Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.521
Filter
1.
J Environ Sci (China) ; 149: 68-78, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181678

ABSTRACT

The presence of aluminum (Al3+) and fluoride (F-) ions in the environment can be harmful to ecosystems and human health, highlighting the need for accurate and efficient monitoring. In this paper, an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum (Al3+) and fluoride (F-) ions in aqueous solutions. The proposed method involves the synthesis of sulfur-functionalized carbon dots (C-dots) as fluorescence probes, with fluorescence enhancement upon interaction with Al3+ ions, achieving a detection limit of 4.2 nmol/L. Subsequently, in the presence of F- ions, fluorescence is quenched, with a detection limit of 47.6 nmol/L. The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python, followed by data preprocessing. Subsequently, the fingerprint data is subjected to cluster analysis using the K-means model from machine learning, and the average Silhouette Coefficient indicates excellent model performance. Finally, a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions. The results demonstrate that the developed model excels in terms of accuracy and sensitivity. This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment, making it a valuable tool for safeguarding our ecosystems and public health.


Subject(s)
Aluminum , Environmental Monitoring , Fluorides , Machine Learning , Aluminum/analysis , Fluorides/analysis , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Fluorescence
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125036, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39197210

ABSTRACT

Sodium tripolyphosphate (STPP), as one of the many food additives, can cause gastrointestinal discomfort and a variety of adverse reactions when ingested by the human body, which is a great potential threat to human health. Therefore, it is necessary to develop a fast, sensitive and simple method to detect STPP in food. In this study, we synthesized a kind of nitrogen-doped carbon quantum dots (N-CQDs), and were surprised to find that the addition of STPP led to the gradual enhancement of the emission peaks of the N-CQDs, with a good linearity in the range of 0.067-1.96 µM and a low detection limit as low as 0.024 µM. Up to now, there is no report on the use of carbon quantum dots for the direct detection of STPP. Meanwhile, we found that the addition of Al3+ effectively bursts the fluorescence intensity of N-CQDs@STPP solution and has a good linear relationship in the range of 0.33-6.25 µM with a lower detection limit of 0.24 µM. To this end, we developed a fluorescent probe to detect STPP and Al3+. In addition, the probe was successfully applied to the detection of bread samples, which has great potential for practical application.


Subject(s)
Carbon , Fluorescent Dyes , Food Additives , Limit of Detection , Polyphosphates , Quantum Dots , Spectrometry, Fluorescence , Quantum Dots/chemistry , Fluorescent Dyes/chemistry , Food Additives/analysis , Spectrometry, Fluorescence/methods , Carbon/chemistry , Polyphosphates/analysis , Polyphosphates/chemistry , Aluminum/analysis , Nitrogen/chemistry , Bread/analysis
3.
Anal Methods ; 16(33): 5642-5651, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39113546

ABSTRACT

Bisphenol A is a fluorophoric platform that is used to develop chemosensors for various species. Herein, we report a bisphenol A based Schiff-base molecule, 4,4'-(propane-2,2-diyl)bis(2-((E)-((2-hydroxy-5-methylphenyl)imino)methyl)phenol) (Me-H4L), as a selective chemosensor for Al3+. Among the several metal ions, it shows a significant increment in its fluorescence intensity (50 fold) at 535 nm in the presence of Al3+ ions. The enhanced fluorescence was attributed to the CHEFF mechanism and inhibition of CN isomerization. The limit of detection value of Me-H4L for Al3+ was determined to be 9.65 µM. Its quantum yield and lifetime increased considerably in the presence of the cation. Some theoretical calculations were performed to explain the interaction between Al3+ and the probe. Furthermore, Me-H4L was applied in cell imaging studies using animal cells and plant roots.


Subject(s)
Aluminum , Benzhydryl Compounds , Fluorescent Dyes , Phenols , Plant Roots , Phenols/chemistry , Phenols/analysis , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/analysis , Aluminum/analysis , Aluminum/chemistry , Plant Roots/chemistry , Fluorescent Dyes/chemistry , Animals , Schiff Bases/chemistry , Humans , Optical Imaging/methods , Spectrometry, Fluorescence/methods , Limit of Detection
4.
Bioorg Chem ; 152: 107768, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39216196

ABSTRACT

Alzheimer's disease is associated both with imbalances in Al3+ production and changes in viscosity in cells. Their simultaneous measurement could therefore provide valuable insights into Alzheimer's disease pathology. Their simultaneous measurement would therefore be of great value in investigating the pathological mechanism of Alzheimer's disease. We designed a fluorescent probe YM2T with AIE effect that is capable of selectively responding to Al3+ by fluorescence colormetrics and to viscosity by fluorescence "turn on" modes. Additionally, Al3+ and viscosity were simultaneously detected in PC12 cells using the low cytotoxic probe YM2T via blue and green fluorescence channels. More importantly, the YM2T probe was used to image mice with AD. Hence, the YM2T probe shows potential as a useful molecular instrument for studying the pathological impact of Al3+ and viscosity.


Subject(s)
Aluminum , Alzheimer Disease , Fluorescent Dyes , Optical Imaging , Alzheimer Disease/diagnostic imaging , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Viscosity , Animals , PC12 Cells , Mice , Aluminum/analysis , Aluminum/chemistry , Molecular Structure , Rats , Dose-Response Relationship, Drug , Structure-Activity Relationship , Disease Models, Animal
5.
Water Environ Res ; 96(7): e11076, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965745

ABSTRACT

Knowledge on natural background levels (NBLs) of aluminum (Al) in groundwater can accurately assess groundwater Al contamination at a regional scale. However, it has received little attention. This study used a combination of preselection and statistic methods consisting of the oxidation capacity and the boxplot iteration methods to evaluate the NBL of shallow groundwater Al in four groundwater units of the Pearl River Delta (PRD) via eliminating anthropogenic-impacted groundwaters and to discuss driving factors controlling high NBLs of Al in groundwater in this area. A total of 280 water samples were collected, and 18 physico-chemical parameters including Redox potential, dissolved oxygen, pH, total dissolved solids, HCO3 -, NH4 +, NO3 -, SO4 2-, Cl-, NO2 -, F-, K+, Na+, Ca2+, Mg2+, Fe, Mn, and Al were analyzed. Results showed that groundwater Al NBLs in groundwater units A-D were 0.11, 0.16, 0.15, and 0.08 mg/L, respectively. The used method in this study is acceptable for the assessment of groundwater Al NBLs in the PRD, because groundwater Al concentrations in various groundwater units in residual datasets were independent of land-use types, but they were opposite in the original datasets. The dissolution of Al-rich minerals in sediments/rocks was the major source for groundwater Al NBLs in the PRD, and the interaction with Al-rich river water was secondary one. The high groundwater Al NBL in groundwater unit B was mainly attributed to the acid precipitation and the organic matter mineralization inducing the release of Al in Quaternary sediments. By contrast, the high groundwater Al NBL in groundwater unit C mainly was ascribed to the release of Al complexes such as fluoroaluminate from rocks/soils into groundwater induced by acid precipitation, but it was limited by the dissolution of Mg minerals (e.g., dolomite) in aquifers. This study provides not only useful groundwater Al NBLs for the evaluation of groundwater Al contamination but also a reference for understanding the natural geochemical factors controlling groundwater Al in urbanized deltas such as the PRD. PRACTITIONER POINTS: The natural background level (NBL) of groundwater aluminum in the Pearl River Delta (PRD) was evaluated. The dissolution of aluminum-rich minerals in sediments/rocks was the major source for groundwater aluminum NBLs in the PRD. The acid precipitation and organic matter mineralization contribute to high groundwater Al NBL in the groundwater unit B. The acid precipitation contributes to high groundwater Al NBL in the groundwater unit C, while dissolution of magnesium minerals limits it.


Subject(s)
Aluminum , Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Groundwater/analysis , Aluminum/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Rivers/chemistry , China , Urbanization
6.
Anal Methods ; 16(29): 5022-5031, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38979779

ABSTRACT

In this study, an easily synthesizable Schiff base probe TQSB having a quinoline fluorophore is demonstrated as a fluorescent and colorimetric turn-on sensor for Al3+ ions in a semi-aqueous medium (CH3CN/water; 4 : 1; v/v). Absorption, emission and colorimetric studies clearly indicated that TQSB exhibited a high selectivity toward Al3+, as observed from its excellent binding constant (Kb = 3.8 × 106 M-1) and detection limit (7.0 nM) values. TQSB alone was almost non-fluorescent in nature; however, addition of Al3+ induced intense fluorescence at 414 nm most probably due to combined CHEF (chelation-enhanced fluorescence) and restricted PET effects. The sensing mechanism was established via Job's plot, NMR spectroscopy, ESI-mass spectrometry, and density functional theory (DFT) analyses. Furthermore, to evaluate the applied potential of probe TQSB, its sensing ability was studied in real samples such as soil samples and Al3+-containing Digene gastric tablets as well as on low-cost filter paper strips. Fluorescence microscopy imaging experiments further revealed that TQSB can be used as an effective probe to detect intracellular Al3+ in live cells with no cytotoxicity.


Subject(s)
Aluminum , Fluorescent Dyes , Quinolines , Quinolines/chemistry , Aluminum/analysis , Aluminum/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Humans , Microscopy, Fluorescence/methods , Schiff Bases/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124784, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-38981283

ABSTRACT

A bisalicylhydrazone based fluorescence probe, bisalicyladehyde benzoylhydrazone (BS-BH), has been designed to detect Al3+. It exhibited high sensitivity and selectivity towards Al3+ in methanol-water media in physiological condition. Large stokes shifts (∼122 nm) and over ∼1000-fold enhanced fluorescence intensity were observed, which was ascribed to the formation of the two relatively independent rigid extended π conjugated systems bridged by biphenyl group when binding with Al3+. A 1:2 binding ratio between BS-BH and Al3+ was shown by Job's plot. Based on the fluorescence titration data, the detection limit was down to 3.50 nM and the association constant was evaluated to be 1.12 × 109 M-2. The plausible fluorescence sensing mechanism of suppressed ESIPT, inhibited PET, activated CHEF and restricted C = N isomerization was confirmed by a variety of spectral experiments and DFT / TD-DFT calculations. The reversibility of recognition of Al3+ for probe BS-BH was validated by adding Na2-EDTA. In addition, the MTT assay showed the good biocompatibility of BS-BH and BS-BH could be used for imaging Al3+ in living cells.


Subject(s)
Aluminum , Fluorescent Dyes , Hydrazones , Spectrometry, Fluorescence , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Aluminum/analysis , Hydrazones/chemistry , Hydrazones/chemical synthesis , Humans , Limit of Detection , HeLa Cells
8.
Ecotoxicol Environ Saf ; 283: 116785, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39067075

ABSTRACT

Tea tree is a fluorine (F)-enriched plant, leading to much concern about the safety of drinking tea from tea tree (Camellia sinensis (L.) Kuntze). Tea tree is a perennial leaf-harvested crop, and tea production in China is generally categorized as spring tea, summer tea and autumn tea in its annual growth rounds. However, the seasonally dynamic changes of F content and accumulation in the leaves and its drinking safety are poorly understood. In this study, 85 tea varieties cultivated under the same conditions were investigated to analyze the seasonal variation of F content and it's relationships with F accumulation, aluminum (Al), calcium (Ca) and manganese (Mn) and hazard quotient (HQ) in young leaves (one bud and two leaves, YL) and mature leaves (canopy leaves, ML). The average F contents and accumulations were 350 mg kg-1 and 203 g ha-1 in YL, and they were 2451 mg kg-1 and 2578 g ha-1 in ML, respectively, with F mainly accumulated in ML. As the growing season progresses, the F content showed a gradual increase in YL, while a decrease in ML, inferring that F may be redistributed from mature leaves to young leaves. Additionally, the F content was quite different among tea varieties which are suitable for processing oolong tea, green tea, and black tea, with higher F accumulation in oolong tea varieties than in green and black tea varieties. Moreover, F content and accumulation could be obviously affected by the geographical origin of the tea tree varieties, with significantly higher F content in the varieties from F rich fluorite belts than other regions. Furthermore, F content and accumulation showed a significant positive correlation with the content of Al and Mn (p < 0.05). Based on a daily tea consumption of 8.7 g, the HQ was investigated to show that the proportion of tea leaves with HQ<1 made from spring, summer and autumn tender leaves of 85 varieties was 100 %, 90.6 % and 50.6 %, respectively, indicating that the tea with the best drinking safety comes from spring, followed by summer, and then autumn. This result suggests that it could be necessary to avoid planting tea trees in fluorite mining areas, choose low F tea tree varieties, and control the tenderness of fresh leaves in order to ensure the safety of tea drinking.


Subject(s)
Camellia sinensis , Fluorine , Plant Leaves , Seasons , Tea , Camellia sinensis/chemistry , Plant Leaves/chemistry , China , Risk Assessment , Fluorine/analysis , Tea/chemistry , Manganese/analysis , Aluminum/analysis , Calcium/analysis
9.
Environ Monit Assess ; 196(7): 595, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833198

ABSTRACT

Aquatic humic substances (AHS) are defined as an important components of organic matter, being composed as small molecules in a supramolecular structure and can interact with metallic ions, thereby altering the bioavailability of these species. To better understand this behavior, AHS were extracted and characterized from Negro River, located near Manaus city and Carú River, that is situated in Itacoatiara city, an area experiencing increasing anthropogenic actions; both were characterized as blackwater rivers. The AHS were characterized by 13C nuclear magnetic ressonance and thermochemolysis GC-MS to obtain structural characteristics. Interaction studies with Cu (II), Al (III), and Fe (III) were investigated using fluorescence spectroscopy applied to parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy with Fourier transform infrared spectroscopy (2D-COS FTIR). The AHS from dry season had more aromatic fractions not derived from lignin and had higher content of alkyls moities from microbial sources and vegetal tissues of autochthonous origin, while AHS isolated in the rainy season showed more metals in its molecular architecture, lignin units, and polysacharide structures. The study showed that AHS composition from rainy season were able to interact with Al (III), Fe (III), and Cu (II). Two fluorescent components were identified as responsible for interaction: C1 (blue-shifted) and C2 (red-shifted). C1 showed higher complexation capacities but with lower complexation stability constants (KML ranged from 0.3 to 7.9 × 105) than C2 (KML ranged from 3.1 to 10.0 × 105). 2D-COS FTIR showed that the COO- and C-O in phenolic were the most important functional groups for interaction with studied metallic ions.


Subject(s)
Aluminum , Copper , Environmental Monitoring , Humic Substances , Rivers , Seasons , Water Pollutants, Chemical , Humic Substances/analysis , Rivers/chemistry , Spectroscopy, Fourier Transform Infrared , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Copper/analysis , Aluminum/analysis , Aluminum/chemistry , Iron/analysis , Iron/chemistry , Brazil , Factor Analysis, Statistical
10.
Food Chem ; 458: 140229, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38944920

ABSTRACT

This study investigated the in vitro bioaccessibility of aluminum, copper, iron, manganese, lead, selenium, and zinc in three important species of farmed insects: the yellow mealworm (Tenebrio molitor), the house cricket (Acheta domesticus) and the migratory locust (Locusta migratoria). Results show that all three insect species constitute excellent sources of essential elements (Fe, Cu and Zn) for the human diet, contributing to the recommended dietary allowance, i.e., 10%, 50%, and 92%, respectively. A higher accumulation of Se (≥1.4 mg Se/kg) was observed with increasing exposure concentration in A. domesticus, showing the possibility of using insects as a supplements for this element. The presence of Al and Fe nanoparticles was confirmed in all three species using single particle-inductively coupled plasma-mass spectrometry and transmission electron microscopy. The results also indicate that Fe bioaccessibility declines with increasing Fe-nanoparticle concentration. These findings contribute to increase the nutritional and toxicological insights of farmed insects.


Subject(s)
Aluminum , Gryllidae , Iron , Tenebrio , Trace Elements , Animals , Trace Elements/analysis , Trace Elements/metabolism , Iron/analysis , Iron/metabolism , Gryllidae/metabolism , Gryllidae/chemistry , Tenebrio/chemistry , Tenebrio/metabolism , Aluminum/analysis , Aluminum/metabolism , Aluminum/chemistry , Grasshoppers/chemistry , Grasshoppers/metabolism , Biological Availability , Nanoparticles/chemistry , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/analysis , Edible Insects/chemistry , Edible Insects/metabolism , Insecta/chemistry , Insecta/metabolism
11.
Article in English | MEDLINE | ID: mdl-38903021

ABSTRACT

In this study, the average values of vertical velocity of particles emitted from an aluminum smelter in the surface layer of the atmosphere were estimated using a semi-empirical method. The method is based on regression analysis of the horizontal profile of pollutants measured along the selected direction using moss bioindicators. The selection of epiphytic mosses Sanionia uncinata was carried out in 2013 in the zone of influence of a metallurgical industry enterprise in the city of Kandalaksha, Murmansk region. The concentrations of As, Si, Ni, Zn, Ti, Cd, Na, Pb, Co, K, Ba, Ca, Mg, Mn, Sr, Fe, Al, V, Cr, Cu were determined using atomic emission spectrometry. The conducted assessments showed that the average particle velocity toward the Earth's surface, when considering large spatial and temporal scales, is tens of times higher than gravitational settling velocities.


Subject(s)
Air Pollutants , Aluminum , Environmental Monitoring , Metallurgy , Aluminum/analysis , Aluminum/chemistry , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollutants/chemistry , Particle Size , Particulate Matter/analysis , Particulate Matter/chemistry , Bryophyta/chemistry
12.
Water Res ; 260: 121941, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38908313

ABSTRACT

Antibiotics are a new type of environmental pollutants. Due to its wide application in many fields, antibiotic residues are ubiquitous in the wastewater environments. Given their potential threat on water ecosystem functioning and public health, the detection of antibiotic residues in wastewater environments has become very necessary. Based on the complexation of Al3+ with flumequine (FLU), ciprofloxacin (CIP) and doxycycline hydrochloride (DOX), their molecular conjugated area were increased and fluorescence intensity were enhanced, combined with synchronous fluorescence spectrometry (SFS) had good selectivity and high sensitivity, a novel method of Al3+ sensitized synchronous fluorescence spectrometry for the determination of FLU, CIP and DOX residues in wastewater was established. When the wavelength difference (Δλ) was selected 115.0 nm, synchronous fluorescence spectra of the three antibiotics could be well separated and the interference of wastewater matrix were eliminated primely. The new SFS made good use of spectral separation instead of conventional chemical separation, and the actual wastewater sample could be directly determined after simple filtration. The experiment results showed that the concentrations of FLU, CIP and DOX in the range of 0.5000-800.0 ng·mL-1, 0.5000-640.0 ng·mL-1 and 10.00-3500 ng·mL-1 had a good linear relationship with fluorescence intensity. The detection limits of three antibiotics were 0.02054 ng·mL-1, 0.03956 ng·mL-1 and 0.8524 ng·mL-1, respectively. Recovery rates of three antibiotics in wastewater samples were 90.72%-98.23%, 88.68%-95.08% and 85.94%-96.70%. The new SFS established in this experiment had the advantages of simple, rapid, sensitive, accurate and good selectivity. Simultaneous and rapid detection of FLU, CIP and DOX residues in wastewater was successfully realized. It had good application prospects in real-time water quality monitoring.


Subject(s)
Ciprofloxacin , Doxycycline , Fluoroquinolones , Spectrometry, Fluorescence , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Ciprofloxacin/analysis , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/analysis , Doxycycline/analysis , Fluoroquinolones/analysis , Anti-Bacterial Agents/analysis , Aluminum/analysis
13.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38913611

ABSTRACT

Tracking of soil-dwelling insects poses greater challenges compared to aboveground-dwelling animals in terrestrial systems. A metal detector system consisting of a commercially available detector and aluminum tags was developed for detecting dung beetle, Copris ochus Motschulsky (Coleoptera: Scarabaeidae). First, detection efficacy of the system was evaluated by varying volumes of aluminum tags attached on a plastic model of the insect and also by varying angles. Then, detection efficacy was evaluated by varying depths of aluminum-tagged models under soil in 2 vegetation types. Finally, the effects of tag attachment on C. ochus adults were assessed for survivorship, burrowing depth, and horizontal movement. Generally, an increase in tag volume resulted in greater detection distance in semi-field conditions. Maximum detection distance of aluminum tag increased up to 17 cm below soil surface as the tag size (0.5 × 1.0 cm [width × length]) and thickness (16 layers) were maximized, resulting in a tag weight of 31.4 mg, comprising ca. 9% of average weight of C. ochus adult. Furthermore, the detection efficacy did not vary among angles except for 90°. In the field, metal detectors successfully detected 5 aluminum-tagged models in 20 × 10 m (W × L) arena within 10 min with detection rates ≥85% for up to depth of 10 cm and 45%-60% at depth of 20 cm. Finally, aluminum tagging did not significantly affect survivorship and behaviors of C. ochus. Our study indicates the potential of metal detector system for tracking C. ochus under soil.


Subject(s)
Aluminum , Coleoptera , Animals , Aluminum/analysis , Soil/chemistry , Entomology/methods , Entomology/instrumentation , Animal Identification Systems/instrumentation
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124484, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38788504

ABSTRACT

A novel rhodamine-based multi-ion fluorescent sensor, RGN, was designed and synthesized for the highly selective detection of mercury ions (Hg2+) in ethanol and water systems, as well as trivalent cations (Fe3+, Al3+, and Cr3+) in acetonitrile and water systems using a two-step Schiff base reaction method. Nuclear magnetic titration experiments and theoretical calculations demonstrated that the sensor achieved the detection of the aforementioned metal ions through the fluorescence turn-on phenomenon induced by lactam ring-opening. Density functional theory (DFT) calculation results showed decreased HOMO-LUMO energy gaps and increased dipole moments, indicating the effective coordination of the sensor with the corresponding metal ions to form more stable complexes, thereby achieving detection objectives. Furthermore, the fluorescence turn-on sensor RGN exhibited relatively low detection limits, with limits of detection (LOD) for Fe3+, Al3+, Cr3+, and Hg2+ being 10.20 nM, 14.66 nM, 58.78 nM, and 73.33 nM, respectively. Finally, practical applications of sensor RGN in environmental water samples, L929 cells, and zebrafish were demonstrated, indicating its potential for detecting and tracking Fe3+, Al3+, Cr3+, and Hg2+ in environmental samples and biological systems, with prospects for biomedical applications in the diagnosis and treatment of heavy metal ion-induced diseases.


Subject(s)
Fluorescent Dyes , Mercury , Rhodamines , Spectrometry, Fluorescence , Zebrafish , Rhodamines/chemistry , Mercury/analysis , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Spectrometry, Fluorescence/methods , Mice , Limit of Detection , Chromium/analysis , Aluminum/analysis , Iron/analysis , Iron/chemistry , Density Functional Theory , Cell Line , Optical Imaging
15.
Anal Sci ; 40(8): 1489-1498, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38720021

ABSTRACT

This paper revealed a new strategy for citric acid (CA) detection using aggregation-induced emission (AIE)-based fluorescent gold nanoclusters (AuNCs). AuNCs was synthesized using glutathione (GSH) as the template and reducing agent and used as the fluorescent probe to detect CA under aluminum ion (Al3+) mediation. The fluorescence intensity of AuNCs increased about 4 times with the addition of Al3+, but the enhanced fluorescence was quenched after the addition of CA. Based on this fluorescence phenomenon, an "on-off" fluorescence strategy was designed for the sensitive determination of CA and a linear detection range for CA was achieved within 0-80.0 µM. In addition, the developed probe exhibited high selectivity and accuracy for determination of CA. The mechanism of fluorescence enhancement and quenching of AuNCs was explored in detail. The established probe was used successfully for CA detection in beverages. The spiked recoveries from 97.50% to 103.67% were gratifying, which indicated the probe had potential prospects for detecting CA in food.


Subject(s)
Aluminum , Beverages , Citric Acid , Gold , Metal Nanoparticles , Spectrometry, Fluorescence , Citric Acid/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Aluminum/analysis , Aluminum/chemistry , Beverages/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescence
16.
Waste Manag ; 182: 11-20, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38626501

ABSTRACT

Recycling aluminium in a rotary furnace with salt-fluxes allows recovering valuable alloys from hard-to-recycle waste/side-streams such as packaging, dross and incinerator bottom ash. However, this recycling route generates large amounts of salt-slag/salt-cake hazardous wastes which can pose critical environmental risks if landfilled. To tackle this issue, the metallurgical industry has developed processes to valorise the salt-slag residues into recyclable salts and aluminium concentrates, while producing by-products such as ammonium sulphate and non-metallic compounds (NMCs), with applications in the construction or chemical industries. This study aims to assess through LCA the environmental impacts of recycling aluminium in rotary furnaces for both salt-slag management routes: valorisation or landfill. It was found that this recycling process brings forth considerable net environmental profits, which increase for all the considered impact categories if the salt-slag is valorised. The main benefits arise from the production of secondary cast aluminium alloys, which is not unexpected due to the high energy intensity of aluminium primary production. However, the LCA results also identify other hotspots which play a significant role, and which should be considered for the optimisation of the process based on its environmental performance, such as the production of by-products, the consumption of energy/fuels and the avoidance of landfilling waste. Additionally, the assessment shows that the indicators for mineral resource scarcity, human carcinogenic toxicity and terrestrial ecotoxicity are particularly benefited by the salt-slag valorisation. Finally, a sensitivity analysis illustrates the criticality of the metal yield assumptions when calculating the global warming potential of aluminium recycling routes.


Subject(s)
Aluminum , Incineration , Recycling , Incineration/methods , Recycling/methods , Aluminum/chemistry , Aluminum/analysis , Environment , Industrial Waste/analysis , Metallurgy
17.
Chemosphere ; 357: 141981, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38626813

ABSTRACT

Metal-Organic Frameworks (MOFs) are extensively used as electrode material in various sensing applications due to their efficacious porous nature and tunable properties. However, pristine MOFs lack conductive attributes that hinder their wide usage in electrochemical applications. Electropolymerization of several aromatic monomers has been a widely used strategy for preparing conducting electrode materials for various sensing applications in the past decades. Herein, we report a similar approach by employing the electropolymerization method to create a functional polymer layer to enhance the sensitivity of an Aluminium Organic Framework (DUT-4) for the selective detection of Chloramphenicol (CAP) antibiotic in aqueous environment. The combined strategy using the conducting polymer layer with the porous Al MOF provides surpassing electrochemical performance for sensing CAP with regard to the very low detection limit (LOD = 39 nM) and exceptionally high sensitivity (11943 µA mM-1 cm-2). In addition, the fabricated sensor exhibited good selectivity, reproducibility and stability. The developed method was successfully evaluated in various real samples including lake water and river water for CAP detection with good recovery percentages even at lower concentrations.


Subject(s)
Aluminum , Chloramphenicol , Electrochemical Techniques , Limit of Detection , Metal-Organic Frameworks , Polymers , Water Pollutants, Chemical , Chloramphenicol/analysis , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/analysis , Aluminum/analysis , Aluminum/chemistry , Polymers/chemistry , Electrochemical Techniques/methods , Reproducibility of Results , Anti-Bacterial Agents/analysis , Electrodes , Rivers/chemistry , Lakes/chemistry , Lakes/analysis
18.
Environ Res ; 252(Pt 2): 118935, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38621630

ABSTRACT

Hematite nanoparticles commonly undergoes isomorphic substitution of Al3+ in nature, while how the Al-substitution-induced morphological change, defective structure and newly generated Al-OH sites affect the adsorption behavior of hematite for contaminants remains poorly understood. Herein, the interfacial reactions between Al-substituted hematite and Pb2+ was investigated via CD-MUSIC modeling and DFT calculations. As the Al content increased from 0% to 9.4%, Al-substitution promoted the proportion of (001) facets and caused Fe vacancies on hematite, which increased the total active site density of hematite from 5.60 to 17.60 sites/nm2. The surface positive charge of hematite significantly increased from 0.096 to 0.418 C/m2 at pH 5.0 due to the increases in site density and proton affinity (logKH) of hematite under Al-substitution. The adsorption amount of hematite for Pb2+ increased from 3.92 to 9.74 mmol/kg at pH 5.0 and 20 µmol/L initial Pb2+ concentration with increasing Al content. More Fe vacancies may lead to a weaker adsorption energy (Ead) of hematite for Pb2+, while the Ead was enhanced at higher Al content. The adsorption affinity (logKPb) of bidentate Pb complexes slightly increased while that of tridentate Pb complexes decreased with increasing Al content due to the presence of ≡ AlOH-0.5 and ≡ Fe2AlO-0.5 sites. Tridentate Pb complexes were dominant species on the surface of pure hematite, while bidentate ones became more dominant with increasing Al content. The obtained model parameters and molecular scale information are of great importance for better describing and predicting the environmental fate of toxic heavy metals in terrestrial and aquatic environments.


Subject(s)
Aluminum , Ferric Compounds , Lead , Models, Chemical , Lead/chemistry , Ferric Compounds/chemistry , Adsorption , Aluminum/chemistry , Aluminum/analysis
19.
Wei Sheng Yan Jiu ; 53(2): 294-299, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38604967

ABSTRACT

OBJECTIVE: To establish an analytical method for determining the migration of 24 elements in Yixing clay pottery in 4% acetic acid simulated solution by inductively coupled plasma mass spectrometry. METHODS: Four types of Yixing clay pottery, including Yixing clay teapot, Yixing clay kettle, Yixing clay pot, and Yixing clay electric stew pot, were immersed in 4% acetic acid as a food simulant for testing. The migration amount of 24 elements in the migration solution was determined using inductively coupled plasma mass spectrometry. RESULTS: Lithium, magnesium, aluminum, iron, and barium elements with a mass concentration of 1000 µg/L; Lead, cadmium, total arsenic, chromium, nickel, copper, vanadium, manganese, antimony, tin, zinc, cobalt, molybdenum, silver, beryllium, thallium, titanium, and strontium elements within 100 µg/L there was a linear relationship within, the r value was between 0.998 739 and 0.999 989. Total mercury at 5.0 µg/L, there was a linear relationship within, the r value of 0.995 056. The detection limit of the elements measured by this method was between 0.5 and 45.0 µg/L, the recovery rate was 80.6%-108.9%, and the relative standard deviation was 1.0%-4.8%(n=6). A total of 32 samples of four types of Yixing clay pottery sold on the market, including teapots, boiling kettles, casseroles, and electric stewing pots, were tested. It was found that the migration of 16 elements, including beryllium, titanium, chromium, nickel, cobalt, zinc, silver, cadmium, antimony, total mercury, thallium, tin, copper, total arsenic, molybdenum, and lead, were lower than the quantitative limit. The element with the highest migration volume teapot was aluminum, magnesium, and barium; The kettle was aluminum and magnesium; Casserole was aluminum, magnesium, and lithium; The electric stew pot was aluminum. CONCLUSION: This method is easy to operate and has high accuracy, providing an effective and feasible detection method for the determination and evaluation of element migration in Yixing clay pottery.


Subject(s)
Arsenic , Mercury , Trace Elements , Acetates , Aluminum/analysis , Antimony/analysis , Arsenic/analysis , Barium/analysis , Beryllium/analysis , Cadmium/analysis , Chromium , Clay , Cobalt/analysis , Copper , Lithium/analysis , Magnesium , Mass Spectrometry , Mercury/analysis , Molybdenum/analysis , Nickel , Silver/analysis , Thallium/analysis , Tin/analysis , Titanium/analysis , Trace Elements/analysis , Zinc , China
20.
Microsc Res Tech ; 87(8): 1955-1964, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38581370

ABSTRACT

To incorporate different concentrations of Al2O9Zr3 (1%, 5%, and 10%) nanoparticles (NP) into the ER adhesive and subsequently assess the impact of this addition on the degree of conversion, µTBS, and antimicrobial efficacy. The current research involved a wide-ranging examination that merged various investigative techniques, including the application of scanning electron microscopy (SEM) for surface characterization of NP coupled with energy-dispersive x-ray spectroscopy (EDX), Fourier-transform infrared (FTIR) spectroscopy, µTBS testing, and microbial analysis. Teeth were divided into four groups based on the application of modified and unmodified three-step ER adhesive primer. Group 1 (0% Al2O9Zr3 NPs) Control, Group 2 (1% Al2O9Zr3 NPs), Group 3 (5% Al2O9Zr3 NPs), and Group 4 (10% Al2O9Zr3 NPs). EDX analysis of Al2O9Zr3 NPs was performed showing elemental distribution in synthesized NPs. Zirconium (Zr), Aluminum (Al), and Oxides (O2). After primer application, an assessment of the survival rate of Streptococcus mutans was completed. The FTIR spectra were analyzed to observe the characteristic peaks indicating the conversion of double bonds, both before and after the curing process, for the adhesive Etch and rinse containing 1,5,10 wt% Al2O9Zr3 NPs. µTBS and failure mode assessment were performed using a Universal Testing Machine (UTM) and stereomicroscope respectively. The µTBS and S.mutans survival rates comparison among different groups was performed using one-way ANOVA and Tukey post hoc (p = .05). Group 4 (10 wt% Al2O9Zr3 NPs + ER adhesive) specimens exhibited the minimum survival of S.mutans (0.11 ± 0.02 CFU/mL). Nonetheless, Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) displayed the maximum surviving S.mutans (0.52 ± 0.08 CFU/mL). Moreover, Group 2 (1 wt% Al2O9Zr3 NPs + ER adhesive) (21.22 ± 0.73 MPa) samples displayed highest µTBS. However, the bond strength was weakest in Group 1 (0 wt% Al2O9Zr3 NPs + ER adhesive) (14.13 ± 0.32 MPa) study samples. The etch-and-rinse adhesive exhibited enhanced antibacterial activity and micro-tensile bond strength (µTBS) when 1% Al2O9Zr3 NPs was incorporated, as opposed to the control group. Nevertheless, the incorporation of Al2O9Zr3 NPs led to a decrease in DC. RESEARCH HIGHLIGHTS: 10 wt% Al2O9Zr3 NPs + ER adhesive specimens exhibited the minimum survival of S.mutans. 1 wt% Al2O9Zr3 NPs + ER adhesive samples displayed the most strong composite/CAD bond. The highest DC was observed in Group 1: 0 wt% Al2O9Zr3 NPs + ER adhesive.


Subject(s)
Aluminum , Anti-Bacterial Agents , Dentin , Microscopy, Electron, Scanning , Streptococcus mutans , Tensile Strength , Zirconium , Zirconium/chemistry , Streptococcus mutans/drug effects , Aluminum/chemistry , Aluminum/analysis , Aluminum/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Dentin/chemistry , Dentin/drug effects , Dentin/microbiology , Dental Caries/microbiology , Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Dental Cements/chemistry , Dental Cements/pharmacology , Spectrometry, X-Ray Emission/methods , Dental Bonding , Surface Properties , Adhesives/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL