Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.712
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 410, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976076

ABSTRACT

We characterise a reversible bacterial zinc-containing benzyl alcohol dehydrogenase (BaDH) accepting either NAD+ or NADP+ as a redox cofactor. Remarkably, its redox cofactor specificity is pH-dependent with the phosphorylated cofactors favored at lower and the dephospho-forms at higher pH. BaDH also shows different steady-state kinetic behavior with the two cofactor forms. From a structural model, the pH-dependent shift may affect the charge of a histidine in the 2'-phosphate-binding pocket of the redox cofactor binding site. The enzyme is phylogenetically affiliated to a new subbranch of the Zn-containing alcohol dehydrogenases, which share this conserved residue. BaDH appears to have some specificity for its substrate, but also turns over many substituted benzyl alcohol and benzaldehyde variants, as well as compounds containing a conjugated C=C double bond with the aldehyde carbonyl group. However, compounds with an sp3-hybridised C next to the alcohol/aldehyde group are not or only weakly turned over. The enzyme appears to contain a Zn in its catalytic site and a mixture of Zn and Fe in its structural metal-binding site. Moreover, we demonstrate the use of BaDH in an enzyme cascade reaction with an acid-reducing tungsten enzyme to reduce benzoate to benzyl alcohol. KEY POINTS: •Zn-containing BaDH has activity with either NAD + or NADP+ at different pH optima. •BaDH converts a broad range of substrates. •BaDH is used in a cascade reaction for the reduction of benzoate to benzyl alcohol.


Subject(s)
Alcohol Oxidoreductases , Benzyl Alcohol , Coenzymes , NADP , Oxidation-Reduction , Zinc , Hydrogen-Ion Concentration , NADP/metabolism , Substrate Specificity , Benzyl Alcohol/metabolism , Benzyl Alcohol/chemistry , Kinetics , Zinc/metabolism , Coenzymes/metabolism , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , NAD/metabolism , Benzaldehydes/metabolism , Benzaldehydes/chemistry , Catalytic Domain , Binding Sites , Phylogeny , Models, Molecular
2.
Nat Commun ; 15(1): 5241, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898011

ABSTRACT

While the elucidation of regulatory mechanisms of folded proteins is facilitated due to their amenability to high-resolution structural characterization, investigation of these mechanisms in disordered proteins is more challenging due to their structural heterogeneity, which can be captured by a variety of biophysical approaches. Here, we used the transcriptional master corepressor CtBP, which binds the putative metastasis suppressor RAI2 through repetitive SLiMs, as a model system. Using cryo-electron microscopy embedded in an integrative structural biology approach, we show that RAI2 unexpectedly induces CtBP polymerization through filaments of stacked tetrameric CtBP layers. These filaments lead to RAI2-mediated CtBP nuclear foci and relieve its corepressor function in RAI2-expressing cancer cells. The impact of RAI2-mediated CtBP loss-of-function is illustrated by the analysis of a diverse cohort of prostate cancer patients, which reveals a substantial decrease in RAI2 in advanced treatment-resistant cancer subtypes. As RAI2-like SLiM motifs are found in a wide range of organisms, including pathogenic viruses, our findings serve as a paradigm for diverse functional effects through multivalent interaction-mediated polymerization by disordered proteins in healthy and diseased conditions.


Subject(s)
Alcohol Oxidoreductases , Polymerization , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/chemistry , Cryoelectron Microscopy , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Protein Binding , HEK293 Cells , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Motifs , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics
3.
Methods Mol Biol ; 2792: 29-39, 2024.
Article in English | MEDLINE | ID: mdl-38861076

ABSTRACT

Phosphoglycolate phosphatase (PGLP) dephosphorylates 2-phosphoglycolate to glycolate that can be further metabolized to glyoxylate by glycolate oxidase (GOX) via an oxidative reaction that uses O2 and releases H2O2. The oxidation of o-dianisidine by H2O2 catalyzed by a peroxidase can be followed in real time by an absorbance change at 440 nm. Based on these reactions, a spectrophotometric method for measuring PGLP activity using a coupled reaction with recombinant Arabidopsis thaliana GOX is described. This protocol has been used successfully with either purified PGLP or total soluble proteins extracted from Arabidopsis rosette leaves.


Subject(s)
Alcohol Oxidoreductases , Arabidopsis , Phosphoric Monoester Hydrolases , Recombinant Proteins , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Glycolates/metabolism , Enzyme Assays/methods , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Plant Leaves/metabolism , Plant Leaves/enzymology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Spectrophotometry/methods
4.
Methods Mol Biol ; 2792: 97-111, 2024.
Article in English | MEDLINE | ID: mdl-38861081

ABSTRACT

To measure the kinetic properties of photorespiratory enzymes, it is necessary to work with purified proteins. Protocols to purify photorespiratory enzymes from leaves of various plant species require several time-consuming steps. It is now possible to produce large quantities of recombinant proteins in bacterial cells. They can be rapidly purified as histidine-tagged recombinant proteins by immobilized metal affinity chromatography using Ni2+-NTA-agarose. This chapter describes protocols to purify several Arabidopsis thaliana His-tagged recombinant photorespiratory enzymes (phosphoglycolate phosphatase, glycolate oxidase, and hydroxypyruvate reductase) from Escherichia coli cell cultures using two bacterial strain-plasmid systems: BL21(DE3)-pET and LMG194-pBAD.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Escherichia coli , Hydroxypyruvate Reductase , Phosphoric Monoester Hydrolases , Arabidopsis/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Hydroxypyruvate Reductase/genetics , Hydroxypyruvate Reductase/metabolism , Hydroxypyruvate Reductase/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/isolation & purification , Phosphoric Monoester Hydrolases/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/isolation & purification , Arabidopsis Proteins/chemistry , Histidine/metabolism , Histidine/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/isolation & purification , Alcohol Oxidoreductases/chemistry , Chromatography, Affinity/methods , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism
5.
Mikrochim Acta ; 191(7): 399, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38877162

ABSTRACT

Nicotine (3-(1-methyl-2-pyrrolidinyl)pyridine) is one of the most common addictive substances, causing the trace detection of nicotine to be very necessary. Herein, we designed and prepared a functionalized nanocomposite CS-PAA (NaYF4:19.5%Yb,0.5%Tm@NaYF4-PAA) using a simple method. The nicotine concentration was quantitatively detected through the inhibition of choline oxidase activity by nicotine and the luminescence intensity of CS-PAA being quenched by Fe3+. The mechanism of Fe3+ quenching CS-PAA emission was inferred by luminescence lifetime and UV-vis absorption spectra characterization. During the nicotine detection, both excitation (980 nm) and emission (802 nm) wavelengths of CS-PAA enable the avoidance of the interference of background fluorescence in complicated food objects, thus providing high selectivity and sensitivity with a linear range of 5-750 ng/mL and a limit of detection of 9.3 nM. The method exhibits an excellent recovery and relative standard deviation, indicating high accuracy and repeatability of the detection of nicotine.


Subject(s)
Choline , Limit of Detection , Nicotine , Nicotine/analysis , Nicotine/chemistry , Choline/chemistry , Choline/analysis , Nanocomposites/chemistry , Luminescent Measurements/methods , Alcohol Oxidoreductases/chemistry , Luminescence
6.
J Basic Microbiol ; 64(6): e2300751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644586

ABSTRACT

NAD+-dependent (2 R,3 R)­2,3­butanediol dehydrogenase (BDH) from Neisseria gonorrhoeae (NgBDH) is a representative member of the medium-chain dehydrogenase/reductase (MDR) superfamily. To date, little information is available on the substrate binding sites and catalytic residues of BDHs from this superfamily. In this work, according to molecular docking studies, we found that conserved residues Phe120 and Val161 form strong hydrophobic interactions with both (2 R,3 R)­2,3­butanediol (RR-BD) and meso-2,3­butanediol (meso-BD) and that mutations of these residues to alanine or threonine impair substrate binding. To further evaluate the roles of these two residues, Phe120 and Val161 were mutated to alanine or threonine. Kinetic analysis revealed that, relative to those of wild type, the apparent KM values of the Phe120Ala mutant for RR-BD and meso-BD increased 36- and 369-fold, respectively; the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 586- and 3528-fold, respectively; and the apparent KM values of the Val161Ala mutant for RR-BD and meso-BD increased 4- and 37-fold, respectively, the catalytic efficiencies of this mutant with RR-BD and meso-BD decreased approximately 3- and 28-fold, respectively. Additionally, the Val161Thr mutant slightly decreased catalytic efficiencies (twofold with RR-BD; 7.3-fold with meso-BD) due to an increase in KM (sixfold for RR-BD; 24-fold for meso-BD) and a slight increase (2.8-fold with RR-BD; 3.3-fold with meso-BD) in kcat. These findings validate the critical roles of Phe120 and Val161 of NgBDH in substrate binding and catalysis. Overall, the current study provides a better understanding of the substrate binding and catalysis of BDHs within the MDR superfamily.


Subject(s)
Alcohol Oxidoreductases , Butylene Glycols , Molecular Docking Simulation , Mutagenesis, Site-Directed , Neisseria gonorrhoeae , Phenylalanine , Neisseria gonorrhoeae/enzymology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/chemistry , Kinetics , Butylene Glycols/metabolism , Phenylalanine/metabolism , Phenylalanine/genetics , Binding Sites , Substrate Specificity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Valine/metabolism , Valine/genetics , Catalytic Domain , Hydrophobic and Hydrophilic Interactions
7.
Int J Biol Macromol ; 267(Pt 2): 131415, 2024 May.
Article in English | MEDLINE | ID: mdl-38582485

ABSTRACT

The complete enzyme catalytic cycle includes substrate binding, chemical reaction and product release, in which different dynamic conformations are adopted. Due to the complex relationship among enzyme activity, stability and dynamics, the directed evolution of enzymes for improved activity or stability commonly leads to a trade-off in stability or activity. It hence remains a challenge to engineer an enzyme to have both enhanced activity and stability. Here, we have attempted to reconstruct the dynamics correlation network involved with active center to improve both activity and stability of a 2,3-butanediol dehydrogenase (2,3-BDH) by introducing inter-chain disulfide bonds. A computational strategy was first applied to evaluate the effect of introducing inter-chain disulfide bond on activity and stability of three 2,3-BDHs, and the N258C mutation of 2,3-BDH from Corynebacterium glutamicum (CgBDH) was proved to be effective in improving both activity and stability. In the results, CgBDH-N258C showed a different unfolding curve from the wild type, with two melting temperatures (Tm) of 68.3 °C and 50.8 °C, 19.7 °C and 2 °C higher than 48.6 °C of the wild type. Its half-life was also improved by 14.8-fold compared to the wild type. Catalytic efficiency (kcat/Km) of the mutant was increased by 7.9-fold toward native substrate diacetyl and 8.8-fold toward non-native substrate 2,5-hexanedione compared to the wild type. Molecular dynamics simulations revealed that an interaction network formed by Cys258, Arg162, Ala144 and the catalytic residues was reconstructed in the mutant and the dynamics change caused by the disulfide bond could be propagated through the interactions network. This improved the enzyme stability and activity by decreasing the flexibility and locking more "reactive" pose, respectively. Further construction of mutations including A144G showing a 44-fold improvement in catalytic efficiency toward meso-2,3-BD confirmed the role of modifying dynamics correlation network in tunning enzyme activity and selectivity. This study provided important insights into the relationship among dynamics, enzyme catalysis and stability, and will be useful in the designing new enzymes with co-evolution of stability, activity and selectivity.


Subject(s)
Alcohol Oxidoreductases , Corynebacterium glutamicum , Disulfides , Enzyme Stability , Molecular Dynamics Simulation , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Disulfides/chemistry , Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/genetics , Mutation , Catalytic Domain , Kinetics , Protein Conformation , Protein Engineering/methods
8.
Biomolecules ; 14(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38672520

ABSTRACT

Ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) is an important chiral intermediate in the synthesis of the cholesterol-lowering drug atorvastatin. Studying the use of SpyTag/SpyCatcher and SnoopTag/SnoopCatcher systems for the asymmetric reduction reaction and directed coupling coenzyme regeneration is practical for efficiently synthesizing (S)-CHBE. In this study, Spy and Snoop systems were used to construct a double-enzyme directed fixation system of carbonyl reductase (BsCR) and glucose dehydrogenase (BsGDH) for converting 4-chloroacetoacetate (COBE) to (S)-CHBE and achieving coenzyme regeneration. We discussed the enzymatic properties of the immobilized enzyme and the optimal catalytic conditions and reusability of the double-enzyme immobilization system. Compared to the free enzyme, the immobilized enzyme showed an improved optimal pH and temperature, maintaining higher relative activity across a wider range. The double-enzyme immobilization system was applied to catalyze the asymmetric reduction reaction of COBE, and the yield of (S)-CHBE reached 60.1% at 30 °C and pH 8.0. In addition, the double-enzyme immobilization system possessed better operational stability than the free enzyme, and maintained about 50% of the initial yield after six cycles. In summary, we show a simple and effective strategy for self-assembling SpyCatcher/SnoopCatcher and SpyTag/SnoopTag fusion proteins, which inspires building more cascade systems at the interface. It provides a new method for facilitating the rapid construction of in vitro immobilized multi-enzyme complexes from crude cell lysate.


Subject(s)
Enzymes, Immobilized , Glucose 1-Dehydrogenase , Glucose 1-Dehydrogenase/metabolism , Glucose 1-Dehydrogenase/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Biocatalysis , Hydrogen-Ion Concentration , Hydroxybutyrates/chemistry , Temperature , Catalysis , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Carbonyl Reductase (NADPH)/metabolism , Carbonyl Reductase (NADPH)/chemistry
9.
Int J Biol Macromol ; 261(Pt 2): 129870, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302022

ABSTRACT

A novel carbonyl reductase from Hyphopichia burtoni (HbKR) was discovered by gene mining. HbKR is a NADPH-dependent dual function enzyme with reduction and oxidation activity belonging to SDR superfamily. HbKR strictly follows Prelog priority in the reduction of long-chain aliphatic keto acids/esters containing remote carbonyl groups, such as 4-oxodecanoic acid and 5-oxodecanoic acid, producing (S)-γ-decalactone and (S)-δ-decalactone in >99 % e.e. Tailor-made engineering of HbKR was conducted to improve its catalytic efficiency. Variant F207A/F86M was obtained with specific activity of 8.37 U/mg toward 5-oxodecanoic acid, which was 9.7-fold of its parent. Employing F207A/F86M, 100 mM 5-oxodecanoic acid could be reduced into optically pure (S)-δ-decalactone. Molecular docking analysis indicates that substitution of aromatic Phe with smaller residues renders sufficient space for accommodating substrates in a more stable conformation. This study offers an efficient biocatalyst for the biosynthesis of (S)-lactones, and provides guidance for engineering carbonyl reductases toward structurally hindered substrates.


Subject(s)
Alcohol Oxidoreductases , Oxidoreductases , Oxidoreductases/genetics , Molecular Docking Simulation , Alcohol Oxidoreductases/chemistry , Lactones , Substrate Specificity , Aldehyde Reductase
10.
Chembiochem ; 25(5): e202300811, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38269599

ABSTRACT

Artificial dye-coupled assays have been widely adopted as a rapid and convenient method to assess the activity of methanol dehydrogenases (MDH). Lanthanide(Ln)-dependent XoxF-MDHs are able to incorporate different lanthanides (Lns) in their active site. Dye-coupled assays showed that the earlier Lns exhibit a higher enzyme activity than the late Lns. Despite widespread use, there are limitations: oftentimes a pH of 9 and activators are required for the assay. Moreover, Ln-MDH variants are not obtained by isolation from the cells grown with the respective Ln, but by incubation of an apo-MDH with the Ln. Herein, we report the cultivation of Ln-dependent methanotroph Methylacidiphilum fumariolicum SolV with nine different Lns, the isolation of the respective MDHs and the assessment of the enzyme activity using the dye-coupled assay. We compare these results with a protein-coupled assay using its physiological electron acceptor cytochrome cGJ (cyt cGJ ). Depending on the assay, two distinct trends are observed among the Ln series. The specific enzyme activity of La-, Ce- and Pr-MDH, as measured by the protein-coupled assay, exceeds that measured by the dye-coupled assay. This suggests that early Lns also have a positive effect on the interaction between XoxF-MDH and its cyt cGJ thereby increasing functional efficiency.


Subject(s)
Lanthanoid Series Elements , Lanthanoid Series Elements/chemistry , Alcohol Oxidoreductases/chemistry , Cytochromes c/chemistry , Malate Dehydrogenase
11.
J Biol Chem ; 300(1): 105491, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37995940

ABSTRACT

l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.


Subject(s)
Alcohol Oxidoreductases , Brain Diseases, Metabolic, Inborn , Drosophila melanogaster , Models, Molecular , Animals , Humans , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Brain Diseases, Metabolic, Inborn/enzymology , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/physiopathology , Drosophila melanogaster/enzymology , Glutarates/metabolism , Mutation , Catalytic Domain/genetics , Substrate Specificity/genetics , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
12.
Eur J Med Chem ; 258: 115611, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37421887

ABSTRACT

Phenotypic screening of an in-house library of small molecule purine derivatives against Mycobacterium tuberculosis (Mtb) led to the identification of 2-morpholino-7-(naphthalen-2-ylmethyl)-1,7-dihydro-6H-purin-6-one 10 as a potent antimycobacterial agent with MIC99 of 4 µM. Thorough structure-activity relationship studies revealed the importance of 7-(naphthalen-2-ylmethyl) substitution for antimycobacterial activity, yet opened the possibility of structural modifications at positions 2 and 6 of the purine core. As the result, optimized analogues with 6-amino or ethylamino substitution 56 and 64, respectively, were developed. These compounds showed strong in vitro antimycobacterial activity with MIC of 1 µM against Mtb H37Rv and against several clinically isolated drug-resistant strains, had limited toxicity to mammalian cell lines, medium clearance with respect to phase I metabolic deactivation (27 and 16.8 µL/min/mg), sufficient aqueous solubility (>90 µM) and high plasma stability. Interestingly, investigated purines, including compounds 56 and 64, lacked activity against a panel of Gram-negative and Gram-positive bacterial strains, indicating a specific mycobacterial molecular target. To investigate the mechanism of action, Mtb mutants resistant to hit compound 10 were isolated and their genomes were sequenced. Mutations were found in dprE1 (Rv3790), which encodes decaprenylphosphoryl-ß-d-ribose oxidase DprE1, enzyme essential for the biosynthesis of arabinose, a vital component of the mycobacterial cell wall. Inhibition of DprE1 by 2,6-disubstituted 7-(naphthalen-2-ylmethyl)-7H-purines was proved using radiolabelling experiments in Mtb H37Rv in vitro. Finally, structure-binding relationships between selected purines and DprE1 using molecular modeling studies in tandem with molecular dynamic simulations revealed the key structural features for effective drug-target interaction.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Animals , Antitubercular Agents/chemistry , Alcohol Oxidoreductases/chemistry , Purines/pharmacology , Structure-Activity Relationship , Molecular Dynamics Simulation , Bacterial Proteins/metabolism , Mammals/metabolism
13.
J Biol Chem ; 299(7): 104898, 2023 07.
Article in English | MEDLINE | ID: mdl-37295774

ABSTRACT

Vanillyl alcohol oxidases (VAOs) belong to the 4-phenol oxidases family and are found predominantly in lignin-degrading ascomycetes. Systematical investigation of the enzyme family at the sequence level resulted in discovery and characterization of the second recombinantly produced VAO member, DcVAO, from Diplodia corticola. Remarkably high activities for 2,6-substituted substrates like 4-allyl-2,6-dimethoxy-phenol (3.5 ± 0.02 U mg-1) or 4-(hydroxymethyl)-2,6-dimethoxyphenol (6.3 ± 0.5 U mg-1) were observed, which could be attributed to a Phe to Ala exchange in the catalytic center. In order to rationalize this rare substrate preference among VAOs, we resurrected and characterized three ancestral enzymes and performed mutagenesis analyses. The results indicate that a Cys/Glu exchange was required to retain activity for É£-hydroxylations and shifted the acceptance towards benzyl ethers (up to 4.0 ± 0.1 U mg-1). Our findings contribute to the understanding of the functionality of VAO enzyme group, and with DcVAO, we add a new enzyme to the repertoire of ether cleaving biocatalysts.


Subject(s)
Alcohol Oxidoreductases , Ascomycota , Biocatalysis , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Ascomycota/enzymology , Phenols/chemistry , Phenols/metabolism , Substrate Specificity , Hydroxylation , Ethers/chemistry , Ethers/metabolism
14.
Microb Biotechnol ; 16(6): 1333-1343, 2023 06.
Article in English | MEDLINE | ID: mdl-36946330

ABSTRACT

R-1,3-butanediol (R-1,3-BDO) is an important chiral intermediate of penem and carbapenem synthesis. Among the different synthesis methods to obtain pure enantiomer R-1,3-BDO, oxidation-reduction cascades catalysed by enzymes are promising strategies for its production. Dehydrogenases have been used for the reduction step, but the enantio-selectivity is not high enough for further organic synthesis efforts. Here, a short-chain carbonyl reductase (LnRCR) was evaluated for the reduction step and developed via protein engineering. After docking result analysis with the substrate 4-hydroxy-2-butanone (4H2B), residues were selected for virtual mutagenesis, their substrate-binding energies were compared, and four sites were selected for saturation mutagenesis. High-throughput screening helped identify a Ser154Lys mutant which increased the catalytic efficiency by 115% compared to the parent enzyme. Computer-aided simulations indicated that after single residue replacement, movements in two flexible areas (VTDPAF and SVGFANK) facilitated the volumetric compression of the 4H2B-binding pocket. The number of hydrogen bonds between the stabilized 4H2B-binding pocket of the mutant enzyme and substrate was higher (from four to six) than the wild-type enzyme, while the substrate-binding energy was decreased (from -17.0 kJ/mol to -29.1 kJ/mol). Consequently, the catalytic efficiency increased by approximately 115% and enantio-selectivity increased from 95% to 99%. Our findings indicate that compact and stable substrate-binding pockets are critical for enzyme catalysis. Lastly, the utilization of a microbe expressing the Ser154Lys mutant enzyme was proven to be a robust process to conduct the oxidation-reduction cascade at larger scales.


Subject(s)
Alcohol Oxidoreductases , Butylene Glycols , Catalysis , Butylene Glycols/metabolism , Alcohol Oxidoreductases/chemistry , Kinetics , Substrate Specificity
15.
Tree Physiol ; 43(1): 169-184, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36054375

ABSTRACT

Accumulation of anthocyanins largely determines the fruit color, and dihydroflavonol 4-reductase (DFR) is a key enzyme involved in the formation of anthocyanins. However, the catalytic and regulatory mechanisms of DFR are unclear. In this study, the gene encoding DFR from Zanthoxylum bungeanum Maxim. was cloned and ZbDFR was analyzed in detail. The ZbDFR accepted dihydrokaempferol, dihydroquercetin and dihydromyricetin as substrates. Flavonols such as myricetin, quercetin and kaempferol significantly inhibited the activity of ZbDFR, while quercitrin and isoquercitrin slightly increased the activity. Quercetin was a competitive inhibitor at low concentrations, and it had a combined effect of competitive and noncompetitive inhibition at high concentrations, which was consistent with ZbDFR having two inhibitor binding sites. In addition, the content of different types of flavonoids in Z. bungeanum peel at green, semi-red and red stage was analyzed, and the in vivo results could be explained by the regulation of ZbDFR activity in vitro. Site-directed mutagenesis combined with enzyme activity experiments showed that Ser128, Tyr163, Phe164 and Lys167 are the key catalytic amino acid residues. The Ser128, Tyr163 and Lys167 were crucial for the hydrogen transfer reaction, and mutation of these amino acids resulted in the loss of all or most of the activity. Phe164 was found to be important for the regulation of ZbDFR by flavonols. Accordingly, ZbDFR is a node at which flavonoids regulate the synthesis of anthocyanins and proanthocyanins.


Subject(s)
Quercetin , Zanthoxylum , Quercetin/metabolism , Anthocyanins/metabolism , Zanthoxylum/genetics , Zanthoxylum/metabolism , Flavonoids/metabolism , Flavonols , Oxidoreductases , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism
16.
Int J Biol Macromol ; 217: 407-416, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35841957

ABSTRACT

Phryma leptostachya has attracted increasing attention because it is rich in furofuran lignans with a wide range of biological activities. Biosynthesis of furofuran lignans begins with the dimerization of coniferyl alcohol, one of the monolignol. Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step of monolignol biosynthesis, reducing cinnamyl aldehydes to cinnamyl alcohol. As it is in the terminal position of monolignol biosynthesis, its type and activity can cause significant changes in the total amount and composition of lignans. Herein, combined with bioinformatics analysis and in vitro enzyme assays, we clarified that CAD in P. leptostachya belonged to a multigene family, and identified nearly the entire CAD gene family. Our in-depth characterization about the functions and structures of two major CAD isoforms, PlCAD2 and PlCAD3, showed that PlCAD2 exhibited the highest catalytic activity, and coniferyl aldehyde was its preferred substrate, followed by PlCAD3, and sinapyl aldehyde was its preferred substrate. Considering the accumulation patterns of furofuran lignans and expression patterns of PlCADs, we speculated that PlCAD2 was the predominant CAD isoform responsible for furofuran lignans biosynthesis in P. leptostachya. Moreover, these CADs found here can also provide effective biological parts for lignans and lignins biosynthesis.


Subject(s)
Gene Expression Regulation, Plant , Lignans , Alcohol Oxidoreductases/chemistry , Lignin/chemistry , Phylogeny
17.
Phys Chem Chem Phys ; 24(25): 15397-15405, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35704886

ABSTRACT

Pyrroloquinoline quinone (PQQ) is a redox cofactor in calcium- and lanthanide-dependent alcohol dehydrogenases that has been known and studied for over 40 years. Despite its long history, many questions regarding its fluorescence properties, speciation in solution and in the active site of alcohol dehydrogenase remain open. Here we investigate the effects of pH and temperature on the distribution of different PQQ species (H3PQQ to PQQ3- in addition to water adducts and in complex with lanthanides) with NMR and UV-Vis spectroscopy as well as time-resolved laser-induced fluorescence spectroscopy (TRLFS). Using a europium derivative from a new, recently-discovered class of lanthanide-dependent methanol dehydrogenase (MDH) enzymes, we utilized two techniques to monitor Ln binding to the active sites of these enzymes. Employing TRLFS, we were able to follow Eu(III) binding directly to the active site of MDH using its luminescence and could quantify three Eu(III) states: Eu(III) in the active site of MDH, but also in solution as PQQ-bound Eu(III) and in the aquo-ion form. Additionally, we used the antenna effect to study PQQ and simultaneously Eu(III) in the active site.


Subject(s)
Lanthanoid Series Elements , PQQ Cofactor , Alcohol Oxidoreductases/chemistry , Methanol/chemistry , PQQ Cofactor/chemistry
18.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 113-123, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34981767

ABSTRACT

Enzyme catalysis has emerged as a key technology for developing efficient, sustainable processes in the chemical, biotechnological and pharmaceutical industries. Plants provide large and diverse pools of biosynthetic enzymes that facilitate complex reactions, such as the formation of intricate terpene carbon skeletons, with exquisite specificity. High-resolution structural analysis of these enzymes is crucial in order to understand their mechanisms and modulate their properties by targeted engineering. Although cryo-electron microscopy (cryoEM) has revolutionized structural biology, its applicability to high-resolution structural analysis of comparatively small enzymes has so far been largely unexplored. Here, it is shown that cryoEM can reveal the structures of plant borneol dehydrogenases of ∼120 kDa at or below 2 Šresolution, paving the way for the rapid development of new biocatalysts that can provide access to bioactive terpenes and terpenoids.


Subject(s)
Catalysis , Cryoelectron Microscopy/methods , Enzymes/chemistry , Plants/enzymology , Alcohol Oxidoreductases/chemistry , Models, Molecular , Molecular Structure , Protein Engineering/methods , Salvia/chemistry , Salvia/genetics , Salvia officinalis/chemistry , Salvia officinalis/genetics , Terpenes/chemistry
19.
Chembiochem ; 23(3): e202100553, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34859558

ABSTRACT

Flavonoids are secondary metabolites ubiquitously found in plants. Their antioxidant properties make them highly interesting natural compounds for use in pharmacology. Therefore, unravelling the mechanisms of flavonoid biosynthesis is an important challenge. Among all the enzymes involved in this biosynthetic pathway, dihydroflavonol-4-reductase (DFR) plays a key role in the production of anthocyanins and proanthocyanidins. Here, we provide new information on the mechanism of action of this enzyme by using QM/MM-MD simulations applied to both dihydroquercetin (DHQ) and dihydrokaempferol (DHK) substrates. The consideration of these very similar compounds shed light on the major role played by the enzyme on the stabilization of the transition state but also on the activation of the substrate before the reaction through near-attack conformer effects.


Subject(s)
Alcohol Oxidoreductases/metabolism , Flavonoids/biosynthesis , Molecular Dynamics Simulation , Quantum Theory , Quercetin/analogs & derivatives , Alcohol Oxidoreductases/chemistry , Biocatalysis , Flavonoids/chemistry , Molecular Conformation , Quercetin/biosynthesis , Quercetin/chemistry , Substrate Specificity , Vitis/enzymology
20.
Angew Chem Int Ed Engl ; 61(1): e202111054, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34664348

ABSTRACT

Many existing in vitro biosystems harness power from the chemical energy contained in substrates and co-substrates, and light or electric energy provided from abiotic parts, leading to a compromise in atom economy, incompatibility between biological and abiotic parts, and most importantly, incapability to spatiotemporally co-regenerate ATP and NADPH. In this study, we developed a light-powered in vitro biosystem for poly(3-hydroxybutyrate) (PHB) synthesis using natural thylakoid membranes (TMs) to regenerate ATP and NADPH for a five-enzyme cascade. Through effective coupling of cofactor regeneration and mass conversion, 20 mM PHB was yielded from 50 mM sodium acetate with a molar conversion efficiency of carbon of 80.0 % and a light-energy conversion efficiency of 3.04 %, which are much higher than the efficiencies of similar in vitro PHB synthesis biosystems. This suggests the promise of installing TMs as a green engine to drive more enzyme cascades.


Subject(s)
Acetyl Coenzyme A/metabolism , Acetyl-CoA C-Acyltransferase/metabolism , Acyltransferases/metabolism , Alcohol Oxidoreductases/metabolism , Hydroxybutyrates/metabolism , Phosphotransferases/metabolism , Polyesters/metabolism , Acetyl Coenzyme A/chemistry , Acetyl-CoA C-Acyltransferase/chemistry , Acyltransferases/chemistry , Alcohol Oxidoreductases/chemistry , Hydroxybutyrates/chemistry , Light , Phosphotransferases/chemistry , Polyesters/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL