Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54.651
Filter
2.
Anal Chem ; 96(23): 9737-9743, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38825763

ABSTRACT

Various signal molecules mediate complex physiological processes collectively in the Golgi. However, most currently accessible probes are questionable in illuminating the functions of these reactive species in Golgi because of the inability to irradiate these probes only at the desired Golgi location, which compromises specificity and accuracy. In this study, we rationally designed the first photocontrollable and Golgi-targeted fluorescent probe to in situ visualize the Golgi alkaline phosphatase (ALP). The designed probe with natural yellow fluorescence can provide access into Golgi and monitor the exact timing of accumulation in Golgi. On-demand photoactivation at only the desired Golgi location affords a significant emission response to ALP with illuminating red fluorescence at 710 nm. Through the photocontrollable fluorescence responsiveness to ALP, precise spatiotemporal recognition of Golgi ALP fluctuations is successfully performed. With this probe, for the first time, we revealed the Golgi ALP levels during cisplatin-induced acute kidney injury (AKI), which will further facilitate and complement the comprehensive exploration of ALP kinetics during physiological and pathological processes.


Subject(s)
Alkaline Phosphatase , Fluorescent Dyes , Golgi Apparatus , Golgi Apparatus/metabolism , Alkaline Phosphatase/metabolism , Humans , Animals , Fluorescent Dyes/chemistry , HeLa Cells , Mice , Cisplatin/pharmacology
3.
Mikrochim Acta ; 191(7): 370, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38837084

ABSTRACT

The development of an ultrasensitive and precise measurement of a breast cancer biomarker (cancer antigen 15-3; CA15-3) in complex human serum is essential for the early diagnosis of cancer in groups of healthy populations and the treatment of patients. However, currently available testing technologies suffer from insufficient sensitivity toward CA15-3, which severely limits early large-scale screening of breast cancer patients. We report a versatile electrochemical immunoassay method based on atomically cobalt-dispersed nitrogen-doped carbon (Co-NC)-modified disposable screen-printed carbon electrode (SPCE) with alkaline phosphatase (ALP) and its metabolite, ascorbic acid 2-phosphate (AAP), as the electrochemical labeling and redox signaling unit for sensitive detection of low-abundance CA15-3. During electrochemical detection by differential pulse voltammetry (DPV), it was found that the Co-NC-SPCE electrode did not have a current signal response to the AAP substrate; however, it had an extremely favorable response current to ascorbic acid (AA). Based on the above principle, the target CA15-3-triggered immunoassay enriched ALP-catalyzed AAP produces a large amount of AA, resulting in a significant change in the system current signal, thereby realizing the highly sensitive detection of CA15-3. Under the optimal AAP substrate concentration and ALP catalysis time, the Co-NC-SPCE-based electrochemical immunoassay demonstrated a good DPV current for CA15-3 in the assay interval of 1.0 mU/mL to 10,000 mU/mL, with a calculated limit of detection of 0.38 mU/mL. Since Co-NC-SPCE has an excellent DPV current response to AA and employs split-type scheme, the constructed electrochemical immunoassay has the merits of high preciseness and anti-interference, and its clinical diagnostic results are comparable to those of commercial kits.


Subject(s)
Ascorbic Acid , Biomarkers, Tumor , Breast Neoplasms , Carbon , Cobalt , Electrochemical Techniques , Mucin-1 , Nitrogen , Humans , Immunoassay/methods , Breast Neoplasms/blood , Mucin-1/blood , Biomarkers, Tumor/blood , Electrochemical Techniques/methods , Carbon/chemistry , Nitrogen/chemistry , Cobalt/chemistry , Ascorbic Acid/chemistry , Ascorbic Acid/blood , Ascorbic Acid/analogs & derivatives , Female , Limit of Detection , Alkaline Phosphatase/blood , Alkaline Phosphatase/chemistry , Electrodes , Biosensing Techniques/methods
4.
Sci Rep ; 14(1): 13099, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849443

ABSTRACT

The aim of the study was to analyze the change trend of serum ALP over time and identify factors influencing its levels in peritoneal dialysis patients. Then to investigate the impact of serum ALP changes on calcium and phosphorus metabolism in single peritoneal dialysis center utilizing repeated measurement data. A retrospective cohort study was conducted with a total follow-up duration of 30 months. Serum ALP and other biomarkers, including calcium (Ca), phosphorus (P), 25(OH)D, intact parathyroid hormone (iPTH), albumin(ALB), and hemoglobin(Hb) were measured every 3 months. The generalized estimation equation (GEE) was utilized to analyze the change trend of serum ALP over time, and to assess whether there were differences in changes over time between different genders and different primary disease groups. Additionally, factors influencing serum ALP levels were analyzed, and the impact of serum ALP changes on calcium and phosphorus metabolism was also explored. A total of 34 patients were included in the study. Serum ALP and other indicators were measured repeatedly, with a maximum of 8 times and a minimum of 4 times. The median of serum ALP values at all measurement times for all selected patients was 89 U/L. The GEE analysis revealed that serum ALP gradually increased with time, and patients in diabetes group increased faster than those in non-diabetes group. A positive correlation was observed between serum ALP and dialysis duration, also between serum ALP and hemoglobin. However, variations in serum ALP did not significantly affect serum corrected calcium, phosphorus, or iPTH concentrations. The serum ALP levels of peritoneal dialysis patients increase gradually over time, and the concentrations are influenced by dialysis duration. The changes in serum ALP values do not have a significant impact on serum calcium, phosphorus, and iPTH levels.


Subject(s)
Alkaline Phosphatase , Biomarkers , Calcium , Peritoneal Dialysis , Phosphorus , Humans , Male , Female , Middle Aged , Alkaline Phosphatase/blood , Phosphorus/blood , Longitudinal Studies , Calcium/blood , Retrospective Studies , Biomarkers/blood , Adult , Parathyroid Hormone/blood , Aged
5.
BMC Cardiovasc Disord ; 24(1): 294, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849721

ABSTRACT

BACKGROUND: The incidence of hypertension (HTN) as a worldwide health problem is rising rapidly. Early identification and management of pre-HTN before HTN development can help reduce its related complications. We evaluated the relationship between liver enzymes levels and pre-HTN/HTN in the Azar cohort population. METHOD: This cross-sectional study was based on data from the large Azar cohort study and a total of 14,184 participants were included. Pre-HTN and HTN were defined based on the American Heart Association guideline. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT) levels were measured by Pars Azmoon kits. The relationship between pre-HTN/HTN and liver enzyme levels was evaluated by logistic regression. RESULTS: Of 14,184 participants, 5.7% and 39.6% had pre-HTN and HTN, respectively. In the adjusted model, AST levels of 19-23 IU/l were associated with an elevated risk of pre-HTN (OR [95% CI]: 1.24 [1.04-1.48]). A dose-response increase was seen in pre-HTN in relation to ALT, with the highest OR in the third tertile (1.34 [1.09-1.63]). The odds of pre-HTN also increased with GGT in the third tertile (1.25[1.03-1.52]). In addition, the odds of HTN increased with increased levels of AST, ALT, ALP, and GGT, such that the highest ORs were recorded in the third tertile (OR 1.22 [1.09-1.37], 1.51 [1.35-1.70], 1.19 [1.07-1.34], and 1.68 [1.49-1.89], respectively). Among these enzymes, GGT had the highest OR regarding HTN. CONCLUSION: This study indicates that AST, ALT, ALP and GGT levels were associated with pre-HTN (except for ALP) and HTN, independent of known risk factors. Hence, it may be possible to use liver enzymes to predict the incidence of pre-HTN and HTN, empowering primary care providers to make the necessary interventions promptly.


Subject(s)
Alanine Transaminase , Alkaline Phosphatase , Aspartate Aminotransferases , Biomarkers , Blood Pressure , Hypertension , Liver , Prehypertension , gamma-Glutamyltransferase , Humans , Male , Hypertension/epidemiology , Hypertension/diagnosis , Hypertension/enzymology , Hypertension/blood , Female , Cross-Sectional Studies , Middle Aged , Alanine Transaminase/blood , gamma-Glutamyltransferase/blood , Biomarkers/blood , Alkaline Phosphatase/blood , Risk Factors , Adult , Aspartate Aminotransferases/blood , Liver/enzymology , Risk Assessment , Prehypertension/enzymology , Prehypertension/epidemiology , Prehypertension/diagnosis , Prehypertension/blood , Prehypertension/physiopathology , Clinical Enzyme Tests , Incidence , Predictive Value of Tests
6.
Acta Neuropathol Commun ; 12(1): 84, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822421

ABSTRACT

Alpha-synuclein (αsyn) is an intrinsically disordered protein that aggregates in the brain in several neurodegenerative diseases collectively called synucleinopathies. Phosphorylation of αsyn at serine 129 (PSER129) was considered rare in the healthy human brain but is enriched in pathological αsyn aggregates and is used as a specific marker for disease inclusions. However, recent observations challenge this assumption by demonstrating that PSER129 results from neuronal activity and can be readily detected in the non-diseased mammalian brain. Here, we investigated experimental conditions under which two distinct PSER129 pools, namely endogenous-PSER129 and aggregated-PSER129, could be detected and differentiated in the mammalian brain. Results showed that in the wild-type (WT) mouse brain, perfusion fixation conditions greatly influenced the detection of endogenous-PSER129, with endogenous-PSER129 being nearly undetectable after delayed perfusion fixation (30-min and 1-h postmortem interval). Exposure to anesthetics (e.g., Ketamine or xylazine) before perfusion did not significantly influence endogenous-PSER129 detection or levels. In situ, non-specific phosphatase calf alkaline phosphatase (CIAP) selectively dephosphorylated endogenous-PSER129 while αsyn preformed fibril (PFF)-seeded aggregates and genuine disease aggregates (Lewy pathology and Papp-Lantos bodies in Parkinson's disease and multiple systems atrophy brain, respectively) were resistant to CIAP-mediated dephosphorylation. The phosphatase resistance of aggregates was abolished by sample denaturation, and CIAP-resistant PSER129 was closely associated with proteinase K (PK)-resistant αsyn (i.e., a marker of aggregation). CIAP pretreatment allowed for highly specific detection of seeded αsyn aggregates in a mouse model that accumulates non-aggregated-PSER129. We conclude that αsyn aggregates are impervious to phosphatases, and CIAP pretreatment increases detection specificity for aggregated-PSER129, particularly in well-preserved biological samples (e.g., perfusion fixed or flash-frozen mammalian tissues) where there is a high probability of interference from endogenous-PSER129. Our findings have important implications for the mechanism of PSER129-accumulation in the synucleinopathy brain and provide a simple experimental method to differentiate endogenous-from aggregated PSER129.


Subject(s)
Brain , Mice, Inbred C57BL , alpha-Synuclein , Animals , Humans , Male , Mice , Alkaline Phosphatase/metabolism , alpha-Synuclein/metabolism , Brain/metabolism , Brain/pathology , Mice, Transgenic , Phosphoric Monoester Hydrolases/metabolism , Phosphorylation , Protein Aggregates/physiology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Synucleinopathies/metabolism , Synucleinopathies/pathology
7.
Food Res Int ; 186: 114356, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729722

ABSTRACT

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Subject(s)
Crassostrea , Plasmalogens , Temperature , Animals , Plasmalogens/metabolism , Plasmalogens/analysis , Crassostrea/genetics , Crassostrea/metabolism , Shellfish/analysis , Proteomics/methods , Antioxidants/metabolism , Antioxidants/analysis , Alkaline Phosphatase/metabolism , Food Quality
8.
PeerJ ; 12: e17258, 2024.
Article in English | MEDLINE | ID: mdl-38770097

ABSTRACT

Background: Physical activity is an important factor in modelling the remodelling and metabolism of bone tissue. The aim of the study was to evaluate the changes in indices demonstrating bone turnover in men under the influence of maximum-intensity exercise. Methods: The study involved 33 men aged 20-25, divided into two groups: experimental (n = 15) and control (n = 18). People training medium- and long-distance running were assigned to the experimental group, and non-training individuals to the control. Selected somatic, physiological and biochemical indices were measured. The level of aerobic fitness was determined using a progressively increasing graded test (treadmill test for subjective fatigue). Blood samples for determinations were taken before the test and 60 minutes after its completion. The concentration of selected bone turnover markers was assessed: bone fraction of alkaline phosphatase (b-ALP), osteoclacin (OC), N-terminal cross-linked telopeptide of the alpha chain of type I collagen (NTx1), N-terminal propeptide of type I progolagen (PINP), osteoprotegerin (OPG). In addition, the concentration of 25(OH)D3 prior to the stress test was determined. Additionally, pre and post exercise, the concentration of lactates in the capillary blood was determined. Results: When comparing the two groups, significant statistical differences were found for the mean level of: 25(OH)D3 (p = 0.025), b-ALP (p < 0.001), OC (p = 0.004) and PINP (p = 0.029) prior to the test. On the other hand, within individual groups, between the values pre and post the stress test, there were statistically significant differences for the average level of: b-ALP (p < 0.001), NTx1 (p < 0.001), OPG (p = 0.001) and PINP (p = 0.002). Conclusion: A single-session maximum physical effort can become an effective tool to initiate positive changes in bone turnover markers.


Subject(s)
Biomarkers , Bone Remodeling , Exercise , Humans , Male , Adult , Biomarkers/blood , Bone Remodeling/physiology , Exercise/physiology , Young Adult , Osteoprotegerin/blood , Alkaline Phosphatase/blood , Collagen Type I/blood , Collagen Type I/metabolism , Peptides/blood , Peptides/metabolism , Running/physiology , Exercise Test/methods , Procollagen/blood
9.
Sci Rep ; 14(1): 10227, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702443

ABSTRACT

Hydrolyzed egg yolk peptide (YPEP) was shown to increase bone mineral density in ovariectomized rats. However, the underlying mechanism of YPEP on osteoporosis has not been explored. Recent studies have shown that Wnt/ß-catenin signaling pathway and gut microbiota may be involved in the regulation of bone metabolism and the progression of osteoporosis. The present study aimed to explore the preventive effect of the YPEP supplementation on osteoporosis in ovariectomized (OVX) rats and to verify whether YPEP can improve osteoporosis by regulating Wnt/ß-catenin signaling pathway and gut microbiota. The experiment included five groups: sham surgery group (SHAM), ovariectomy group (OVX), 17-ß estradiol group (E2: 25 µg /kg/d 17ß-estradiol), OVX with low-dose YPEP group (LYPEP: 10 mg /kg/d YPEP) and OVX with high-dose YPEP group (HYPEP: 40 mg /kg/d YPEP). In this study, all the bone samples used were femurs. Micro-CT analysis revealed improvements in both bone mineral density (BMD) and microstructure by YPEP treatment. The three-point mechanical bending test indicated an enhancement in the biomechanical properties of the YPEP groups. The serum levels of bone alkaline phosphatase (BALP), bone gla protein (BGP), calcium (Ca), and phosphorus (P) were markedly higher in the YPEP groups than in the OVX group. The LYPEP group had markedly lower levels of alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) and C-terminal telopeptide of type I collagen (CTX-I) than the OVX group. The YPEP groups had significantly higher protein levels of the Wnt3a, ß-catenin, LRP5, RUNX2 and OPG of the Wnt/ß-catenin signaling pathway compared with the OVX group. Compared to the OVX group, the ratio of OPG/RANKL was markedly higher in the LYPEP group. At the genus level, there was a significantly increase in relative abundance of Lachnospiraceae_NK4A136_group and a decrease in Escherichia_Shigella in YPEP groups, compared with the OVX group. However, in the correlation analysis, there was no correlation between these two bacteria and bone metabolism and microstructure indexes. These findings demonstrate that YPEP has the potential to improve osteoporosis, and the mechanism may be associated with its modulating effect on Wnt/ß-catenin signaling pathway.


Subject(s)
Bone Density , Osteoporosis , Ovariectomy , Wnt Signaling Pathway , Animals , Female , Rats , Alkaline Phosphatase/metabolism , beta Catenin/metabolism , Bone Density/drug effects , Egg Proteins/pharmacology , Egg Proteins/metabolism , Egg Yolk/chemistry , Egg Yolk/metabolism , Femur/drug effects , Femur/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Osteoporosis/prevention & control , Osteoporosis/metabolism , Peptides/pharmacology , Rats, Sprague-Dawley , Wnt Signaling Pathway/drug effects , X-Ray Microtomography
10.
Aliment Pharmacol Ther ; 59(12): 1604-1615, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38690746

ABSTRACT

BACKGROUND: Suboptimal response to ursodeoxycholic acid occurs in 40% of primary biliary cholangitis (PBC) patients, affecting survival. Achieving a deep response (normalisation of alkaline phosphatase [ALP] and bilirubin ≤0.6 upper limit of normal) improves survival. Yet, the long-term effectiveness of second-line treatments remains uncertain. AIMS: To evaluate the long-term effectiveness of obeticholic acid (OCA) ± fibrates. Focusing on biochemical response (ALP ≤1.67 times the upper limit of normal, with a decrease of at least 15% from baseline and normal bilirubin levels), normalisation of ALP, deep response and biochemical remission (deep response plus aminotransferase normalisation). METHODS: We conducted a longitudinal, observational, multicentre study involving ursodeoxyccholic acid non-responsive PBC patients (Paris-II criteria) from Spain and Portugal who received OCA ± fibrates. RESULTS: Of 255 patients, median follow-up was 35.1 months (IQR: 20.2-53). The biochemical response in the whole cohort was 47.2%, 61.4% and 68.6% at 12, 24 and 36 months. GLOBE-PBC and 5-year UK-PBC scores improved (p < 0.001). Triple therapy (ursodeoxycholic acid plus OCA plus fibrates) had significantly higher response rates than dual therapy (p = 0.001), including ALP normalisation, deep response and biochemical remission (p < 0.001). In multivariate analysis, triple therapy remained independently associated with biochemical response (p = 0.024), alkaline phosphatase normalisation, deep response and biochemical remission (p < 0.001). Adverse effects occurred in 41.2% of cases, leading to 18.8% discontinuing OCA. Out of 55 patients with cirrhosis, 12 developed decompensation. All with baseline portal hypertension. CONCLUSION: Triple therapy was superior in achieving therapeutic goals in UDCA-nonresponsive PBC. Decompensation was linked to pre-existing portal hypertension.


Subject(s)
Alkaline Phosphatase , Chenodeoxycholic Acid , Cholagogues and Choleretics , Drug Therapy, Combination , Liver Cirrhosis, Biliary , Ursodeoxycholic Acid , Humans , Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/therapeutic use , Male , Female , Middle Aged , Ursodeoxycholic Acid/therapeutic use , Longitudinal Studies , Liver Cirrhosis, Biliary/drug therapy , Aged , Treatment Outcome , Alkaline Phosphatase/blood , Cholagogues and Choleretics/therapeutic use , Fibric Acids/therapeutic use , Spain , Bilirubin/blood , Adult
11.
Dalton Trans ; 53(20): 8633-8641, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38695060

ABSTRACT

Poor cellular permeability greatly hampers the utilization of anionic Ir(III) complexes, though efficiently emissive and remarkably stable, in cell-based diagnosis. To overcome this barrier, we present the development of an alkaline phosphatase (ALP)-responsive, anionic, and aggregation-induced emission (AIE)-active Ir(III) complex (Ir1) for specific recognition of osteosarcoma cells. Containing phosphate moieties, Ir1 exhibits a net -1 charge, enabling charge repulsion from the cell membrane and resulting in low cellular uptake and good biocompatibility in normal osteoblast cells. Upon ALP-mediated hydrolysis of phosphate groups, the resulting dephosphorylated product, Ir2, demonstrates a positive charge and increased lipophilicity, promoting cellular uptake and activating its AIE properties for specific recognition of osteosarcoma cells that express elevated levels of ALP. This study elucidates the role of ALP as an ideal trigger for enhancing the cellular permeability of phosphate ester-containing Ir(III) complexes, thus expanding the potential of anionic Ir(III) complexes for biomedical applications.


Subject(s)
Alkaline Phosphatase , Anions , Coordination Complexes , Iridium , Osteosarcoma , Iridium/chemistry , Humans , Osteosarcoma/pathology , Osteosarcoma/metabolism , Alkaline Phosphatase/metabolism , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Anions/chemistry , Cell Line, Tumor
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 697-705, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708503

ABSTRACT

OBJECTIVE: To explore the role of zinc finger protein 36(ZFP36) in regulating osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and preosteoblasts. METHODS: ZFP36 expression was observed in primary mouse BMSCs and mouse preosteoblasts (MC3T3-E1 cells) during induced osteogenic differentiation. Zfp36-deficient cell models were constructed in the two cells using RNA interference technique and the changes in differentiation capacities of the transfected cells into osteoblasts were observed. Transcriptome sequencing was used to investigate the potential mechanisms of ZFP36 for regulating osteoblast differentiation of the two cells. U0126, a ERK/MAPK signal suppressor, was used to verify the regulatory mechanism of Zfp36 in osteogenic differentiation of Zfp36-deficient cells. RESULTS: During the 14-day induction of osteogenic differentiation, both mouse BMSCs and MC3T3-E1 cells exhibited increased expression of ZFP36, and its mRNA expression reached the peak level on Day 7(P < 0.0001). The Zfp36-deficient cell models showed reduced intensity of alkaline phosphatase (ALP) staining and alizarin red staining with significantly lowered expressions of the osteogenic marker genes including Alpl, Sp7, Bglap and Ibsp (P < 0.01). Transcriptome sequencing verified the reduction of bone mineralization-related gene expressions in Zfp36-deficient cells and indicated the involvement of ERK signaling in the potential regulatory mechanism of Zfp36. Immunoblotting showed that pERK protein expression increased significantly in Zfp36-deficient cells compared with the control cells. In Zfp36-deficient MC3T3-E1 cells, inhibition of activated ERK/MAPK signaling with U0126 resulted in obviously enhanced ALP staining and significantly increased expressions of osteoblast differentiation markers Runx2 and Bglap (P < 0.05). CONCLUSIONS: ZFP36 is involved in the regulation of osteoblast differentiation of mouse BMSCs and preosteoblasts, and ZFP36 deficiency causes inhibition of osteoblast differentiation of the cells by activating the ERK/MAPK signaling pathway.


Subject(s)
Cell Differentiation , MAP Kinase Signaling System , Mesenchymal Stem Cells , Osteoblasts , Osteogenesis , Animals , Mice , Alkaline Phosphatase/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Butyrate Response Factor 1/metabolism , Butyrate Response Factor 1/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism
13.
J Pak Med Assoc ; 74(4): 656-660, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751257

ABSTRACT

Objectives: To ascertain the significance of serum ferritin and De Ritis ratio as diagnostic markers in patients of nonalcoholic fatty liver disease with and without type 2 diabetes mellitus. METHODS: The comparative cross-sectional study was conducted from February to October 2022 at the Radiology Department of Combined Military Hospital, Rawalpindi, Pakistan, and comprised individuals aged 30-65 who were divided into 3 groups. Healthy controls formed group I, non-alcoholic fatty liver disease patients without type 2 diabetes mellitus formed group II and non-alcoholic fatty liver disease patients with type 2 diabetes mellitus were in group III. Blood 5ml was withdrawn and assessed for alkaline phosphatase, aspartate transaminase, alanine transaminase and ferritin. De Ritis ratio was calculated and subjected to intergroup comparison. Data was analysed using SPSS 22. RESULTS: Of the 210 subjects, 110(52.4%) were males and 100(47.6%) were females, with 70(33.3%) in each of the three groups. Group I had 38(54.3%) females and 32(45.7%) males with mean age 37.50±4.513. In group II, there were 27(38.6%) females and 43(61.4%) males with mean age 45.86±9.646, while in group III there were 35(50%) females and 35(50%) males with mean age 54.01±9.243 years. Serum ferritin levels were significantly increased in patient groups II and III compared to control group I (p<0.05). De Ritis ratio was markedly raised in groups II and III compared to group I (p<0.05). Ferritin was significantly correlated to age, weight, height, fasting blood glucose, haemoglobin, alkaline phosphatase, aspartate aminotransferase, alanine transaminase and bilirubin (p<0.05). De Ritis ratio had a significant correlation with body mass index and fasting blood glucose (p<0.05). CONCLUSIONS: Serum ferritin and De Ritis ratio were found to be useful diagnostic indicators for non-alcoholic fatty liver disease, highlighting their importance in improving disease screening.


Subject(s)
Alanine Transaminase , Aspartate Aminotransferases , Biomarkers , Diabetes Mellitus, Type 2 , Ferritins , Non-alcoholic Fatty Liver Disease , Humans , Ferritins/blood , Male , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnosis , Female , Middle Aged , Adult , Cross-Sectional Studies , Biomarkers/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Case-Control Studies , Alkaline Phosphatase/blood , Aged , Pakistan/epidemiology
14.
Braz Oral Res ; 38: e037, 2024.
Article in English | MEDLINE | ID: mdl-38747824

ABSTRACT

Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) can differentiate into osteoblasts, indicating that both are potential candidates for bone tissue engineering. Osteogenesis is influenced by many environmental factors, one of which is lipopolysaccharide (LPS). LPS-induced NF-κB activity affects the osteogenic potencies of different types of MSCs differently. This study evaluated the effect of LPS-induced NF-κB activity and its inhibition in DPSCs and PDLSCs. DPSCs and PDLSCs were cultured in an osteogenic medium, pretreated with/without NF-κB inhibitor Bay 11-7082, and treated with/without LPS. Alizarin red staining was performed to assess bone nodule formation, which was observed under an inverted light microscope. NF-κB and alkaline phosphatase (ALP) activities were measured to examine the effect of Bay 11-7082 pretreatment and LPS supplementation on osteogenic differentiation of DPSCs and PDLSCs. LPS significantly induced NF-κB activity (p = 0.000) and reduced ALP activity (p = 0.000), which inhibited bone nodule formation in DPSCs and PDLSCs. Bay 11-7082 inhibited LPS-induced NF-κB activity, and partially maintained ALP activity and osteogenic potency of LPS-supplemented DPSCs and PDLSCs. Thus, inhibition of LPS-induced NF-κB activity can maintain the osteogenic potency of DPSCs and PDLSCs.


Subject(s)
Alkaline Phosphatase , Cell Differentiation , Dental Pulp , Lipopolysaccharides , NF-kappa B , Nitriles , Osteogenesis , Periodontal Ligament , Stem Cells , Humans , Lipopolysaccharides/pharmacology , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Osteogenesis/drug effects , Osteogenesis/physiology , Dental Pulp/cytology , Dental Pulp/drug effects , NF-kappa B/metabolism , Alkaline Phosphatase/analysis , Cell Differentiation/drug effects , Stem Cells/drug effects , Stem Cells/physiology , Cells, Cultured , Nitriles/pharmacology , Sulfones/pharmacology , Reproducibility of Results , Time Factors , Young Adult , Adolescent
15.
Proc Natl Acad Sci U S A ; 121(20): e2312892121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713622

ABSTRACT

Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.


Subject(s)
Alkaline Phosphatase , Prochlorococcus , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Prochlorococcus/genetics , Prochlorococcus/metabolism , Phosphorus/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Synechococcus/genetics , Synechococcus/metabolism , Phylogeny , Seawater/microbiology
16.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791142

ABSTRACT

Placenta Accreta Spectrum (PAS) is a life-threatening condition in which placental trophoblastic cells abnormally invade the uterus, often up to the uterine serosa and, in extreme cases, tissues beyond the uterine wall. Currently, there is no clinical assay for the non-invasive detection of PAS, and only ultrasound and MRI can be used for its diagnosis. Considering the subjectivity of visual assessment, the detection of PAS necessitates a high degree of expertise and, in some instances, can lead to its misdiagnosis. In clinical practice, up to 50% of pregnancies with PAS remain undiagnosed until delivery, and it is associated with increased risk of morbidity/mortality. Although many studies have evaluated the potential of fetal biomarkers circulating in maternal blood, very few studies have evaluated the potential of circulating placental extracellular vesicles (EVs) and their miRNA contents for molecular detection of PAS. Thus, to purify placental EVs from maternal blood, we customized our robust ultra-sensitive immuno-purification assay, termed EV-CATCHER, with a monoclonal antibody targeting the membrane Placental Alkaline Phosphatase (PLAP) protein, which is unique to the placenta and present on the surface of placental EVs. Then, as a pilot evaluation, we compared the miRNA expression profiles of placental EVs purified from the maternal plasma of women diagnosed with placenta previa (controls, n = 16); placenta lying low in uterus but not invasive) to those of placental EVs purified from the plasma of women with placenta percreta (cases, n = 16), PAS with the highest level of invasiveness. Our analyses reveal that miRNA profiling of PLAP+ EVs purified from maternal plasma identified 40 differentially expressed miRNAs when comparing these two placental pathologies. Preliminary miRNA pathway enrichment and gene ontology analysis of the top 14 upregulated and top nine downregulated miRNAs in PLAP+ EVs, purified from the plasma of women diagnosed with placenta percreta versus those diagnosed with placenta previa, suggests a potential role in control of cellular invasion and motility that will require further investigation.


Subject(s)
Extracellular Vesicles , Placenta Accreta , Placenta , Humans , Female , Extracellular Vesicles/metabolism , Pregnancy , Placenta/metabolism , Placenta Accreta/diagnosis , Placenta Accreta/blood , Biomarkers/blood , Adult , MicroRNAs/blood , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta Previa/diagnosis , Placenta Previa/blood , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/blood , Isoenzymes , GPI-Linked Proteins
17.
Sci Rep ; 14(1): 12536, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822011

ABSTRACT

This study investigated whether Ki-Patlak derived from a shortened scan time for dynamic 18F-NaF PET/CT in chronic kidney disease (CKD) patients undergoing hemodialysis can provide predictive accuracy comparable to that obtained from a longer scan. Twenty-seven patients on chronic hemodialysis, involving a total of 42 scans between December 2021 and August 2023 were recruited. Dynamic 18F-NaF PET/CT scans, lasting 60-90 min, were immediately acquired post-injection, covering the mid-twelfth thoracic vertebra to the pelvis region. Ki-Patlak analysis was performed on bone time-activity curves at 15, 30, 45, 60, and 90 min in the lumbar spine (L1-L4) and both anterior iliac crests. Spearman's rank correlation (rs) and interclass correlation coefficient were used to assess the correlation and agreement of Ki-Patlak between shortened and standard scan times. Bone-specific alkaline phosphatase (BsAP) and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) were tested for their correlation with individual Ki-Patlak. Strong correlations and good agreement were observed between Ki-Patlak values from shortened 30-min scans and longer 60-90-min scans in both lumbar spine (rs = 0.858, p < 0.001) and anterior iliac crest regions (rs = 0.850, p < 0.001). The correlation between BsAP and Ki-Patlak in the anterior iliac crests was weak and statistically insignificant. This finding suggests that a proposed shortened dynamic 18F-NaF PET/CT scan is effective in assessing bone metabolic flux in CKD patients undergoing hemodialysis, offering a non-invasive alternative approach for bone turnover prediction.


Subject(s)
Positron Emission Tomography Computed Tomography , Renal Dialysis , Renal Insufficiency, Chronic , Sodium Fluoride , Humans , Positron Emission Tomography Computed Tomography/methods , Male , Female , Middle Aged , Renal Insufficiency, Chronic/therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/diagnostic imaging , Aged , Fluorine Radioisotopes , Bone Remodeling , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/metabolism , Adult , Alkaline Phosphatase/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Ilium/diagnostic imaging , Ilium/metabolism
18.
Clin Exp Dent Res ; 10(3): e885, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798048

ABSTRACT

OBJECTIVES: Calcifying nanoparticles (CNPs), referred to as nanobacteria (NB), are recognized to be associated with ectopic calcification. This study aims to isolate and culture CNPs from the dental plaque of patients with periodontal disease and investigate their possible role in unravelling the aetiology of periodontal disease. MATERIAL AND METHODS: Supragingival and subgingival plaques were sampled from 30 periodontitis patients for CNPs isolation and culture. Alkaline phosphatase (ALP) content changes were tracked over time. Positive samples underwent thorough morphological identification via hematoxylin and eosin (HE) staining, Alizarin red S (ARS), and transmission electron microscopy (TEM). The chemical composition of CNPs analysis involved calcium (Ca) and phosphorus (P) content determination, Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). RESULTS: The subgingival plaque dental group exhibited a higher CNPs isolation rate at 36.67% (11/30) compared to the supragingival dental plaque group at 66.67% (20/30). ALP activity varied among the positive, negative and control groups. Morphological observation characterized the CNPs as round, oval, and ellipsoid particles with Ca deposits. Chemical analysis revealed the Ca/P ratio was 0.6753. Hydroxyl, methyl, carbonate, phosphate, hydrogen phosphate, and dihydrogen phosphate were detected by FTIR; the main chemical components detected by XRD were hydroxyapatite and tricalcium phosphate. CONCLUSION: CNPs were found in periodontitis-related dental plaque and exhibited the potential to develop calcified structures resembling dental calculus. However, the potential involvement of ALP in CNPs formation requires deeper exploration, as does the precise nature of its role and the interrelation with periodontitis demand a further comprehensive investigation.


Subject(s)
Alkaline Phosphatase , Calcifying Nanoparticles , Dental Plaque , X-Ray Diffraction , Humans , Calcifying Nanoparticles/metabolism , Dental Plaque/microbiology , Dental Plaque/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Alkaline Phosphatase/metabolism , Phosphorus/analysis , Phosphorus/metabolism , Periodontitis/microbiology , Periodontitis/pathology , Microscopy, Electron, Transmission , Female , Adult , Calcium/metabolism , Calcium/analysis , Male , Middle Aged
19.
BMC Cancer ; 24(1): 630, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783240

ABSTRACT

BACKGROUND: Tumor morphology, immune function, inflammatory levels, and nutritional status play critical roles in the progression of intrahepatic cholangiocarcinoma (ICC). This multicenter study aimed to investigate the association between markers related to tumor morphology, immune function, inflammatory levels, and nutritional status with the prognosis of ICC patients. Additionally, a novel tumor morphology immune inflammatory nutritional score (TIIN score), integrating these factors was constructed. METHODS: A retrospective analysis was performed on 418 patients who underwent radical surgical resection and had postoperative pathological confirmation of ICC between January 2016 and January 2020 at three medical centers. The cohort was divided into a training set (n = 272) and a validation set (n = 146). The prognostic significance of 16 relevant markers was assessed, and the TIIN score was derived using LASSO regression. Subsequently, the TIIN-nomogram models for OS and RFS were developed based on the TIIN score and the results of multivariate analysis. The predictive performance of the TIIN-nomogram models was evaluated using ROC survival curves, calibration curves, and clinical decision curve analysis (DCA). RESULTS: The TIIN score, derived from albumin-to-alkaline phosphatase ratio (AAPR), albumin-globulin ratio (AGR), monocyte-to-lymphocyte ratio (MLR), and tumor burden score (TBS), effectively categorized patients into high-risk and low-risk groups using the optimal cutoff value. Compared to individual metrics, the TIIN score demonstrated superior predictive value for both OS and RFS. Furthermore, the TIIN score exhibited strong associations with clinical indicators including obstructive jaundice, CEA, CA19-9, Child-pugh grade, perineural invasion, and 8th edition AJCC N stage. Univariate and multivariate analysis confirmed the TIIN score as an independent risk factor for postoperative OS and RFS in ICC patients (p < 0.05). Notably, the TIIN-nomogram models for OS and RFS, constructed based on the multivariate analysis and incorporating the TIIN score, demonstrated excellent predictive ability for postoperative survival in ICC patients. CONCLUSION: The development and validation of the TIIN score, a comprehensive composite index incorporating tumor morphology, immune function, inflammatory level, and nutritional status, significantly contribute to the prognostic assessment of ICC patients. Furthermore, the successful application of the TIIN-nomogram prediction model underscores its potential as a valuable tool in guiding individualized treatment strategies for ICC patients. These findings emphasize the importance of personalized approaches in improving the clinical management and outcomes of ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Nutritional Status , Humans , Cholangiocarcinoma/surgery , Cholangiocarcinoma/pathology , Male , Female , Retrospective Studies , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/pathology , Middle Aged , Prognosis , Aged , Nomograms , Inflammation , Biomarkers, Tumor , Alkaline Phosphatase/blood , Tumor Burden , Nutrition Assessment , Serum Albumin/analysis , Serum Albumin/metabolism , ROC Curve , Monocytes/pathology
20.
Acta Biomater ; 181: 415-424, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704115

ABSTRACT

Host defense peptide-mimicking cationic oncolytic polymers have attracted increasing attention for cancer treatment in recent years. However, polymers with large amounts of positive charge may cause rapid clearance and severe off-target toxicity. To facilitate in vivo application, an alkaline phosphatase (ALP)-responsive oncolytic polypeptide precursor (C12-PLL/PA) has been reported in this work. C12-PLL/PA could be hydrolyzed into the active form of the oncolytic polypeptide (C12-PLL) by the extracellular alkaline phosphatase within solid tumors, thereby resulting in the conversion of the negative charge to positive charge and restoring its membrane-lytic activity. Detailed mechanistic studies showed that C12-PLL/PA could effectively destroy cancer cell membranes and subsequently result in rapid necrosis of cancer cells. More importantly, C12-PLL/PA significantly inhibited the tumor growth in the 4T1 orthotopic breast tumor model with negligible side effects. In summary, these findings demonstrated that the shielding of the amino groups with phosphate groups represents a secure and effective strategy to develop cationic oncolytic polypeptide, which represents a valuable reference for the design of enzyme-activated oncolytic polymers. STATEMENT OF SIGNIFICANCE: Recently, there has been a growing interest in fabricating host defense peptide-mimicking cationic oncolytic polymers for cancer therapy. However, there remain concerns about the tumor selectivity and off-target toxicity of these cationic polymers. In this study, an alkaline phosphatase-responsive oncolytic polypeptide precursor (C12-PLL/PA) has been developed to selectively target cancer cells while sparing normal cells. Mechanistic investigations demonstrated that C12-PLL/PA effectively disrupted cancer cell membranes, leading to rapid necrosis. Both in vitro and in vivo experiments showed promising anticancer activity and reliable safety of C12-PLL/PA. The findings suggest that this synthetic enzyme-responsive polypeptide holds potential as a tumor-specific oncolytic polymer, paving the way for future applications in cancer therapy.


Subject(s)
Alkaline Phosphatase , Peptides , Animals , Alkaline Phosphatase/metabolism , Peptides/chemistry , Peptides/pharmacology , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL