Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.957
Filter
Add more filters








Publication year range
1.
Front Public Health ; 12: 1356830, 2024.
Article in English | MEDLINE | ID: mdl-38841656

ABSTRACT

Introduction: Exposure to indoor air pollution such as biomass fuel and particulate matter is a significant cause of adverse pregnancy outcomes. However, there is limited information about the association between indoor air pollution exposure and adverse pregnancy outcomes in low and middle-income countries. Therefore, this meta-analysis aimed to determine the association between indoor air pollution exposure and adverse pregnancy outcomes in low and middle-income countries. Methods: International electronic databases such as PubMed, Science Direct, Global Health, African Journals Online, HINARI, Semantic Scholar, and Google and Google Scholar were used to search for relevant articles. The study was conducted according to the updated Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. A random effect model at a 95% confidence interval was used to determine the association between indoor air pollution exposure and adverse pregnancy outcomes using STATA version 14. Funnel plot and Higgs I2 statistics were used to determine the publication bias and heterogeneity of the included studies, respectively. Results: A total of 30 articles with 2,120,228 study participants were included in this meta-analysis. The pooled association between indoor air pollution exposure and at least one adverse pregnancy outcome was 15.5% (95%CI: 12.6-18.5), with significant heterogeneity (I2 = 100%; p < 0.001). Exposure to indoor air pollution increased the risk of small for gestational age by 23.7% (95%CI: 8.2-39.3) followed by low birth weight (17.7%; 95%CI: 12.9-22.5). Exposure to biomass fuel (OR = 1.16; 95%CI: 1.12-1.2), particulate matter (OR = 1.28; 95%CI: 1.25-1.31), and kerosene (OR = 1.38; 95%CI: 1.09-1.66) were factors associated with developing at least one adverse pregnancy outcomes. Conclusions: We found that more than one in seven pregnant women exposed to indoor air pollution had at least one adverse pregnancy outcome. Specifically, exposure to particulate matter, biomass fuel, and kerosene were determinant factors for developing at least one adverse pregnancy outcome. Therefore, urgent comprehensive health intervention should be implemented in the area to reduce adverse pregnancy outcomes.


Subject(s)
Air Pollution, Indoor , Developing Countries , Pregnancy Outcome , Humans , Air Pollution, Indoor/adverse effects , Pregnancy , Female , Pregnancy Outcome/epidemiology , Particulate Matter/adverse effects , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data
2.
Int Health ; 16(3): 325-333, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690923

ABSTRACT

BACKGROUND: Nearly one-third of the world's population (2.4 billion people) rely on unclean cooking fuel sources. The study assessed the association of the type of cooking fuel and hypertension risk in sub-Saharan Africa (SSA). METHODS: The study analysed pooled data from 97 942 individuals in the Demographic and Health Survey (DHS) between 2014 and 2021 in 10 SSA countries. Univariate, bivariate and multivariate analyses were performed, including basic descriptive statistics and binary logistic regression. The independent variable of interest was the type of cooking fuel, while hypertension served as the outcome variable. RESULTS: Women using unclean cooking fuel were 1.21 times more likely to be hypertensive compared with those using clean cooking fuel (adjusted odds ratio [aOR] 1.21 [95% confidence interval {CI} 1.11 to 1.31]). Older age (aOR 5.78 [95% CI 5.04 to 6.62]), higher education (aOR 1.14 [95% CI 1.05 to 1.23]), being married (aOR 1.64 [95% CI 1.49 to 1.80]), working in sales and services occupations (aOR 1.34 [95% CI 1.24 to 1.44]), frequent health facility visits (aOR 1.59 [95% CI 1.51 to 1.68]), higher wealth index and exposure to media were significantly associated with hypertension risk. CONCLUSIONS: Efforts to reduce reliance on unclean cooking fuel at both the household and population levels need to be intensified in SSA countries. Promoting the use of clean cooking technologies and fuels and implementing supportive policies for transitioning from unclean cooking fuels are crucial. Targeted interventions to reduce hypertension risk in SSA should focus on women using unclean cooking fuel, older women, individuals from wealthier households and those with higher education levels.


Subject(s)
Cooking , Hypertension , Humans , Female , Africa South of the Sahara/epidemiology , Hypertension/epidemiology , Hypertension/etiology , Cooking/methods , Adult , Cross-Sectional Studies , Young Adult , Middle Aged , Adolescent , Risk Factors , Health Surveys , Air Pollution, Indoor/adverse effects , Logistic Models , Socioeconomic Factors
3.
Chemosphere ; 359: 142344, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754484

ABSTRACT

Burning incenses and scented candles may provide harmful chemicals. Although many studies have evaluated volatile organic chemicals emitted by their use and related health risks, extension of our understanding for guiding appropriate use under various use conditions is necessary. In this study, emission characteristics of commercial incenses and scented candles were evaluated in a laboratory chamber using real-time measurement and the time-weighted average exposure concentrations of monoaromatic compounds and monoterpenes were assessed using passive samplers while volunteers living in a studio apartment use them. After burning incense, the average levels of benzene increased from 1.4 to 100 µg m-3. The presence of a wood core in commercial incense products was the main cause of high benzene emission by burning them although the increase in benzene was also influenced by factors such as the brand of the products, the number of incense sticks burned, the duration of each burning session, and ventilation period. Electrical warming of scented candles increased the levels of monoterpenes by factors of 16-30 on average. Considering the emission characteristics found in this study, exposure to benzene and monoterpenes could be mitigated by cautious use of those products in residential areas.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Benzene , Environmental Monitoring , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Environmental Monitoring/methods , Benzene/analysis , Air Pollutants/analysis , Housing , Humans , Monoterpenes/analysis , Odorants/analysis
4.
BMC Public Health ; 24(1): 1462, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822317

ABSTRACT

BACKGROUND: The effects of household air pollution on urinary incontinence (UI) symptoms and stress urinary incontinence (SUI) symptoms have not been studied. This study seeks to investigate the correlation between household air pollution and UI/SUI symptoms among middle-aged and elderly adults in India. METHODS: We employed data derived from individuals aged 45 years and older who participated in the inaugural wave (2017-2018) of the Longitudinal Aging Study in India (LASI). The assessment of household air pollution exposure and the occurrence of UI/SUI symptoms relied on self-reported data. The analytical approach adopted was cross-sectional in nature and encompassed a cohort of 64,398 participants. To explore relationships, we utilized multivariate logistic regression analysis, incorporating subgroup analysis and interaction tests. RESULTS: 1,671 (2.59%) participants reported UI symptoms and 4,862 (7.55%) participants reported SUI symptoms. Also, the prevalence of UI/SUI symptoms is much higher among middle-aged and elderly adults who use solid polluting fuels (UI: 51.23% vs. 48.77%; SUI: 54.50% vs. 45.50%). The results revealed a noteworthy correlation between household air pollution and the probability of experiencing UI/SUI symptoms, persisting even after adjusting for all conceivable confounding variables (UI: OR = 1.552, 95% CI: 1.377-1.749, p < 0.00001; SUI: OR: 1.459, 95% CI: 1.357-1.568, p < 0.00001). Moreover, significant interaction effects were discerned for age, education level, tobacco consumption, alcohol consumption, and physical activity (p for interaction < 0.05). CONCLUSIONS: The results of our study indicate that the utilization of solid fuels in the home increases the likelihood of developing urinary incontinence and stress urinary incontinence. As a result, we argue that there is an immediate need to reform the composition of cooking fuel and raise public awareness about the adverse effects of air pollution in the home.


Subject(s)
Air Pollution, Indoor , Humans , Male , Female , Middle Aged , Aged , Air Pollution, Indoor/adverse effects , India/epidemiology , Cross-Sectional Studies , Longitudinal Studies , Urinary Incontinence/epidemiology , Prevalence , Urinary Incontinence, Stress/epidemiology , Environmental Exposure/adverse effects
5.
Environ Res ; 252(Pt 4): 119077, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714222

ABSTRACT

Household products, in response to regulations, increasingly incorporate phthalate (PAE) alternatives instead of traditional PAEs. However, limited information exists regarding the fate and exposure risk of these PAE alternatives and their monoesters in indoor environments. The contamination levels of PAE alternatives and their monoesters in indoor dust might vary across regions due to climate, population density, industrial activities, and interior decoration practices. By analyzing indoor dust samples from six geographical regions across China, this study aims to shed light on concentrations, profiles, and human exposure to 12 PAE alternatives and 9 their monoesters. Bis(2-ethylhexyl) benzene-1,4-dicarboxylate (DEHTP), tributyl 2-acetyloxypropane-1,2,3-tricarboxylate (ATBC), and tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate (TOTM) were the main PAE alternatives in dust across all regions. The total concentrations of 12 PAE alternatives ranged from 0.125 to 4160 µg/g in indoor dust. High molecular weight PAE alternatives had significantly correlated concentrations (p < 0.05) based on Spearman analysis, suggesting their co-use in heat-resistant plastic products. A collective of nine monoesters were identified in most samples, with total concentrations ranging from 0.048 to 29.6 µg/g. The median concentrations of PAE alternatives were highest in North China (66.8 µg/g), while those of monoesters were highest in Southwest China (6.93 µg/g). A significant correlation (p < 0.05) between the concentrations of DEHTP and its monoester suggested that degradation could be a potential source of monoesters. Although hazard quotients (HQs) have been calculated to suggest that the current exposure is unlikely to pose a significant health risk, the lack of toxicity threshold data and the existence of additional exposure pathways necessitate a further confirmation.


Subject(s)
Air Pollution, Indoor , Dust , Phthalic Acids , Dust/analysis , China , Phthalic Acids/analysis , Humans , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Air Pollutants/analysis , Esters/analysis , Environmental Monitoring
6.
Environ Pollut ; 352: 124110, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723705

ABSTRACT

Due to differences in chemical properties and half-lives, best practices for exposure assessment may differ for legacy versus novel brominated flame retardants (BFRs). Our objective was to identify the environment matrix that best predicted biomarkers of children's BFR exposures. Paired samples were collected from children aged 3-6 years and their homes, including dust, a small piece of polyurethane foam from the furniture, and a handwipe and wristband from each child. Biological samples collected included serum, which was analyzed for 11 polybrominated diphenyl ethers (PBDEs), and urine, which was analyzed for tetrabromobenzoic acid (TBBA), a metabolite of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB). Significant positive correlations were typically observed between BFRs measured in dust, handwipes and wristbands, though wristbands and handwipes tended to be more strongly correlated with one another than with dust. PBDEs, EH-TBB and BEH-TEBP were detected in 30% of the sofa foam samples, suggesting that the foam was treated with PentaBDE or Firemaster® 550/600 (FM 550/600). PBDEs were detected in all serum samples and TBBA was detected in 43% of urine samples. Statistically significant positive correlations were observed between the environmental samples and serum for PBDEs. Urinary TBBA was 6.86 and 6.58 times more likely to be detected among children in the highest tertile of EH-TBB exposure for handwipes and wristbands, respectively (95 % CI: 2.61, 18.06 and 1.43, 30.05 with p < 0.001 and 0.02, respectively). The presence of either PentaBDE or FM 550/600 in furniture was also associated with significantly higher levels of these chemicals in dust, handwipes and serum (for PBDEs) and more frequent detection of TBBA in urine (p = 0.13). Our results suggest that children are exposed to a range of BFRs in the home, some of which likely originate from residential furniture, and that silicone wristbands are a practical tool for evaluating external exposure to both legacy and novel BFRs.


Subject(s)
Environmental Exposure , Flame Retardants , Halogenated Diphenyl Ethers , Flame Retardants/analysis , Humans , Halogenated Diphenyl Ethers/blood , Child , Child, Preschool , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Female , Male , Dust/analysis , Environmental Pollutants/urine , Environmental Pollutants/blood , Environmental Monitoring , Housing , Air Pollution, Indoor/statistics & numerical data , Air Pollution, Indoor/analysis
7.
Environ Sci Technol ; 58(22): 9750-9759, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780915

ABSTRACT

Humans are known to be a continuous and potent indoor source of volatile organic compounds (VOCs). However, little is known about how personal hygiene, in terms of showering frequency, can influence these emissions and their impact on indoor air chemistry involving ozone. In this study, we characterized the VOC composition of the air in a controlled climate chamber (22.5 m3 with an air change rate at 3.2 h-1) occupied by four male volunteers on successive days under ozone-free (∼0 ppb) and ozone-present (37-40 ppb) conditions. The volunteers either showered the evening prior to the experiments or skipped showering for 24 and 48 h. Reduced shower frequency increased human emissions of gas-phase carboxylic acids, possibly originating from skin bacteria. With ozone present, increasing the number of no-shower days enhanced ozone-skin surface reactions, yielding higher levels of oxidation products. Wearing the same clothing over several days reduced the level of compounds generated from clothing-ozone reactions. When skin lotion was applied, the yield of the skin ozonolysis products decreased, while other compounds increased due to ozone reactions with lotion ingredients. These findings help determine the degree to which personal hygiene choices affect the indoor air composition and indoor air exposures.


Subject(s)
Air Pollution, Indoor , Ozone , Volatile Organic Compounds , Humans , Ozone/analysis , Volatile Organic Compounds/analysis , Male , Hygiene , Adult
8.
Sci Total Environ ; 934: 173254, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761924

ABSTRACT

Air pollution has been recognized as a contributing factor to sleep disorders (SD), which have been correlated with an elevated susceptibility to a variety of human diseases. Nevertheless, research has not definitively established a connection between SD and interior decorative volatile organic compounds (ID-VOCs), a significant indoor air pollutant. In this study, we employed a mouse model exposed to ID-VOCs to explore the impacts of ID-VOCs exposure on sleep patterns and the potential underlying mechanism. Of the 23 key compositions of ID-VOCs identified, aromatic hydrocarbons were found to be the most prevalent. Exposure to ID-VOCs in mice resulted in SD, characterized by prolonged wake fullness and decreased sleep during the light period. ID-VOCs exposure triggered neuroinflammatory responses in the suprachiasmatic nucleus (SCN), with microglia activation leading to the overproduction of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), and complement component 1q (C1q), ultimately inducing A1 astrocytes. Consequently, the upregulation of branched chain amino acid transaminase 2 (BCAT2) in A1 astrocytes resulted in elevated extracellular glutamate and disruption of the wake-sleep transition mechanism, which might be the toxicological mechanism of SD caused by ID-VOCs.


Subject(s)
Air Pollutants , Sleep Wake Disorders , Volatile Organic Compounds , Animals , Mice , Air Pollutants/toxicity , Sleep Wake Disorders/chemically induced , Neuroinflammatory Diseases/chemically induced , Air Pollution, Indoor/adverse effects , Male , Signal Transduction/drug effects , Glutamic Acid/metabolism
9.
Sci Total Environ ; 934: 173183, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38777046

ABSTRACT

Cooking with wood biomass fuels releases hazardous air pollutants, including volatile organic compounds (VOCs), that often disproportionally affect women and children. This study, conducted in Kwale and Siaya counties in Kenya, employed thermal desorption gas chromatography - mass spectrometry to analyse VOC emissions from cooking with a wood biomass three-stone open fire vs. top-lit updraft gasifier stove. In kitchens with adequate ventilation, total VOC levels increased from 35-252 µg∙m-3 before cooking to 2235-5371 µg∙m-3 during open fire cooking, whereas use of a gasifier stove resulted in reduced emissions from cooking by 48-77 % (506-2778 µg∙m-3). However, in kitchens with poor ventilation, there was only a moderate difference in total VOC levels between the two methods of cooking (9034-9378 µg∙m-3 vs. 6727-8201 µg∙m-3 for the three-stone open fire vs. gasifier stove, respectively). Using a non-target screening approach revealed significantly increased levels of VOCs, particularly benzenoids, oxygenated and heterocyclic compounds, when cooking with the traditional open fire, especially in closed kitchens, highlighting the effects of poor ventilation. Key hazardous VOCs included benzene, naphthalene, phenols and furans, suggesting potential health risks from cooking. In kitchens with good ventilation, use of the gasifier stove markedly reduced emissions of these priority toxic VOCs compared to cooking with an open fire. Thus, substituting open fires with gasifier stoves could help to improve household air quality and alleviate health risks. The study revealed that VOCs were present prior to cooking, possibly originating from previously cooked food (buildup) or the outside environment. VOC emissions were also exacerbated by reduced air flow in high humidity during rainfall, suggesting an area for further research. The findings underscore the importance of adopting cleaner cooking technologies and enhancing kitchen ventilation to mitigate the impacts of VOCs in developing countries.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Cooking , Volatile Organic Compounds , Wood , Kenya , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Biomass , Ventilation , Environmental Monitoring , Fires
10.
Clin Oral Investig ; 28(5): 292, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693418

ABSTRACT

OBJECTIVES: Exposure to aerosol particles generated from tooth grinding has a negative impact on the health of dental personnel. The aim of this study was to quantitatively analyze the impact of indoor relative humidity (IRH) on the deposition of these suspended particles in a well-controlled dental environment. MATERIALS AND METHODS: In this study, a humidity control system was employed to effectively regulate and maintain indoor relative humidity (IRH). A novel computer-assisted numerical control system was developed to pre-treat the molar specimens, and accurately simulate clinical tooth grinding procedures. Each procedure was performed in triplicate, with an online real-time particle counter (ORPC; TR-8301, TongrenCo.) measuring aerosol production. All testing devices were controlled remotely. The data obtained were statistically analyzed using descriptive statistics and non-parametric tests (Kruskal-Wallis/ Dunn's post hoc test with Bonferroni correction, p < 0.05). RESULTS: The findings showed that with increasing IRH, the maximum peak concentration of aerosol particles decreased by 397% from 6.51 × 107 particles/m3 at 30% to 1.64 × 107 particles/m3 at 80%. The Kruskal-Wallis test results indicated a statistically significant effect of IRH on the aerosol increment (p < 0.05). CONCLUSIONS: Increasing the IRH level can effectively promote the deposition of aerosol particles, with a return to baseline within 15 min after reaching 60% or above. CLINICAL RELEVANCE: Our study suggested that maintaining IRH above 70% during the cleaning process, allowing natural recovery to ambient humidity levels within 15 min after cleaning, and taking basic precautions, may lead to an adequate reduction in the possible health risks of aerosol contamination.


Subject(s)
Aerosols , Air Pollution, Indoor , Humidity , Humans , Air Pollution, Indoor/analysis
11.
Sensors (Basel) ; 24(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38793956

ABSTRACT

This work presents a retrospective analysis of indoor CO2 measurements obtained with a mobile robot in an educational building after the COVID-19 lockdown (May 2021), at a time when public activities resumed with mandatory local pandemic restrictions. The robot-based CO2 measurement system was assessed as an alternative to the deployment of a net of sensors in a building in the pandemic period, in which there was a global stock outage of CO2 sensors. The analysis of the obtained measurements confirms that a mobile system can be used to obtain interpretable information on the CO2 levels inside the rooms of a building during a pandemic outbreak.


Subject(s)
Air Pollution, Indoor , COVID-19 , Carbon Dioxide , Pandemics , Robotics , COVID-19/epidemiology , Carbon Dioxide/analysis , Humans , Retrospective Studies , Robotics/methods , Air Pollution, Indoor/analysis , SARS-CoV-2/isolation & purification , Environmental Monitoring/methods
12.
Environ Sci Pollut Res Int ; 31(23): 34415-34445, 2024 May.
Article in English | MEDLINE | ID: mdl-38703314

ABSTRACT

Natural ventilation potential (NVP) of a climate is a theoretical basis, and it gains importance due to the promising need for building energy conservation while conceding required thermal comfort conditions. A modified NVP analytical model is proposed by considering parameters involved in the earlier models (Yang et al., Build Environ 40:738-746, 2005; Luo et al., Build Environ 42:2289-2298, 2007). The effect of the dynamic thermal behavior of the wall/roof and building orientation on the indoor air temperature has been evaluated. The analytical model is applied to 11 major cities of India that belong to composite, hot-dry, temperate, and warm-humid climates. Five different envelope configurations are analyzed to envisage the NVP of concern climate (ED-I to ED-V). The results show that the effect of dynamic thermal response factors on the NVP is significant, and optimization of thermal response factors in addition to the U-value is mandatory. The impact of wind frequency on the selection of building orientation is substantial since it influences the total heat gained by the building envelope. Moreover, it is perceived that the optimum building orientation is independent of the climate and weather conditions. ED-II and ED-III are energy-efficient envelopes for composite, temperate, warm-humid, and hot-dry climates. The results revealed that the Mumbai climate has the highest NVP of 66% while the building is oriented in an E-W direction, and the lowest is observed for Jodhpur, i.e., 44% of the year when the building is in the NE-SW direction. The model helps the building architectural designers envisage the true NVP and assess the suitability of the building for natural ventilation.


Subject(s)
Climate , Ventilation , India , Temperature , Models, Theoretical , Air Pollution, Indoor , Cities
13.
Environ Sci Pollut Res Int ; 31(24): 35429-35441, 2024 May.
Article in English | MEDLINE | ID: mdl-38727973

ABSTRACT

An extensive analysis of the distribution patterns of three distinct classes of semi-volatile organic chemicals (SVOCs)-phthalates (PAEs), organophosphate flame retardants (OPFRs), and polycyclic aromatic hydrocarbons (PAHs)-across four distinct size fractions of dust (25, 50, 100, and 200 µm) was conducted. The dust samples were sourced from AC filter, covered car parking lots, households, hotels, mosques, and car floors. To generate the four fractions, ten dust samples from each microenvironment were pooled and sieved utilizing sieving apparatus with the appropriate mesh size. Selected SVOCs were quantified utilizing gas chromatography-mass spectrometry in electron impact (EI) mode. Results unveiled diverse contamination levels among dust fractions, showcasing car parking lot dust with the lowest chemical contamination, while car floor dust displayed the highest levels of PAHs and OPFRs, peaking at 28.3 µg/g and 43.2 µg/g, respectively. In contrast, mosque and household floor dust exhibited the highest concentrations of phthalates, with values of 985 µg/g and 846 µg/g, respectively. Across the analyzed microenvironments, we observed a trend where concentrations of SVOCs tended to rise as dust particles decreased in size, forming a visually striking pattern. This phenomenon was particularly pronounced in dust samples collected from car floors and parking lots. Among SVOCs, PAEs emerged as the predominant contributors with > 90% followed by OPFRs and PAHs. The high levels of OPFRs in car floor dust align logically with the fact that numerous interior components of cars are treated with OPFRs, within a compact indoor microenvironment, to comply to fire safety regulations. Furthermore, petroleum products are a major source of PAHs in the environment and all the sampled cars in the study had combustion engines. Consequently, car dust is more likely to be polluted with PAHs stemming from petroleum combustion. Although previous investigations have noted an increase in heavy metals and brominated flame retardants with decreasing dust particles, this is the first study analyzing these SVOCs in different fractions of dust from various microenvironments. However, aside from two specific microenvironments, the observed pattern of escalating SVOC concentrations with smaller dust particle sizes was not corroborated among the examined microenvironments. This divergence in concentration trends suggests the potential involvement of supplementary variables in influencing SVOC distributions within dust particles.


Subject(s)
Air Pollution, Indoor , Dust , Environmental Monitoring , Particle Size , Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Dust/analysis , Volatile Organic Compounds/analysis , Air Pollution, Indoor/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Flame Retardants/analysis , Air Pollutants/analysis
14.
Sci Rep ; 14(1): 11858, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789478

ABSTRACT

Human occupied built environments are no longer confined to Earth. In fact, there have been humans living and working in low-Earth orbit on the International Space Station (ISS) since November 2000. With NASA's Artemis missions and the age of commercial space stations set to begin, more human-occupied spacecraft than ever will be in Earth's orbit and beyond. On Earth and in the ISS, microbes, especially fungi, can be found in dust and grow when unexpected, elevated moisture conditions occur. However, we do not yet know how indoor microbiomes in Earth-based homes and in the ISS differ due to their unique set of environmental conditions. Here we show that bacterial and fungal communities are different in dust collected from vacuum bags on Earth and the ISS, with Earth-based homes being more diverse (465 fungal OTUs and 237 bacterial ASVs) compared to the ISS (102 fungal OTUs and 102 bacterial ASVs). When dust from these locations were exposed to varying equilibrium relative humidity conditions (ERH), there were also significant fungal community composition changes as ERH and time elevated increased (Bray Curtis: R2 = 0.35, P = 0.001). These findings can inform future spacecraft design to promote healthy indoor microbiomes that support crew health, spacecraft integrity, and planetary protection.


Subject(s)
Air Pollution, Indoor , Dust , Fungi , Microbiota , Spacecraft , Dust/analysis , Fungi/isolation & purification , Fungi/classification , Humans , Air Pollution, Indoor/analysis , Built Environment , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Air Microbiology , Earth, Planet , Humidity
15.
Sensors (Basel) ; 24(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793821

ABSTRACT

Radon is a naturally occurring noble radioactive gas that poses significant health risks, particularly lung cancer, due to its colorless, odorless, and tasteless nature, which makes detection challenging without formal testing. It is found in soil, rock, and water, and it infiltrates indoor environments, necessitating regulatory standards and guidelines from organizations such as the Environmental Protection Agency, the World Health Organization, and the Occupational Health and Safety Agency to mitigate exposure. In this paper, we present various methods and instruments for radon assessment in occupational and environmental settings. Discussion on long- and short-term monitoring, including grab sampling, radon dosimetry, and continuous real-time monitoring, is provided. The comparative analysis of detection techniques-active versus passive-is highlighted from real-time data and long-term exposure assessment, including advances in sensor technology, data processing, and public awareness, to improve radon exposure evaluation techniques.


Subject(s)
Occupational Exposure , Radon , Radon/analysis , Humans , Occupational Exposure/analysis , Occupational Exposure/prevention & control , Radiation Monitoring/methods , Radiation Monitoring/instrumentation , Air Pollution, Indoor/analysis , Air Pollutants, Radioactive/analysis , Environmental Exposure/analysis
16.
Sci Adv ; 10(18): eadm8680, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701214

ABSTRACT

Gas and propane stoves emit nitrogen dioxide (NO2) pollution indoors, but the exposures of different U.S. demographic groups are unknown. We estimate NO2 exposure and health consequences using emissions and concentration measurements from >100 homes, a room-specific indoor air quality model, epidemiological risk parameters, and statistical sampling of housing characteristics and occupant behavior. Gas and propane stoves increase long-term NO2 exposure 4.0 parts per billion volume on average across the United States, 75% of the World Health Organization's exposure guideline. This increased exposure likely causes ~50,000 cases of current pediatric asthma from long-term NO2 exposure alone. Short-term NO2 exposure from typical gas stove use frequently exceeds both World Health Organization and U.S. Environmental Protection Agency benchmarks. People living in residences <800 ft2 in size incur four times more long-term NO2 exposure than people in residences >3000 ft2 in size; American Indian/Alaska Native and Black and Hispanic/Latino households incur 60 and 20% more NO2 exposure, respectively, than the national average.


Subject(s)
Air Pollution, Indoor , Nitrogen Dioxide , Propane , Nitrogen Dioxide/analysis , Humans , United States , Air Pollution, Indoor/analysis , Air Pollution, Indoor/adverse effects , Environmental Exposure/adverse effects , Housing , Cooking , Air Pollutants/analysis
17.
Environ Monit Assess ; 196(6): 511, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703303

ABSTRACT

Emissions of airborne pollutants from livestock buildings affect indoor air quality, the health and well-being of farmers, animals and the environment. This study aimed to evaluate the microbial count within pig sheds and its relationship with meteorological variables (temperature, relative humidity and air velocity) and particulate matter (PM10 and PM2.5) and microbial diversity. Sampling was conducted both inside and outside of two pig sheds over three seasons (summer, rainy and winter), with regular monitoring at fortnightly intervals. Results showed that the bacterial and fungal counts ranged from 0.07 to 3.98 x 103 cfu/m3 inside the sheds and 0.01 to 1.82 x 103 cfu/m3 outside. Seasonal variations were observed, with higher concentrations of particulate matter detected during the winter season, followed by summer. Climatic variables such as temperature, air velocity and relative humidity demonstrated significant impacts on the abundance of Enterobacteriaceae and fungi, while air velocity specifically influenced the presence of mesophilic bacteria and staphylococci. Importantly, no significant disparities were found between microbial counts and particulate matter levels. Staphylococcaceae emerged as the predominant bacterial family, while Aspergillus and Cladosporium spp. were the dominant fungal species within the pig sheds. The average levels of airborne bacteria and fungi in pig sheds were found to be within the recommended range, which can be attributed to the loose housing design and lower animal population on the farms.


Subject(s)
Air Microbiology , Air Pollution, Indoor , Environmental Monitoring , Particulate Matter , Animals , Particulate Matter/analysis , Swine , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Fungi , Housing, Animal , Bacteria/classification , Bacteria/isolation & purification , Seasons , Animal Husbandry , Air Pollutants/analysis
18.
BMJ Open ; 14(5): e075105, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719299

ABSTRACT

OBJECTIVES: Incomplete combustion of solid fuel and exposure to secondhand smoke (SHS) are the primary causes of indoor air pollution (IAP), potentially leading to detrimental effects on individual mental health. However, current evidence regarding the association between IAP and depression remains inconclusive. This study aims to systematically investigate the evidence regarding the association between IAP and the risk of depression. DESIGN: Systematic review and meta-analysis of cohort studies. DATA SOURCES: Two independent reviewers searched PubMed, the Cochrane Library, Web of Science and EMBASE for available studies published up to 13 January 2024. ELIGIBILITY CRITERIA: We included all cohort studies published in English that aimed to explore the relationship between IAP from solid fuel use and SHS exposure and the risk of depression. DATA EXTRACTION AND SYNTHESIS: Two independent reviewers extracted data and assessed the risk of bias. The association between IAP and depression was calculated using pooled relative risk (RR) with 95% CIs. Heterogeneity was assessed using the I2 value, and the effect estimates were pooled using fixed-effects or random-effects models depending on the results of homogeneity analysis. RESULTS: We included 12 articles with data from 61 217 participants. The overall findings demonstrated a significant association between IAP exposure and depression (RR=1.22, 95% CI: 1.13 to 1.31), although with substantial heterogeneity (I2=75%). Subgroup analyses based on pollutant type revealed that IAP from solid fuel use was associated with a higher risk of depression (RR=1.20, 95% CI: 1.13 to 1.26; I2=62%; 5 studies, 36 768 participants) than that from SHS exposure (RR=1.11, 95% CI: 0.87 to 1.41; I2=80%; 7 studies, 24 449 participants). In terms of fuel use, the use of solid fuel for cooking (RR: 1.23, 95% CI: 1.16 to 1.31; I2=58%; 4 studies, 34 044 participants) and heating (RR 1.15, 95% CI: 1.04 to 1.27; I2=65%; 3 studies, 24 874 participants) was associated with increased depression risk. CONCLUSIONS: The findings from this systematic review and meta-analysis of cohort studies indicated an association between exposure to IAP and depression. PROSPERO REGISTRATION NUMBER: CRD42022383285.


Subject(s)
Air Pollution, Indoor , Depression , Humans , Air Pollution, Indoor/adverse effects , Depression/epidemiology , Tobacco Smoke Pollution/adverse effects , Cohort Studies , Environmental Exposure/adverse effects
19.
Environ Health Perspect ; 132(5): 55001, 2024 May.
Article in English | MEDLINE | ID: mdl-38728219

ABSTRACT

BACKGROUND: In response to the COVID-19 pandemic, new evidence-based strategies have emerged for reducing transmission of respiratory infections through management of indoor air. OBJECTIVES: This paper reviews critical advances that could reduce the burden of disease from inhaled pathogens and describes challenges in their implementation. DISCUSSION: Proven strategies include assuring sufficient ventilation, air cleaning by filtration, and air disinfection by germicidal ultraviolet (UV) light. Layered intervention strategies are needed to maximize risk reduction. Case studies demonstrate how to implement these tools while also revealing barriers to implementation. Future needs include standards designed with infection resilience and equity in mind, buildings optimized for infection resilience among other drivers, new approaches and technologies to improve ventilation, scientific consensus on the amount of ventilation needed to achieve a desired level of risk, methods for evaluating new air-cleaning technologies, studies of their long-term health effects, workforce training on ventilation systems, easier access to federal funds, demonstration projects in schools, and communication with the public about the importance of indoor air quality and actions people can take to improve it. https://doi.org/10.1289/EHP13878.


Subject(s)
Air Pollution, Indoor , COVID-19 , SARS-CoV-2 , Ventilation , COVID-19/transmission , COVID-19/prevention & control , Humans , Air Pollution, Indoor/prevention & control , Ventilation/methods , Air Microbiology , Disinfection/methods , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/transmission
20.
J Chem Phys ; 160(17)2024 May 07.
Article in English | MEDLINE | ID: mdl-38748014

ABSTRACT

Fatty acids from cooking fumes and hypochlorous acid (HOCl) released from indoor cleaning adversely affect respiratory health, but the molecular-level mechanism remains unclear. Here, the effect of cooking oil fumes [palmitic acid (PA), oleic acid (OA), and linoleic acid (LA)] on lung model phospholipid (POPG) hydrochlorination mediated by HOCl at the air-water interface of the hanged droplets was investigated. Interfacial hydrochlorination of POPG was impeded by OA and LA, while that of POPG was facilitated by PA. The effect on POPG hydrochlorination increased with the decrease in oil fume concentration. A potential mechanism with respect to the chain length of these oil fumes, regardless of their saturation, was proposed. PA with a short carbon chain looses the POPG packing and leads to the exposure of the C=C double bonds of POPG, whereas OA and LA with a long carbon chain hinder HOCl from reaching the C=C bonds of POPG. These results for short chain and low concentration dependence suggest that the decay of oil fumes or the conversion of short-chain species by indoor interfacial chemistry might be adverse to lung health. These results provide insights into the relationship between indoor multicomponent pollutants and the respiratory system.


Subject(s)
Air Pollution, Indoor , Fatty Acids , Fatty Acids/chemistry , Hypochlorous Acid/chemistry , Cooking , Phospholipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL