Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 613
Filter
1.
Metab Brain Dis ; 39(5): 741-752, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833094

ABSTRACT

Apoptosis is the crucial pathological mechanism following cerebral ischemic injury. Our previous studies demonstrated that clonidine, one agonist of alpha2-adrenergic receptor (α2-AR), could attenuate cerebral ischemic injury in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). However, it's unclear whether clonidine exerts neuroprotective effects by regulating neuronal apoptosis. In this study, we elucidated whether clonidine can exert anti-apoptotic effects in cerebral ischemic injury, and further explored the possible mechanisms. Neurological deficit score was measured to evaluate the neurological function. TTC staining was used for the measurement of brain infarct size. Hematoxylin-Eosin (HE) staining was applied to examine the cell morphology. TUNEL and DAPI fluorescent staining methods were used to analyze the cell apoptosis in brain tissue. Fluorescence quantitative real-time PCR was performed to assess the gene expression of Caspase-3 and P53. Western blotting assay was applied to detect the protein expression of Caspase-3 and P53. The results showed that clonidine improved neurological function, reduced brain infarct size, alleviated neuronal damage, and reduced the ratio of cell apoptosis in the brain with MCAO/R injury. moreover, clonidine down-regulated the gene and protein expression of Caspase-3 and P53 which were over-expressed after MCAO/R injury. Whereas, yohimbine (one selective α2-AR antagonist) mitigated the anti-apoptosis effects of clonidine, accompanied by reversed gene and protein expression changes. The results indicated that clonidine attenuated cerebral MCAO/R injury via suppressing neuronal apoptosis, which may be mediated, at least in part, by activating α2-AR.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Apoptosis , Clonidine , Neurons , Neuroprotective Agents , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Clonidine/pharmacology , Clonidine/therapeutic use , Apoptosis/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Male , Rats , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/prevention & control , Infarction, Middle Cerebral Artery/drug therapy , Caspase 3/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology
2.
Eur J Psychotraumatol ; 15(1): 2366049, 2024.
Article in English | MEDLINE | ID: mdl-38941125

ABSTRACT

Background: Clonidine is a centrally acting anti-adrenergic agent that may have applications in post-traumatic stress disorder (PTSD), particularly for sleep.Objective: In this systematic review, we aimed to summarize the effect of clonidine on sleep quality and duration, nightmares, and PTSD symptom severity in adults with PTSD.Method: PubMed (Medline), Embase, PsycINFO, CINAHL, and clinicaltrials.gov were searched up to April 2023. Studies on clonidine use in adult PTSD patients reporting data on the effect on sleep, nightmares, and PTSD symptoms were included. A narrative summary and a meta-analysis of the study findings are presented.Results: Ten reports, accounting for N = 569 patients with PTSD (145 on clonidine and 436 controls), were included in the final selection. There were four case reports, four observational studies, one non-blind clinical trial, and one crossover randomized controlled trial (RCT). Median clonidine dose was 0.15 mg/day (range: 0.1-0.5 mg/day). Median follow-up time was 31 days (range: 3 days to 19 months). The quality of the evidence was rated from very low to low. There was marked between-study heterogeneity and low power in the individual studies, but many reported improved sleep quality, nightmare reduction, and improvement of PTSD symptoms for patients treated with clonidine. Meta-analysis was only possible for two studies reporting the effect of clonidine on nightmares, and showed no difference from the comparator (i.e. prazosin or terazosin) (odds ratio: 1.16; 95% confidence interval: 0.66 to 2.05), potentially pointing towards non-inferiority between these medications.Conclusions: Future research, such as well-powered RCTs, is needed to identify the efficacy in the lower dose range and the most suitable treatment group, and to obtain good evidence on the effects of clonidine in the treatment of sleep disorders related to PTSD.


Post-traumatic stress disorder (PTSD) is associated with hyperarousal and sleep disorders, reflecting adrenergic nervous system involvement.The use of anti-adrenergic drugs to target the sympathetic activation in PTSD is rational. However, previous reports on prazosin, a peripherally acting agent, yielded weak evidence.Clonidine, a central adrenergic antagonist, shows promise in improving sleep, nightmares, and PTSD symptoms, but further research is needed because the quality of the current evidence is low.


Subject(s)
Clonidine , Stress Disorders, Post-Traumatic , Clonidine/therapeutic use , Humans , Stress Disorders, Post-Traumatic/drug therapy , Dreams/drug effects , Sleep Quality , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Adrenergic alpha-2 Receptor Agonists/administration & dosage
3.
Biol Pharm Bull ; 47(6): 1204-1208, 2024.
Article in English | MEDLINE | ID: mdl-38910124

ABSTRACT

Guanfacine, used as a medication for attention-deficit/hyperactivity disorder (ADHD), leads to a high incidence of somnolence, in contrast to methylphenidate, which leads to a high incidence of insomnia. The impact of somnolence on continuing guanfacine treatment is unclear. Therefore, we investigated the reasons for discontinuing guanfacine and analyzed the factors associated with discontinuation caused by somnolence. We surveyed 96 patients under guanfacine from July 2017 to December 2021 at the Saga University Hospital. Patients who discontinued guanfacine by the end date of our study were divided into a median early and late group. We compared the reasons for discontinuation in both groups. Of all patients, 47 continued and 49 discontinued guanfacine. A higher percentage of patients discontinued guanfacine caused by somnolence for ≤70 d than for >70 d of treatment (44.0 vs. 8.3%; p = 0.008). When stratified by the concomitant use of other ADHD drugs, somnolence resulted in a higher discontinuation rate for ≤70 d than for >70 d of treatment without concomitant use (55.0 vs. 7.1%; p = 0.009). Nonetheless, concomitant use resulted in no difference. In conclusion, somnolence affects the early discontinuation of guanfacine as an ADHD drug. The combination of methylphenidate or atomoxetine may decrease withdrawal caused by somnolence.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Guanfacine , Guanfacine/adverse effects , Guanfacine/therapeutic use , Humans , Attention Deficit Disorder with Hyperactivity/drug therapy , Male , Female , Child , Adolescent , Sleepiness , Adrenergic alpha-2 Receptor Agonists/adverse effects , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Adrenergic alpha-2 Receptor Agonists/administration & dosage , Methylphenidate/adverse effects
4.
Surgery ; 176(2): 379-385, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38762380

ABSTRACT

BACKGROUND: Sepsis, characterized by dysregulated host responses to infection, remains a critical global health concern, with high morbidity and mortality rates. The gastrointestinal tract assumes a pivotal role in sepsis due to its dual functionality as a protective barrier against injurious agents and as a regulator of motility. Dexmedetomidine, an α2-adrenergic agonist commonly employed in critical care settings, exhibits promise in influencing the maintenance of intestinal barrier integrity during sepsis. However, its impact on intestinal motility, a crucial component of intestinal function, remains incompletely understood. METHODS: In this study, we investigated dexmedetomidine's multifaceted effects on intestinal barrier function and motility during sepsis using both in vitro and in vivo models. Sepsis was induced in Sprague-Dawley rats via cecal ligation and puncture. Rats were treated with dexmedetomidine post-cecal ligation and puncture, and various parameters were assessed to elucidate dexmedetomidine's impact. RESULTS: Our findings revealed a dichotomous influence of dexmedetomidine on intestinal physiology. In septic rats, dexmedetomidine administration resulted in improved intestinal barrier integrity, as evidenced by reduced mucosal hyper-permeability and morphological alterations. However, a contrasting effect was observed on intestinal motility, as dexmedetomidine treatment inhibited both the frequency and amplitude of contractions in isolated intestinal strips and decreased the distance of ink migration in vivo. Additionally, dexmedetomidine suppressed the secretion of pro-motility hormones while having no influence on hormones that inhibit intestinal peristalsis. CONCLUSION: The study revealed that during sepsis, dexmedetomidine exhibited protective effects on barrier integrity, although concurrently it hindered intestinal motility, partly attributed to its modulation of pro-motility hormone secretion. These findings underscore the necessity of a comprehensive understanding of dexmedetomidine's impact on multiple facets of gastrointestinal physiology in sepsis management, offering potential implications for therapeutic strategies and patient care.


Subject(s)
Dexmedetomidine , Gastrointestinal Motility , Rats, Sprague-Dawley , Sepsis , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Animals , Sepsis/drug therapy , Gastrointestinal Motility/drug effects , Rats , Male , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Disease Models, Animal , Permeability/drug effects
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731821

ABSTRACT

In contrast to cats and dogs, here we report that the α2-adrenergic receptor antagonist yohimbine is emetic and corresponding agonists clonidine and dexmedetomidine behave as antiemetics in the least shrew model of vomiting. Yohimbine (0, 0.5, 0.75, 1, 1.5, 2, and 3 mg/kg, i.p.) caused vomiting in shrews in a bell-shaped and dose-dependent manner, with a maximum frequency (0.85 ± 0.22) at 1 mg/kg, which was accompanied by a key central contribution as indicated by increased expression of c-fos, serotonin and substance P release in the shrew brainstem emetic nuclei. Our comparative study in shrews demonstrates that clonidine (0, 0.1, 1, 5, and 10 mg/kg, i.p.) and dexmedetomidine (0, 0.01, 0.05, and 0.1 mg/kg, i.p.) not only suppress yohimbine (1 mg/kg, i.p.)-evoked vomiting in a dose-dependent manner, but also display broad-spectrum antiemetic effects against diverse well-known emetogens, including 2-Methyl-5-HT, GR73632, McN-A-343, quinpirole, FPL64176, SR141716A, thapsigargin, rolipram, and ZD7288. The antiemetic inhibitory ID50 values of dexmedetomidine against the evoked emetogens are much lower than those of clonidine. At its antiemetic doses, clonidine decreased shrews' locomotor activity parameters (distance moved and rearing), whereas dexmedetomidine did not do so. The results suggest that dexmedetomidine represents a better candidate for antiemetic potential with advantages over clonidine.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Antiemetics , Clonidine , Dexmedetomidine , Vomiting , Yohimbine , Animals , Male , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Antiemetics/pharmacology , Antiemetics/therapeutic use , Clonidine/pharmacology , Clonidine/analogs & derivatives , Clonidine/therapeutic use , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Disease Models, Animal , Emetics/pharmacology , Shrews , Vomiting/drug therapy , Vomiting/chemically induced , Yohimbine/pharmacology
6.
BMJ Open ; 14(4): e081637, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580355

ABSTRACT

INTRODUCTION: An association between deep sedation and adverse short-term outcomes has been demonstrated although this evidence has been inconsistent. The A2B (alpha-2 agonists for sedation in critical care) sedation trial is designed to determine whether the alpha-2 agonists clonidine and dexmedetomidine, compared with usual care, are clinically and cost-effective. The A2B intervention is a complex intervention conducted in 39 intensive care units (ICUs) in the UK. Multicentre organisational factors, variable cultures, perceptions and practices and the involvement of multiple members of the healthcare team add to the complexity of the A2B trial. From our pretrial contextual exploration it was apparent that routine practices such as type and frequency of pain, agitation and delirium assessment, as well as the common sedative agents used, varied widely across the UK. Anticipated challenges in implementing A2B focused on the impact of usual practice, perceptions of risk, ICU culture, structure and the presence of equipoise. Given this complexity, a process evaluation has been embedded in the A2B trial to uncover factors that could impact successful delivery and explore their impact on intervention delivery and interpretation of outcomes. METHODS AND ANALYSIS: This is a mixed-methods process evaluation guided by the A2B intervention logic model. It includes two phases of data collection conducted during and at the end of trial. Data will be collected using a combination of questionnaires, stakeholder interviews and routinely collected trial data. A framework approach will be used to analyse qualitative data with synthesis of data within and across the phases. The nature of the relationship between delivery of the A2B intervention and the trial primary and secondary outcomes will be explored. ETHICS AND DISSEMINATION: All elements of the A2B trial, including the process evaluation, are approved by Scotland A Research Ethics Committee (Ref. 18/SS/0085). Dissemination will be via publications, presentations and media engagement. TRIAL REGISTRATION NUMBER: NCT03653832.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Critical Illness , Humans , Critical Illness/therapy , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Hypnotics and Sedatives/therapeutic use , Intensive Care Units , Critical Care/methods , Randomized Controlled Trials as Topic
8.
Biomed Pharmacother ; 174: 116462, 2024 May.
Article in English | MEDLINE | ID: mdl-38513598

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) was reported to be one of the initiators of chronic kidney disease (CKD) development. Necroinflammation may contribute to the progression from AKI to CKD. Dexmedetomidine (Dex), a highly selective α2-adrenoreceptor (AR) agonist, has cytoprotective and "anti-" inflammation effects. This study was designed to investigate the anti-fibrotic properties of Dex in sepsis models. METHODS: C57BL/6 mice were randomly treated with an i.p. injection of lipopolysaccharides (LPS) (10 mg/kg) alone, LPS with Dex (25 µg/kg), or LPS, Dex and Atipamezole (Atip, an α2-adrenoreceptor antagonist) (500 µg/kg) (n=5/group). Human proximal tubular epithelial cells (HK2) were also cultured and then exposed to LPS (1 µg/ml) alone, LPS and Dex (1 µM), transforming growth factor-beta 1 (TGF-ß1) (5 ng/ml) alone, TGF-ß1 and Dex, with or without Atip (100 µM) in culture media. Epithelial-mesenchymal transition (EMT), cell necrosis, necroptosis and pyroptosis, and c-Jun N-terminal kinase (JNK) phosphorylation were then determined. RESULTS: Dex treatment significantly alleviated LPS-induced AKI, myofibroblast activation, NLRP3 inflammasome activation, and necroptosis in mice. Atip counteracted its protective effects. Dex attenuated LPS or TGF-ß1 induced EMT and also prevented necrosis, necroptosis, and pyroptosis in response to LPS stimulation in the HK2 cells. The anti-EMT effects of Dex were associated with JNK phosphorylation. CONCLUSIONS: Dex reduced EMT following LPS stimulation whilst simultaneously inhibiting pyroptosis and necroptosis via α2-AR activation in the renal tubular cells. The "anti-fibrotic" and cytoprotective properties and its clinical use of Dex need to be further studied.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Dexmedetomidine , Fibrosis , Mice, Inbred C57BL , Receptors, Adrenergic, alpha-2 , Animals , Humans , Mice , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Cell Line , Dexmedetomidine/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Lipopolysaccharides/pharmacology , Necroptosis/drug effects , Phenotype , Receptors, Adrenergic, alpha-2/drug effects , Receptors, Adrenergic, alpha-2/metabolism
9.
J Cell Physiol ; 239(4): e31181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219076

ABSTRACT

Stress-induced hair loss is a prevalent health concern, with mechanisms that remain unclear, and effective treatment options are not yet available. In this study, we investigated whether stress-induced hair loss was related to an imbalanced immune microenvironment. Screening the skin-infiltrated immune cells in a stressed mouse model, we discovered a significant increase in macrophages upon stress induction. Clearance of macrophages rescues mice from stress-induced hair shedding and depletion of hair follicle stem cells (HFSCs) in the skin, demonstrating the role of macrophages in triggering hair loss in response to stress. Further flow cytometry analysis revealed a significant increase in M1 phenotype macrophages in mice under stressed conditions. In searching for humoral factors mediating stress-induced macrophage polarization, we found that the hormone Norepinephrine (NE) was elevated in the blood of stressed mice. In addition, in-vivo and in-vitro studies confirm that NE can induce macrophage polarization toward M1 through the ß-adrenergic receptor, Adrb2. Transcriptome, enzyme-linked immunosorbent assay (ELISA), and western blot analyses reveal that the NLRP3/caspase-1 inflammasome signaling and its downstream effector interleukin 18 (IL-18) and interleukin 1 beta (IL-1ß) were significantly upregulated in the NE-treated macrophages. However, inhibition of the NE receptor Adrb2 with ICI118551 reversed the upregulation of NLRP3/caspase-1, IL-18, and IL-1ß. Indeed, IL-18 and IL-1ß treatments lead to apoptosis of HFSCs. More importantly, blocking IL-18 and IL-1ß signals reversed HFSCs depletion in skin organoid models and attenuated stress-induced hair shedding in mice. Taken together, this study demonstrates the role of the neural (stress)-endocrine (NE)-immune (M1 macrophages) axis in stress-induced hair shedding and suggestes that IL-18 or IL-1ß may be promising therapeutic targets.


Subject(s)
Alopecia , Interleukin-18 , Interleukin-1beta , NLR Family, Pyrin Domain-Containing 3 Protein , Stress, Psychological , Animals , Mice , Alopecia/immunology , Caspases , Inflammasomes , Interleukin-18/genetics , Interleukin-18/pharmacology , Interleukin-18/therapeutic use , Interleukin-1beta/genetics , Interleukin-1beta/pharmacology , Interleukin-1beta/therapeutic use , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Stress, Psychological/complications , Norepinephrine/therapeutic use , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Apoptosis/drug effects
10.
BMJ Support Palliat Care ; 13(e3): e876-e880, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37076261

ABSTRACT

OBJECTIVES: Alpha-2 agonists have analgesic and sedative properties that can prove interesting in palliative care. The main objective of this study was to describe the use of clonidine and dexmedetomidine in palliative care units (PCU). The secondary objective was to identify physicians' perspectives and attitudes toward alpha-2-agonists. METHODS: International multicentric qualitative survey of prescribing characteristics and attitudes towards alpha-2 agonist. All 159 PCUs in France, Belgium and French-speaking Switzerland were contacted, and 142 physicians answered the questionnaire (31% participation). RESULTS: 20% of the practitioners surveyed prescribe these molecules are mainly for analgesic and sedative indications. There was considerable heterogeneity in the modalities and dosages of administration. The use of clonidine is more frequent and common in Belgium, while dexmedetomidine is only used in France. There is a high level of satisfaction among practitioners who use these molecules, with the desire of the majority of respondents to obtain additional studies and information on alpha-2-agonists. CONCLUSION: Alpha-2 agonists are little known and little prescribed by French-speaking palliative care physicians but are of interest because of their potential in this field. Phase 3 studies could justify the use of these molecules in palliative situations and would contribute to harmonising professional practices.


Subject(s)
Dexmedetomidine , Palliative Medicine , Humans , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Analgesics , Clonidine/therapeutic use , Dexmedetomidine/therapeutic use , Hypnotics and Sedatives
11.
BMJ Open ; 13(12): e078645, 2023 12 10.
Article in English | MEDLINE | ID: mdl-38072483

ABSTRACT

INTRODUCTION: Almost all patients receiving mechanical ventilation (MV) in intensive care units (ICUs) require analgesia and sedation. The most widely used sedative drug is propofol, but there is uncertainty whether alpha2-agonists are superior. The alpha 2 agonists for sedation to produce better outcomes from critical illness (A2B) trial aims to determine whether clonidine or dexmedetomidine (or both) are clinically and cost-effective in MV ICU patients compared with usual care. METHODS AND ANALYSIS: Adult ICU patients within 48 hours of starting MV, expected to require at least 24 hours further MV, are randomised in an open-label three arm trial to receive propofol (usual care) or clonidine or dexmedetomidine as primary sedative, plus analgesia according to local practice. Exclusions include patients with primary brain injury; postcardiac arrest; other neurological conditions; or bradycardia. Unless clinically contraindicated, sedation is titrated using weight-based dosing guidance to achieve a Richmond-Agitation-Sedation score of -2 or greater as early as considered safe by clinicians. The primary outcome is time to successful extubation. Secondary ICU outcomes include delirium and coma incidence/duration, sedation quality, predefined adverse events, mortality and ICU length of stay. Post-ICU outcomes include mortality, anxiety and depression, post-traumatic stress, cognitive function and health-related quality of life at 6-month follow-up. A process evaluation and health economic evaluation are embedded in the trial.The analytic framework uses a hierarchical approach to maximise efficiency and control type I error. Stage 1 tests whether each alpha2-agonist is superior to propofol. If either/both interventions are superior, stages 2 and 3 testing explores which alpha2-agonist is more effective. To detect a mean difference of 2 days in MV duration, we aim to recruit 1437 patients (479 per group) in 40-50 UK ICUs. ETHICS AND DISSEMINATION: The Scotland A REC approved the trial (18/SS/0085). We use a surrogate decision-maker or deferred consent model consistent with UK law. Dissemination will be via publications, presentations and updated guidelines. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT03653832.


Subject(s)
Dexmedetomidine , Propofol , Adult , Humans , Propofol/therapeutic use , Dexmedetomidine/therapeutic use , Cost-Benefit Analysis , Clonidine/therapeutic use , Critical Illness/therapy , Quality of Life , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Hypnotics and Sedatives/therapeutic use , Pain/chemically induced , Intensive Care Units , United Kingdom , Respiration, Artificial , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase III as Topic
12.
Eur J Pharmacol ; 959: 176090, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37778612

ABSTRACT

BACKGROUND: Intestinal ischemia/reperfusion injury (IRI) is a multifactorial, complex pathophysiological process in clinical settings. In recent years, intestinal IRI has received increasing attention due to increased morbidity and mortality. To date, there are no effective treatments. Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, has been demonstrated to be effective against intestinal IRI. In this systematic review and meta-analysis, we evaluated the efficacy and potential mechanisms of DEX as a treatment for intestinal IRI in animal models. METHODS: Five databases (PubMed, Embase, Web of Science, Cochrane Library, and Scopus) were searched until March 15, 2023. Using the SYRCLE risk bias tool, we assessed methodological quality. Statistical analysis was conducted using STATA 12 and R 4.2.2. We analyzed the related outcomes (mucosa damage-related indicators; inflammation-relevant markers, oxidative stress markers) relied on the fixed or random-effects models. RESULTS: There were 15 articles including 18 studies included, and 309 animals were involved in the studies. Compared to the model groups, DEX improved intestinal IRI. DEX decreased Chiu's score and serum diamine oxidase (DAO) level. DEX reduced the level of inflammation-relevant markers (interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α). DEX also improved oxidative stress (decreased malondialdehyde (MDA), increased superoxide dismutase (SOD)). CONCLUSIONS: DEX's effectiveness in ameliorating intestinal IRI has been demonstrated in animal models. Antioxidation, anti-inflammation, anti-apoptotic, anti-pyroptosis, anti-ferroptosis, enhancing mitophagy, reshaping the gut microbiota, and gut barrier protection are possible mechanisms. However, in light of the heterogeneity and methodological quality of these studies, further well-designed preclinical studies are warranted before clinical implication.


Subject(s)
Dexmedetomidine , Reperfusion Injury , Rats , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Rats, Sprague-Dawley , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Reperfusion Injury/pathology , Inflammation/drug therapy , Ischemia/drug therapy
13.
CNS Drugs ; 37(7): 655-660, 2023 07.
Article in English | MEDLINE | ID: mdl-37430151

ABSTRACT

BACKGROUND AND OBJECTIVE: In our outpatient pediatric and adult psychiatry centers, we reserve psychostimulants for predominantly inattentive attention deficit hyperactivity disorder (ADHD) due to the potential for appetite and growth suppression, insomnia, wear off, exacerbation of mood, anxiety, and tics, or misuse. We utilize extended-release (ER) alpha-2 agonists primarily for hyperactivity/impulsivity but find them less effective for inattention, and they can cause sedation and hypotension. Oftentimes, we need to combine an alpha-2 agonist for behavior with psychostimulants for inattention. We employ atomoxetine or viloxazine ER (VER) for combined ADHD. However, our patients' insurers mandate a trial of generic atomoxetine prior to covering branded VER. The objective of this study was to determine whether pediatric and adult patients taking atomoxetine for DSM-5-TR ADHD combined type would experience improvement in ADHD symptoms following voluntary, open-label switch to VER. METHODS: 50 patients (35 children) received mean doses of atomoxetine 60 mg (25-100 mg once daily) followed by VER 300 mg (100-600 mg once daily) after a 5-day atomoxetine washout. Both atomoxetine and VER were flexibly titrated according to US Food and Drug Administration (FDA) guidelines. The pediatric ADHD-Rating Scale-5 (ADHD-RS-5) and the Adult Investigator Symptom Rating Scale (AISRS) were completed prior to starting atomoxetine, and 4 weeks after treatment with atomoxetine or upon earlier response or discontinuation due to side effects, whichever occurred first; the same protocol was used after treatment with VER. We conducted a blinded, de-identified, retrospective review of charts from these 50 patients in the regular course of outpatient practice. Statistical analysis was performed using a within-subject, 2-tailed t-test with significance level of p < 0.05. RESULTS: From the baseline total ADHD-RS-5 mean score (40.3 ± 10.3), improvements were greater on VER (13.9 ± 10.2) than atomoxetine (33.1 ± 12.1; t = - 10.12, p < 0.00001) in inattention (t = - 8.57, p < 0.00001) and in hyperactivity/impulsivity (t = - 9.87, p < 0.00001). From the baseline total AISRS mean score (37.3 ± 11.8), improvements were greater on VER (11.9 ± 9.4) than atomoxetine (28.8 ± 14.9; t = - 4.18, p = 0.0009) in inattention (t = - 3.50, p < 0.004) and in hyperactivity/impulsivity (t = - 3.90, p < 0.002). Of patients on VER, 86% reported positive response by 2 weeks versus 14% on atomoxetine. A total of 36% discontinued atomoxetine for side effects, including gastrointestinal (GI) upset (6 patients), irritability (6), fatigue (5), and insomnia (1), versus 4% who discontinued VER due to fatigue. A total of 96% preferred VER over atomoxetine, with 85% (22 out of 26) choosing to taper psychostimulants following stabilization on VER. CONCLUSIONS: Pediatric and adult ADHD patients who have experienced less than optimal response to atomoxetine demonstrate rapid improvement in inattention and in hyperactivity/impulsivity with greater tolerability on extended-release viloxazine.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Sleep Initiation and Maintenance Disorders , Viloxazine , Adult , Humans , Child , Atomoxetine Hydrochloride/therapeutic use , Attention Deficit Disorder with Hyperactivity/drug therapy , Sleep Initiation and Maintenance Disorders/chemically induced , Retrospective Studies , Propylamines/therapeutic use , Propylamines/adverse effects , Treatment Outcome , Central Nervous System Stimulants/therapeutic use , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Adrenergic Uptake Inhibitors , Double-Blind Method
14.
Nature ; 618(7965): 607-615, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286594

ABSTRACT

Immunotherapy based on immunecheckpoint blockade (ICB) using antibodies induces rejection of tumours and brings clinical benefit in patients with various cancer types1. However, tumours often resist immune rejection. Ongoing efforts trying to increase tumour response rates are based on combinations of ICB with compounds that aim to reduce immunosuppression in the tumour microenvironment but usually have little effect when used as monotherapies2,3. Here we show that agonists of α2-adrenergic receptors (α2-AR) have very strong anti-tumour activity when used as monotherapies in multiple immunocompetent tumour models, including ICB-resistant models, but not in immunodeficient models. We also observed marked effects in human tumour xenografts implanted in mice reconstituted with human lymphocytes. The anti-tumour effects of α2-AR agonists were reverted by α2-AR antagonists, and were absent in Adra2a-knockout (encoding α2a-AR) mice, demonstrating on-target action exerted on host cells, not tumour cells. Tumours from treated mice contained increased infiltrating T lymphocytes and reduced myeloid suppressor cells, which were more apoptotic. Single-cell RNA-sequencing analysis revealed upregulation of innate and adaptive immune response pathways in macrophages and T cells. To exert their anti-tumour effects, α2-AR agonists required CD4+ T lymphocytes, CD8+ T lymphocytes and macrophages. Reconstitution studies in Adra2a-knockout mice indicated that the agonists acted directly on macrophages, increasing their ability to stimulate T lymphocytes. Our results indicate that α2-AR agonists, some of which are available clinically, could substantially improve the clinical efficacy of cancer immunotherapy.


Subject(s)
Adrenergic alpha-2 Receptor Agonists , Neoplasms , Receptors, Adrenergic, alpha-2 , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Neoplasms/drug therapy , Neoplasms/immunology , Signal Transduction/drug effects , Tumor Microenvironment , Receptors, Adrenergic, alpha-2/metabolism , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Adrenergic alpha-2 Receptor Antagonists/pharmacology , Macrophages/drug effects , Macrophages/immunology , Mice, Knockout , Single-Cell Gene Expression Analysis
15.
Int Immunopharmacol ; 117: 109910, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37012886

ABSTRACT

OBJECTIVE: Dexmedetomidine (Dex) is a highly selective α2-adrenoceptor agonist with sedative, analgesic, sympatholytic, and hemodynamic-stabilizing properties, which plays a neuroprotective role in diabetic peripheral neuropathy (DPN) and diabetes-induced nerve damage. However, the related molecular mechanisms are not fully understood. Therefore, our study explored the mechanism of Dex in DPN using rat and RSC96 cell models. METHODS: Sciatic nerve sections were observed under an optical microscope and the ultrastructure of the sciatic nerves was observed under a transmission electron microscope. Oxidative stress was assessed by detecting MDA, SOD, GSH-Px, and ROS levels. The motor nerve conduction velocity (MNCV), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) of rats were measured. Cell viability, apoptosis, and the changes in the expression of related genes and proteins were examined. Furthermore, the relationship between microRNA (miR)-34a and SIRT2 or SIRT2 and S1PR1 was analyzed. RESULTS: Dex reversed DPN-induced decreases in MNCV, MWT, and TWL. Dex alleviated oxidative stress, mitochondrial damage, and apoptosis in both the rat and RSC96 cell models of DPN. Mechanistically, miR-34a negatively targeted SIRT2, and SIRT2 inhibited S1PR1 transcription. The overexpression of miR-34a or S1PR1 or the inhibition of SIRT2 counteracted the neuroprotective effects of Dex in DPN in vivo and in vitro. CONCLUSION: Dex alleviates oxidative stress and mitochondrial dysfunction associated with DPN by downregulating miR-34a to regulate the SIRT2/S1PR1 axis.


Subject(s)
Dexmedetomidine , Diabetes Mellitus , Diabetic Neuropathies , MicroRNAs , Rats , Animals , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Diabetic Neuropathies/drug therapy , Sirtuin 2/metabolism , Oxidative Stress , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , MicroRNAs/metabolism , Mitochondria/metabolism , Apoptosis , Sphingosine-1-Phosphate Receptors/metabolism
16.
Naunyn Schmiedebergs Arch Pharmacol ; 396(8): 1827-1836, 2023 08.
Article in English | MEDLINE | ID: mdl-36877270

ABSTRACT

Comprehensive epidemiological analyses conducted in the last 30 years have revealed a link between radiation and DM. We aimed to determine the effects of dexmedetomidine pretreatment on radiation-induced pancreatic islet cell damage. Twenty-four rats were divided into three groups: group 1 (control group), group 2 (only X-ray irradiation group), and group 3 (X-ray irradiation + dexmedetomidine). We observed necrotic cells with vacuoles accompanying loss of cytoplasm in the islets of Langerhans, extensive edematous areas, and vascular congestions in group 2. In group 3, we observed a decrease in necrotic cells in the islets of Langerhans, and edematous areas and vascular congestion was also reduced. We determined a decrease in ß-cells, α-cells, and D-cells in the islets of Langerhans in group 2 compared to the control group. In group 3, ß-cells, α-cells, and D-cells were elevated compared to group 2. Ionizing radiation may induce DM. Dexmedetomidine appears to exert a radioprotective effect.


Subject(s)
Dexmedetomidine , Diabetes Mellitus, Experimental , Insulin-Secreting Cells , Islets of Langerhans , Rats , Animals , Dexmedetomidine/pharmacology , X-Rays , Diabetes Mellitus, Experimental/complications , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use
18.
Pharmacopsychiatry ; 56(2): 44-50, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36384232

ABSTRACT

Drug repurposing is a strategy to identify new indications for already approved drugs. A recent successful example in psychiatry is ketamine, an anesthetic drug developed in the 1960s, now approved and clinically used as a fast-acting antidepressant. Here, we describe the potential of dexmedetomidine as a psychopharmacological repurposing candidate. This α2-adrenoceptor agonist is approved in the US and Europe for procedural sedation in intensive care. It has shown fast-acting inhibitory effects on perioperative stress-related pathologies, including psychomotor agitation, hyperalgesia, and neuroinflammatory overdrive, proving potentially useful in clinical psychiatry. We offer an overview of the pharmacological profile and effects of dexmedetomidine with potential utility for the treatment of neuropsychiatric symptoms. Dexmedetomidine exerts fast-acting and robust sedation, anxiolytic, analgesic, sleep-modulating, and anti-inflammatory effects. Moreover, the drug prevents postoperative agitation and delirium, possibly via neuroprotective mechanisms. While evidence in animals and humans supports these properties, larger controlled trials in clinical samples are generally scarce, and systematic studies with psychiatric patients do not exist. In conclusion, dexmedetomidine is a promising candidate for an experimental treatment targeting stress-related pathologies common in neuropsychiatric disorders such as depression, anxiety disorders, and posttraumatic stress disorder. First small proof-of-concept studies and then larger controlled clinical trials are warranted in psychiatric populations to test the feasibility and efficacy of dexmedetomidine in these conditions.


Subject(s)
Anti-Anxiety Agents , Dexmedetomidine , Psychiatry , Humans , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Analgesics , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Drug Repositioning , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/therapeutic use
19.
J Am Acad Child Adolesc Psychiatry ; 62(4): 415-426, 2023 04.
Article in English | MEDLINE | ID: mdl-35963559

ABSTRACT

OBJECTIVE: The combination of d-methylphenidate and guanfacine (an α-2A agonist) has emerged as a potential alternative to either monotherapy in children with attention-deficit/hyperactivity disorder (ADHD), but it is unclear what predicts response to these treatments. This study is the first to investigate pretreatment clinical and electroencephalography (EEG) profiles as predictors of treatment outcome in children randomized to these different medications. METHOD: A total of 181 children with ADHD (aged 7-14 years; 123 boys) completed an 8-week randomized, double-blind, comparative study with d-methylphenidate, guanfacine, or combined treatments. Pretreatment assessments included ratings on ADHD, anxiety, and oppositional behavior. EEG activity from cortical sources localized within midfrontal and midoccipital regions was measured during a spatial working memory task with encoding, maintenance, and retrieval phases. Analyses tested whether pretreatment clinical and EEG measures predicted treatment-related change in ADHD severity. RESULTS: Higher pretreatment hyperactivity-impulsivity and oppositional symptoms and lower anxiety predicted greater ADHD improvements across all medication groups. Pretreatment event-related midfrontal beta power predicted treatment outcome with combined and monotherapy treatments, albeit in different directions. Weaker beta modulations predicted improvements with combined treatment, whereas stronger modulation during encoding and retrieval predicted improvements with d-methylphenidate and guanfacine, respectively. A multivariate model including EEG and clinical measures explained twice as much variance in ADHD improvement with guanfacine and combined treatment (R2= 0.34-0.41) as clinical measures alone (R2 = 0.14-.21). CONCLUSION: We identified treatment-specific and shared predictors of response to different pharmacotherapies in children with ADHD. If replicated, these findings would suggest that aggregating information from clinical and brain measures may aid personalized treatment decisions in ADHD. CLINICAL TRIAL REGISTRATION INFORMATION: Single Versus Combination Medication Treatment for Children With Attention Deficit Hyperactivity Disorder; https://clinicaltrials.gov; NCT00429273.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Methylphenidate , Male , Child , Humans , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/diagnosis , Guanfacine/pharmacology , Guanfacine/therapeutic use , Methylphenidate/therapeutic use , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Treatment Outcome , Central Nervous System Stimulants/therapeutic use , Double-Blind Method
20.
Shock ; 58(6): 556-564, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36374735

ABSTRACT

ABSTRACT: Background: Dexmedetomidine (DEX) attenuates intestinal I/R injury, but its mechanism of action remains to be further elucidated. Protein disulfide isomerase A3 (PDIA3) has been reported as a therapeutic protein for the prevention and treatment of intestinal I/R injury. This study was to investigate whether PDIA3 is involved in intestinal protection of DEX and explore the underlying mechanisms. Methods: The potential involvement of PDIA3 in DEX attenuation of intestinal I/R injury was tested in PDIA3 Flox/Flox mice and PDIA3 conditional knockout (cKO) in intestinal epithelium mice subjected to 45 min of superior mesenteric artery occlusion followed by 4 h of reperfusion. Furthermore, the α2-adrenergic receptor (α2-AR) antagonist, yohimbine, was administered in wild-type C57BL/6N mice intestinal I/R model to investigate the role of α2-AR in the intestinal protection conferred by DEX. Results: In the present study, we identified intestinal I/R-induced obvious inflammation, endoplasmic reticulum (ER) stress-dependent apoptosis, and oxidative stress, and all the aforementioned changes were improved by the administration of DEX. PDIA3 cKO in the intestinal epithelium have reversed the protective effects of DEX. Moreover, yohimbine also reversed the intestinal protection of DEX and downregulated the messenger RNA and protein levels of PDIA3. Conclusion: DEX prevents PDIA3 decrease by activating α2-AR to inhibit intestinal I/R-induced inflammation, ER stress-dependent apoptosis, and oxidative stress in mice.


Subject(s)
Dexmedetomidine , Animals , Mice , Dexmedetomidine/pharmacology , Dexmedetomidine/therapeutic use , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Receptors, Adrenergic, alpha-2/genetics , Receptors, Adrenergic, alpha-2/metabolism , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/pharmacology , Mice, Inbred C57BL , Apoptosis , Yohimbine/pharmacology , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL