radiation exposure does not affect metabolic function up to 300 mGy and 1000 mGy may be a threshold dose for sex-specific alterations in glucose uptake and hepatic gene and protein expression of SOCS3, PEPCK, PPARGC1A and PPARGC1B. These findings suggest that SLDR doses alter glucose uptake in IBAT and hepatic gene and protein expression of offspring and these changes may progress with age.


Subject(s)
Adipose Tissue, Brown/growth & development , Fetal Development/genetics , Insulin Resistance/genetics , Liver/metabolism , Adipose Tissue, Brown/radiation effects , Animals , Blood Glucose/metabolism , Carbohydrate Metabolism/genetics , Disease Models, Animal , Fatty Liver/genetics , Fatty Liver/metabolism , Fatty Liver/physiopathology , Female , Fetal Development/radiation effects , Fetus , Glucose/metabolism , Humans , Insulin/metabolism , Lipid Metabolism/genetics , Lipid Metabolism/radiation effects , Liver/pathology , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects , Radiation
11.
Am J Physiol Endocrinol Metab ; 318(3): E318-E329, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31961704

ABSTRACT

Browning of white adipose tissue (WAT) has been recognized as an important strategy for the treatment of obesity, insulin resistance, and diabetes. Enoyl coenzyme A hydratase 1 (ECH1) is a widely known enzyme involved in lipid metabolism. However, whether and how ECH1 is implicated in browning of WAT remain obscure. Adeno-associated, virus-mediated genetic engineering of ECH1 in adipose tissue was used in investigations in mouse models of obesity induced by a high-fat diet (HFD) or browning induced by cold exposure. Metabolic parameters showed that ECH1 overexpression decreased weight gain and improved insulin sensitivity and lipid profile after 8 wk of an HFD. Further work revealed that these changes were associated with enhanced energy expenditure and increased appearance of brown-like adipocytes in inguinal WAT, as verified by a remarkable increase in uncoupling protein 1 and thermogenic gene expression. In vitro, ECH1 induced brown fat-related gene expression in adipocytes differentiated from primary stromal vascular fractions, whereas knockdown of ECH1 reversed this effect. Mechanistically, ECH1 regulated the thermogenic program by inhibiting mammalian target of rapamycin signaling, which may partially explain the potential mechanism for ECH1 regulating adipose browning. In summary, ECH1 may participate in the pathology of obesity by regulating browning of WAT, which probably provides us with a new therapeutic strategy for combating obesity.


Subject(s)
Adipose Tissue, Brown/enzymology , Carbon-Carbon Double Bond Isomerases/genetics , Carbon-Carbon Double Bond Isomerases/metabolism , Genetic Therapy/methods , Metabolic Diseases/therapy , Obesity/therapy , Adipose Tissue, Brown/growth & development , Adipose Tissue, White/enzymology , Adipose Tissue, White/growth & development , Animals , Cold Temperature , Diet, High-Fat , Energy Metabolism , Genetic Engineering , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , TOR Serine-Threonine Kinases/metabolism , Thermogenesis , Weight Gain
12.
Front Endocrinol (Lausanne) ; 11: 607113, 2020.
Article in English | MEDLINE | ID: mdl-33551999

ABSTRACT

Background: Previous studies had suggested that electroacupuncture (EA) can promote white adipose tissue (WAT) browning to counter obesity. But the mechanism was still not very clear. Aim: In this study, we aim to study the effect of EA on promoting inguinal WAT (iWAT) browning and its possible mechanism. Method: Three-week-old rats were randomly divided into a normal diet (ND) group and a high-fat diet (HFD) group. After 10 weeks, the HFD rats were grouped into HFD + EA group and HFD control group. Rats in the EA group were electro-acupunctured for 4 weeks on Tianshu (ST25) acupoint under gas anesthesia with isoflurane, while the rats in HFD group were under gas anesthesia only. Body weight and cumulative food intake were monitored, and H&E staining was performed to assess adipocyte area. The effect of EA on WAT was assessed by qPCR, immunoblotting, immunoprecipitation and Co-immunoprecipitation. Mitochondria were isolated from IWAT to observe the expression of mitochondrial transcription factor A (TFAM). Results: The body weight, WAT/body weight ratio and cumulative food consumption obviously decreased (P < 0.05) in the EA group. The expressions of brown adipose tissue (BAT) markers were increased in the iWAT of EA rats. Nevertheless, the mRNA expressions of WAT genes were suppressed by 4-week EA treatment. Moreover, EA increased the protein expressions of SIRT-1, PPARγ, PGC-1α, UCP1 and PRDM16 which trigger the molecular conversion of iWAT browning. The decrease of PPARγ acetylation was also found in EA group, indicating EA could advance WAT-browning through SIRT-1 dependent PPARγ deacetylation pathway. Besides, we found that EA could activate AMPK to further regulate PGC-1α-TFAM-UCP1 pathway to induce mitochondrial biogenesis. Conclusion: In conclusion, EA can remodel WAT to BAT through inducing SIRT-1 dependent PPARγ deacetylation, and regulating PGC-1α-TFAM-UCP1 pathway to induce mitochondrial biogenesis. This may be one of the mechanisms by which EA affects weight loss.


Subject(s)
Adipose Tissue, Brown/growth & development , Adipose Tissue, White/growth & development , Electroacupuncture , Organelle Biogenesis , PPAR gamma/metabolism , Sirtuin 1/metabolism , AMP-Activated Protein Kinases/metabolism , Adipose Tissue, Brown/anatomy & histology , Adipose Tissue, White/anatomy & histology , Anesthesia, Inhalation , Animals , Body Weight , Diet, High-Fat , Eating , Male , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Signal Transduction , Transcription Factors/metabolism
13.
Biochim Biophys Acta Gene Regul Mech ; 1863(1): 194437, 2020 01.
Article in English | MEDLINE | ID: mdl-31730826

ABSTRACT

Browning of white adipocytes (WAs) (also referred as beige cells) was demonstrated to execute thermogenesis by consuming stored lipids as do brown adipocytes (BAs), and this is highly related to metabolic homeostasis. Alternative splicing (AS) constitutes a pivotal mechanism for defining cellular fates and functional specifications. Nevertheless, the impacts of AS regulation on the browning of WAs have not been comprehensively investigated. In this study, we first identified the discriminative expression and splicing profiles of the muscleblind-like 1 (MBNL1) gene in postnatal brown adipose tissues (BATs) compared to those of embryonic BATs. A shift in the MBNL1+ex 5 isoform 7 (MBNL17) to MBNL1-ex 5 isoform 1 (MBNL11) was characterized throughout BAT development or during the in vitro browning of pre-WAs, 3T3-L1 cells. The interplay between MBNL1 and the exonic CCUG motif constitutes an autoregulatory mechanism for excluding MBNL1 exon 5. The simultaneous association of RNA-binding motif protein 4a (RBM4a) with exonic and intronic CU elements collaboratively mediates the skipping of MBNL1 exon 5. Overexpressing the MBNL11 isoform exhibited a more-prominent effect than that of the MBNL17 isoform on programming its own transcripts and beige cell-related splicing events in a CCUG motif-mediated manner. In addition to splicing regulation, overexpression of the MBNL11 and MBNL17 isoforms differentially enhanced beige adipogenic signatures of 3T3-L1 cells. Our findings demonstrated that MBNL1 constitutes an emerging and autoregulatory mechanism involved in development of beige cells.


Subject(s)
Adipogenesis/genetics , Adipose Tissue, Brown/embryology , Adipose Tissue, Brown/growth & development , Alternative Splicing , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics , 3T3-L1 Cells , Adipose Tissue, Brown/metabolism , Animals , DNA-Binding Proteins/metabolism , Exons , Mice , Mice, Inbred C57BL , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Binding Proteins/metabolism
14.
Cell Rep ; 28(8): 2004-2011.e4, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31433978

ABSTRACT

Brown adipose tissue (BAT) is a thermogenic organ that maintains body temperature and energy homeostasis. Transcriptional regulation plays an important role in the program of brown adipogenesis. However, it remains unclear how the transcriptional events are controlled in this program. In this study, we analyze an SENP2 BAT conditional knockout mouse model and find that SENP2-mediated de-SUMOylation is essential for BAT development. SENP2 catalyzes de-SUMOylation of cAMP response element-binding protein (CREB) to suppress Necdin expression, which induces brown adipocyte differentiation and brown adipogenesis. Mechanistically, we find that SUMOylation enhances CREB interaction with serine/threonine protein phosphatase 2A (PP2A) to de-phosphorylate CREB, which activates Necdin transcription. SENP2 deficiency enhances the expression of Necdin to inhibit brown adipocyte differentiation. Therefore, we reveal a crucial role of SENP2-mediated de-SUMOylation of CREB in suppression of Necdin expression during brown adipose development and brown adipogenesis.


Subject(s)
Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Cell Differentiation , Cysteine Endopeptidases/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/growth & development , Animals , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Cysteine Endopeptidases/deficiency , Humans , Male , Mice , Sumoylation
15.
Biomed Res Int ; 2019: 1969413, 2019.
Article in English | MEDLINE | ID: mdl-31312653

ABSTRACT

The positive regulatory domain containing 16 (PRDM16) gene is a dominant transcriptional regulator that favors the "browning" of white adipocytes in rodents. Since the "browning" of white fat is important in pig in terms of producing heat fighting against cold environment, avoiding obesity, and improving meat quality, understanding the critical role that PRDM16 gene played in pig adipose "browning" and energy metabolism is of great significance. However, the constitution of pig fat differs a lot from rodents and human as they do not have brown adipose tissue (BAT) even in the newborn piglets. In this study, we isolated porcine primary preadipocytes and investigated the function of PRDM16 during preadipocytes differentiation. Our results showed that overexpression of the PR domain of PRDM16 repressed the differentiation of porcine preadipocytes, indicated by oil red O staining and the deposition of the triglyceride. Overexpression of the PR domain significantly increased the level of lipolysis and mitochondrial oxidative capacity detected by Western blotting during differentiation. Furthermore, we purified the protein coded by the PR domain and demonstrated that this protein has the H3K9me1 methyltransferase activity. In conclusion, the PR domain of the porcine PRDM16 gene repressed the mature of the porcine preadipocytes by promoting its oxidative activity.


Subject(s)
Adipose Tissue, White/growth & development , Energy Metabolism/genetics , Lipogenesis/genetics , Obesity/genetics , Adipocytes/metabolism , Adipose Tissue, Brown/growth & development , Adipose Tissue, White/metabolism , Animals , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation , Humans , Lipolysis/genetics , Obesity/physiopathology , Swine , Thermogenesis/genetics , Transcription Factors/genetics , Zinc Fingers/genetics
16.
Am J Physiol Endocrinol Metab ; 317(4): E573-E585, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31322429

ABSTRACT

Cortisol administration during late gestation in ewes, modeling maternal stress, resulted in transcriptomic changes suggesting altered maturation and metabolic changes to the offspring heart. This study investigates the effects of cortisol on epicardial adipose tissue (EAT), a visceral fat pad associated with adverse cardiovascular conditions in adults. Pregnant ewes were treated with either 1 mg·kg-1·day-1 cortisol from 115 days gestation to term and EAT collected from term fetuses (control: n = 8, maternal cortisol 1 mg·kg-1·day-1: n = 6). To compare the effects of cortisol to the normal maturation in EAT, we also modeled the normal changes in gene expression in EAT at the transition from in utero to postnatal life using the EAT from control fetuses and from two-week-old lambs (control: n = 7). Transcriptomic modeling was used to identify pathways altered by maternal cortisol overexposure. Transcriptomic modeling confirmed the brown fat phenotype of EAT at term and a transition toward white fat at 2 wk of age in EAT of control fetuses/lambs and highlighted a role of immune responses, including complement coagulation, and serotonin in this transition. Maternal cortisol (1 mg·kg-1·day-1) increased the lipid peroxidation product 4-hydroxynonenal in EAT of term fetuses but did not affect the number of activated macrophages or size of the lipid droplets in the depot; transcriptomics suggested an earlier metabolic maturation of EAT via, in part, increased immune responses.


Subject(s)
Adipose Tissue/drug effects , Animals, Newborn/physiology , Hydrocortisone/pharmacology , Pericardium/drug effects , Sheep, Domestic/physiology , Transcriptome/drug effects , Adipogenesis , Adipose Tissue/growth & development , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/growth & development , Adipose Tissue, White/drug effects , Adipose Tissue, White/growth & development , Animals , Female , Gene Expression/drug effects , Heart/drug effects , Lipid Peroxidation/drug effects , Myocardium/metabolism , Pericardium/growth & development , Pregnancy
17.
Mol Metab ; 23: 60-74, 2019 05.
Article in English | MEDLINE | ID: mdl-30833219

ABSTRACT

OBJECTIVE: Understanding the signaling mechanisms that control brown adipose tissue (BAT) development is relevant to understanding energy homeostasis and obesity. The AKT kinases are insulin effectors with critical in vivo functions in adipocytes; however, their role in adipocyte development remains poorly understood. The goal of this study was to investigate AKT function in BAT development. METHODS: We conditionally deleted Akt1 and Akt2 either individually or together with Myf5-Cre, which targets early mesenchymal precursors that give rise to brown adipocytes. Because Myf5-Cre also targets skeletal muscle and some white adipocyte lineages, comparisons were made between AKT function in BAT versus white adipose tissue (WAT) and muscle development. We also deleted both Akt1 and Akt2 in mature brown adipocytes with Ucp1-Cre or Ucp1-CreER to investigate AKT1/2 signaling in BAT maintenance. RESULTS: AKT1 and AKT2 are individually dispensable in Myf5-Cre lineages in vivo for establishing brown and white adipocyte precursor cell pools and for their ability to differentiate (i.e. induce PPARγ). AKT1 and AKT2 are also dispensable for skeletal muscle development, and AKT3 does not compensate in either the adipocyte or muscle lineages. In contrast, AKT2 is required for adipocyte lipid filling and efficient downstream AKT substrate phosphorylation. Mice in which both Akt1 and Akt2 are deleted with Myf5-Cre lack BAT but have normal muscle mass, and doubly deleting Akt1 and Akt2 in mature brown adipocytes, either congenitally (with Ucp1-Cre), or inducibly in older mice (with Ucp1-CreER), also ablates BAT. Mechanistically, AKT signaling promotes adipogenesis in part by stimulating ChREBP activity. CONCLUSIONS: AKT signaling is required in vivo for BAT development but dispensable for skeletal muscle development. AKT1 and AKT2 have both overlapping and distinct functions in BAT development with AKT2 being the most critical individual isoform. AKT1 and AKT2 also have distinct and complementary functions in BAT maintenance.


Subject(s)
Adipose Tissue, Brown/growth & development , Adipose Tissue, Brown/metabolism , Muscle Development/physiology , Proto-Oncogene Proteins c-akt/metabolism , Adipocytes, Brown/metabolism , Adipogenesis/physiology , Adipose Tissue, White/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/metabolism , Obesity/prevention & control , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics
18.
J Physiol Sci ; 69(1): 23-30, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29611149

ABSTRACT

In Syrian hamsters, brown adipose tissue (BAT) develops postnatally through the proliferation and differentiation of brown adipocyte progenitors. In the study reported here, we investigated how ambient temperature influenced BAT formation in neonatal hamsters. In both hamsters raised at 23 or 30 °C, the interscapular fat changed from white to brown coloration in an age-dependent manner and acquired the typical morphological features of BAT by day 16. However, the expression of uncoupling protein 1, a brown adipocyte marker, and of vascular endothelial growth factor α were lower in the group raised at 30 °C than in that raised at 23 °C. Immunofluorescent staining revealed that the proportion of Ki67-expressing progenitors and endothelial cells was lower in the 30 °C group than in the 23 °C group. These results indicate that warm ambient temperature suppresses the proliferation of brown adipocyte progenitors and endothelial cells and negatively affects the postnatal development of BAT in Syrian hamsters.


Subject(s)
Adipocytes/cytology , Adipose Tissue, Brown/growth & development , Cell Proliferation/physiology , Endothelial Cells/cytology , Temperature , Adipocytes/metabolism , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/metabolism , Animals , Endothelial Cells/metabolism , Female , Male , Mesocricetus , Uncoupling Protein 1/metabolism , Vascular Endothelial Growth Factor A/metabolism
19.
Article in English | MEDLINE | ID: mdl-29704660

ABSTRACT

White adipose tissue (WAT) is the primary energy storage organ and its excess contributes to obesity, while brown adipose tissue (BAT) and inducible thermogenic (beige/brite) adipocytes in WAT dissipate energy via Ucp1 to maintain body temperature. BAT and subcutaneous WAT develop perinatally while visceral WAT forms after birth from precursors expressing distinct markers, such as Myf5, Pref-1, Wt1, and Prx1, depending on the anatomical location. In addition to the embryonic adipose precursors, a pool of endothelial cells or mural cells expressing Pparγ, Pdgfrß, Sma and Zfp423 may become adipocytes during WAT expansion in adults. Several markers, such as Cd29, Cd34, Sca1, Cd24, Pdgfrα and Pref-1 are detected in adult WAT SVF cells that can be differentiated into adipocytes. However, potential heterogeneity and differences in developmental stage of these cells are not clear. Beige cells form in a depot- and condition-specific manner by de novo differentiation of precursors or by transdifferentiation. Thermogenic gene activation in brown and beige adipocytes relies on common transcriptional machinery that includes Prdm16, Zfp516, Pgc1α and Ebf2. Moreover, through changing the chromatin landscape, histone methyltransferases, such as Mll3/4 and Ehmt1, as well as demethylases, such as Lsd1, play an important role in regulating the thermogenic gene program. With the presence of BAT and beige/brite cells in human adults, increasing thermogenic activity of BAT and BAT-like tissues may help promote energy expenditure to combat obesity.


Subject(s)
Adipose Tissue, Brown/growth & development , Adipose Tissue, White/growth & development , Animals , Epigenesis, Genetic , Humans
20.
J Biochem ; 165(1): 47-55, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30295852

ABSTRACT

Brown adipocytes play a critical role for adaptive thermogenesis to regulate body temperature in cold or to circumvent diet-induced obesity. In this study, we investigated the role of cellular repressor of E1A-stimulated genes 1 (CREG1) on brown adipogenesis and uncoupling protein 1 (UCP1) expression by using in vitro culture models. In murine mesenchymal stem cell line C3H10T1/2, Creg1 mRNA expression significantly increased in a time-dependent manner along with Ucp1 mRNA induction in brown adipogenesis. Creg1 gene overexpression upregulated the expression of brown fat-related genes including Ucp1 but its suppression downregulated these gene expression in C3H10T1/2 cells. Unlike the brown adipogenesis, Creg1 mRNA expression decreased significantly after differentiation stimulation in white adipogenesis of 3T3-L1 cells. Either Creg1 gene overexpression or suppression hardly affected white adipogenesis. In addition, CREG1 protein stimulated brown adipogenesis and rescued the adipogenesis in the absence of thyroid hormone in C3H10T1/2 cells. In reporter assay, CREG1 induction stimulated Ucp1 promoter activity, which was enhanced by co-expression with thyroid hormone receptors. The effect of CREG1 on Ucp1 promoter activity was also stimulated by retinoic acid. These results strongly suggest that CREG1 plays an important role on the regulation of UCP1 expression and brown adipogenesis.


Subject(s)
Adipogenesis/physiology , Adipose Tissue, Brown/growth & development , Repressor Proteins/physiology , Uncoupling Protein 1/metabolism , Adipose Tissue, White/physiology , Animals , Cell Line , Down-Regulation , Gene Expression Regulation/physiology , Mice, Inbred C3H , Promoter Regions, Genetic/drug effects , RNA, Messenger/biosynthesis , Thermogenesis , Thyroid Hormones/physiology , Tretinoin/pharmacology , Uncoupling Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL