Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters








Publication year range
1.
Environ Pollut ; 259: 113885, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31926392

ABSTRACT

The environmental neurotoxin ß-methylamino-L-alanine (BMAA) may represent a risk for human health in case of chronic exposure or after short-term exposure during embryo development. BMAA accumulates in freshwater and marine organisms consumed by humans. It is produced by marine and freshwater phytoplankton species, but the range of producers remains unknown. Therefore, analysing the phytoplankton composition is not sufficient to inform about the risk of freshwater contamination by BMAA. Filter-feeders mussels have accumulation capacities and therefore appear to be relevant to monitor various pollutants in aquatic ecosystems. We investigated the suitability of the freshwater mussels Dreissena polymorpha and Anodonta anatina for monitoring BMAA in water. Both species were exposed to 1, 10, and 50 µg of dissolved BMAA/L daily for 21 days, followed by 42 days of depuration in clean water. On days 0, 1, 7, 14, and 21 of exposure and 1, 7, 14, 21 and 42 of depuration, whole D. polymorpha and digestive glands of A. anatina were sampled, and the total BMAA concentration was measured. D. polymorpha accumulated BMAA earlier (from day 1 at all concentrations) and at higher tissue concentrations than A. anatina, which accumulated BMAA from day 14 when exposed to 10 µg BMAA/L and from day 7 when exposed to 50 µg BMAA/L. As BMAA accumulation by D. polymorpha was time and concentration-dependent, with a significant elimination during the depuration period, this species may be able to reflect the levels and dynamics of water contamination by dissolved BMAA. The species A. anatina could be used for monitoring water concentrations above 10 µg BMAA/L.


Subject(s)
Amino Acids, Diamino , Anodonta , Dreissena , Environmental Monitoring , Fresh Water , Water Pollutants, Chemical , Amino Acids, Diamino/analysis , Animals , Anodonta/chemistry , Cyanobacteria Toxins , Dreissena/chemistry , Ecosystem , Environmental Monitoring/methods , Environmental Monitoring/standards , Fresh Water/chemistry , Water Pollutants, Chemical/analysis
2.
J Aquat Anim Health ; 31(1): 107-111, 2019 03.
Article in English | MEDLINE | ID: mdl-30716165

ABSTRACT

Glycogen is a primary metabolic reserve in bivalves and can be suitable for the evaluation of bivalve condition and health status, but the use of glycogen as a diagnostic tool in aquaculture and biomonitoring is still relatively rare. A tissue biopsy combined with a simplified phenol-sulfuric acid method was used in this study to evaluate the inter- and intraindividual variation in the glycogen concentrations among several tissues (foot, mantle, gills, adductor muscle) of the unionid bivalve, the duck mussel Anodonta anatina. This short report documents that individual bivalves differ in the spatial distribution of glycogen among tissues. Sampling of different types of tissues can cause distinct results in the evaluation of energetic reserves at the individual level. At the same time, spatial variability in glycogen content has the potential to provide a more detailed evaluation of physiological conditions based on tissue-specific glycogen storage. The results obtained and the simplified methodology provide a new opportunity for researching the energetic reserves and health status of freshwater mussels in various applications.


Subject(s)
Anodonta/chemistry , Ecotoxicology/methods , Glycogen/analysis , Animals , Ecotoxicology/instrumentation , Energy Metabolism , Organ Specificity
3.
Biomed Res Int ; 2018: 1910274, 2018.
Article in English | MEDLINE | ID: mdl-29693003

ABSTRACT

The present investigation aimed to assess the concentrations of selected heavy metals in water and sediments and their bioaccumulation in tissues of freshwater mussels and their histopathological effects on the digestive gland, gills, and gonads of Anodonta cygnea. Water, sediments, and freshwater mussel samples were collected at four sites, that is, reference and polluted sites, along the Kabul River, Khyber Pakhtunkhwa. The polluted sites were receiving effluents from the industrial, agricultural, municipal, and domestic sources. The order of metals in the water was Zn > Pb > Ni > Cu > Mn > Fe > Cr > Cd, in sediments the order was Fe > Zn > Cr > Ni > Mn > Pb > Cu > Cd, and in the soft tissues the order was Fe > Zn > Mn > Pb > Cu > Cr > Ni > Cd. Histopathological alterations observed in polluted sites of Kabul River were inflammation, hydropic vacuolation, and lipofuscin pigments (in digestive gland), gill lamellar fusion, dilated hemolymphatic sinus, clumping, and generation of cilia and hemocytic infiltration (in gills), and atresia, necrosis, granulocytoma, hemocytic infiltration, and lipofuscin pigments (in gonads). The histopathological alterations in the organs of Anodonta cygnea can be considered as reliable biomarkers in biomonitoring of heavy metal pollution in aquatic ecosystems.


Subject(s)
Anodonta/chemistry , Geologic Sediments/analysis , Geologic Sediments/chemistry , Metals, Heavy/chemistry , Rivers/chemistry , Water/chemistry , Agriculture/methods , Animals , Environmental Monitoring/methods , Fresh Water/analysis , Fresh Water/chemistry , Gills/chemistry , Pakistan , Water Pollutants, Chemical/chemistry
4.
PLoS One ; 10(2): e0117037, 2015.
Article in English | MEDLINE | ID: mdl-25647043

ABSTRACT

This study investigated the distribution of cadmium (Cd) and the protein level of metallothionein (MT) and examined the relationship of Cd accumulation and the MT concentration in different tissues of freshwater mussel Anodonta woodiana following Cd treatment. The mussels were exposed to Cd (4.21, 8.43, 16.86, 33.72 and 67.45 mg L-1) for 24, 48, 72 and 96 h, respectively. After Cd treatment, the gills, mantle, foot, visceral mass and digestive gland tissues were collected for analysis. We found that, in the controls, Cd distributed in all tissues in the concentration order of gills>mantle>foot>visceral mass>digestive gland. Upon Cd treatment, Cd concentration significantly increased in all tissues. The highest Cd accumulation was found in the digestive gland, which was 0.142 mg g-1 (P<0.05). MT levels in the gills and mantle of the mussels increased significantly (P<0.05), which were in positive correlation with Cd accumulation in the tissues (P<0.05). In conclusion, our results demonstrated a correlation between Cd accumulation and MT up-regulation in gills and mantle of the mussels after Cd treatment. It is suggested that the protein level of MT in gills and mantle of Anodonta woodiana is a good biomarker for Cd contamination.


Subject(s)
Anodonta/metabolism , Cadmium/metabolism , Metallothionein/metabolism , Water Pollutants, Chemical/metabolism , Animals , Anodonta/chemistry , Cadmium/analysis , Environmental Monitoring , Metallothionein/analysis , Water Pollutants, Chemical/analysis
5.
J Morphol ; 276(1): 65-76, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25242687

ABSTRACT

The freshwater mussel Anodonta cygnea is commonly used as a model organism for biomineralization studies, its peculiar morphofunctional properties also make it an excellent environmental biomonitor. The first detailed on the calcareous concretions from gill and mantle tissue, as well as fluids of the freshwater bivalve A. cygnea, supported by histological, scanning, spectrometry, and spectroscopy analyses. Through these analyses, the morphology, structure, and chemical characterization of these biomineral concretions were accomplished. The concretions represent a high percentage of the dry weight of these organisms. In gill tissue, it can reach up to 50% of dry weight prior to reproductive maturity. Analysis of elemental composition of the tissue concretions showed the presence of calcium and phosphate, as main components, associated with other residual elements like iron, manganese, magnesium, and zinc. Concretions are arranged in concentric alternated layers of organic and inorganic matrix. The shape and size of the concretions vary substantially, from very small, less than 1 µm diameter with very regular round structure, found mainly in the mantle tissue, to more than 50 µm length with irregular globular clusters, found predominantly in the gills. The microstructural organization is of a hydroxyapatite polymorphism in the mantle, in contrast to the gills, which exhibit irregular structure and carbonated hydroxyapatite polymorphism. These differences are supported by higher contents of dinitrogen pentoxide, magnesium, and iron in the mantle concretions, but higher contents of manganese and zinc in the gills. Furthermore, the results indicate that the mineral concretion formation in A. cygnea is a hemocytes reaction to particle or toxic invasions. A second relevant role, concerns the close involvement of these microspherules on the adult and larval shell calcification.


Subject(s)
Anodonta/anatomy & histology , Anodonta/chemistry , Minerals/analysis , Animals , Fresh Water , Gills/chemistry
6.
Zhongguo Gu Shang ; 27(6): 461-5, 2014 Jun.
Article in Chinese | MEDLINE | ID: mdl-25241462

ABSTRACT

OBJECTIVE: To investigate regulation function of anodonta glucan HBP-A on chondrocytes through Wnt pathway in vitro. METHODS: Rat chondrocytes were cultured and differentiated induced with IL-1beta (10 ng/ml) in vitro. Chondrocytes were divided into five groups:IL-13 group,IL-1beta + IWP-2 (5 microM,Wnt pathway inhibitor) group, IL-1beta + HBP-A (0.3 mg/ml) group and IL-1beta + IWP-2 + HBP-A group. Wnt-3a, beta-catenin (24 h,48 h,72 h) and MMP-13(72 h) genes expression were detected by Rt-PCR, while beta-catenin, MMP-13, Sox-9 and coll-II (48 h) protein expression were measured by Western-blot. RESULTS: After induction of IL-1beta, gene expression of Wnt-3a, beta-catenin and MMP-13 were increased,so were the protein expression of beta-catenin and MMP-13. In contrast,protein expression of Sox-9 and Coll-II were declined. Following addition of HBP-A, Wnt-3a, beta-catenin and MMP-13 were shown as induction of IL-1beta, but protein expression of Sox-9 and Coll-II were upgraded. Combining HBP-A with IWP-2 led to the lowest level in Wnt-3a, beta-catenin gene and beta-catenin protein expression and highest expression of Sox-9 protein. CONCLUSION: HBP-A could not only delay the differentiation of chondrocytes through downgrading the signal expression of Wnt/beta-catenin,but also adjust the expression of Wnt-3a, beta-catenin and Sox-9 when combinated with the Wnt inhibitor.


Subject(s)
Anodonta/chemistry , Chondrocytes/metabolism , Glucans/pharmacology , Wnt3A Protein/metabolism , Animals , Cell Differentiation/drug effects , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/drug effects , Interleukin-1beta/metabolism , Rats , Wnt Signaling Pathway/drug effects , Wnt3A Protein/genetics , beta Catenin/metabolism
7.
J Membr Biol ; 247(6): 501-14, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24710792

ABSTRACT

The present work proposes to analyse the results obtained under in vitro conditions where cellulose artificial membranes were incubated with biological fluids from the freshwater bivalve Anodonta cygnea. The membranes were mounted between two half 'Ussing chambers' with different composition solutions in order to simulate epithelial surfaces separating organic fluid compartments. The membrane surfaces were submitted to two synthetic calcium and phosphate solutions on opposite sides, at pH 6.0, 7.0 or 9.0 during a period of 6 hours. Additional assays were accomplished mixing these solutions with haemolymph or extrapallial fluid from A. cygnea, only on the calcium side. A selective ion movement, mainly dependent on the membrane pore size and/or cationic affinity, occurred with higher permeability for calcium ions to the opposite phosphate chamber supported by calcium diffusion forces across the cellulose membrane. In general, this promoted a more intense mineral precipitation on the phosphate membrane surface. A strong deposition of calcium phosphate mineral was observed at pH 9.0 as a primary layer with a homogeneous microstructure, being totally absent at pH 6.0. The membrane showed an additional crystal phase at pH 7.0 exhibiting a very particular hexagonal or cuttlebone shape, mainly on the phosphate surface. When organic fluids of A. cygnea were included, these crystal forms presented a high tendency to aggregate under rosaceous shapes, also predominantly in the phosphate side. The cellulose membrane was permeable to small organic molecules that diffused from the calcium towards the phosphate side. In the calcium side, very few similar crystals were observed. The presence of organic matrix from A. cygnea fluids induced a preliminary apatite-brushite crystal polymorphism. So, the present results suggest that cellulose membranes can be used as surrogates of biological epithelia with preferential ionic diffusion from the calcium to the phosphate side where the main mineral precipitation events occurred. Additionally, the organic fluids from freshwater bivalves should be also thoroughly researched in the applied biomedical field, as mineral nucleators and crystal modulators on biosynthetic systems.


Subject(s)
Anodonta/chemistry , Body Fluids/chemistry , Cellulose/chemistry , Membranes, Artificial , Animals
8.
Ecotoxicol Environ Saf ; 89: 73-83, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23260242

ABSTRACT

The goal of the study was to assess the adequacy of molecular responses in mollusks in relation to their in situ exposure history. Freshwater male bivalve mollusks Anadonta anatina (Unionidae) from polluted (A) and unpolluted (F) sites were subjected to 14 days of exposure to copper (Cu(2+), 10 µg L(-1)), zinc (Zn(2+), 130 µg L(-1)) or cadmium (Cd(2+), 15 µg L(-1)). The comparison of two control groups showed that the specimens from site A had higher levels of Cu, Zn and Cd and metallothionein (measured both through metal (MT-Me), and protein (MT-SH) levels) in the tissues. Cytotoxicity (low lysosomal membrane stability), low glutathione level, high antioxidant and apoptotic enzymes activities, lipid and protein oxidative injury, depletion of ethoxyresorufin-O-deethylase (EROD) in digestive gland, high vitellogenin-like protein (Vtg-LP) concentration in gonads confirmed the effect of toxic environment on this group. Exposures provoked increased number of hemocytes with micronuclei (by 100-500%) and nuclear abnormalities (by 50-400%) (genotoxicity), elevation of caspase-3 (in 1.5-10 times) and/or Vtg-LP (by 70-310%) levels in all groups. However, the responses were strongly dependent on the origin of mussels. Exposed mussels from site F demonstrated typical for the effect of toxic metals elevation of MT-SH (by 100-380%) and MT-Me (up to seven times) levels and accumulation of metals (with a few exceptions) in the tissues. Conversely, in the mussels inhabiting site A, exposures caused the decrease of metal (by 37% for Cu, by 62% for Zn, by 50% for Cd), MT-SH (by 68% in ZnA group) and MT-Me (by 50-68%) levels. That was accompanied with increase of cytotoxicity and EROD activity (by 144-240%). High level of protein carbonyls was the distinguished feature of all groups from site A. Hence, despite high efficiency of metal detoxification and oxidative stress responses in the mussels, in the specimens from spontaneously polluted site they were impaired.


Subject(s)
Anodonta/drug effects , Metals/toxicity , Animals , Anodonta/chemistry , Anodonta/metabolism , Biomarkers/analysis , Fresh Water , Male , Metallothionein/metabolism , Metals/metabolism , Oxidative Stress/drug effects
9.
Aquat Toxicol ; 78(1): 32-41, 2006 Jun 10.
Article in English | MEDLINE | ID: mdl-16540185

ABSTRACT

Toxic bloom-forming cyanobacteria can cause animal death and adversely affect human health. Blooms may contain microcystins (MCs), cyanobacterial heptapeptide hepatotoxins and other peptides such as anabaenopeptins and anabaenopeptilides. MCs have been shown to occur in various aquatic organisms including mussels, water snails, crustaceans and fish. Muscle and viscera samples from eight species of fish (Acipenser gueldenstaedtii, Carassius auratus, Carassius gibelio, Cyprinus carpio, Perca fluviatilis, Rutilus rubilio, Silurus aristotelis and Silurus glanis), a frog (Rana eperotica), a mussel (Anodonta sp.) and a water snail (Viviparus contectus) were analyzed by high-performance liquid chromatography (HPLC), protein phosphatase 1 (PP1) inhibition assay (PP1IA) and ELISA. MC(s) was detected in all fish, frog, mussel and water snail samples tested by PP1IA and ELISA, including the frog R. eperotica and the freshwater snail V. contectus, in which the occurrence of MCs was not previously known. MC concentration ranged from 20 to 1500 ng g(-1)dw and from 25 to 5400 ng g(-1)dw in muscle and visceral tissue of fishes and frogs, respectively. In mussel and water snail tissue MC concentration ranged from 1650 to 3495 ng g(-1)dw. HPLC analysis revealed peaks having the same UV spectrum as anabaenopeptin- or anabaenopeptilide-like compounds, not previously known to occur in aquatic fauna tissue. The concentrations of the compounds detected ranged from 1.5 to 230 microg g(-1)dw. Comparison of the PP1IA and ELISA showed that values obtained with PP1IA where higher than those obtained with ELISA. Anabaenopeptins and/or anabaenopeptilides occurring in faunal tissue may account for the higher PP1IA values as we found that PP1 activity was inhibited by the purified anabaenopeptins A (45-60% inhibition) and B (5-75% inhibition). Purified anabaenopeptilides 90A and 90B exhibited weaker PP1 inhibition activity (5-35 and 5-23% inhibition, respectively). This is the first report of MC occurrence in aquatic animals collected from freshwaters of southern Europe.


Subject(s)
Anodonta/drug effects , Cyanobacteria/physiology , Fishes/physiology , Gastropoda/drug effects , Microcystins/analysis , Ranidae/physiology , Animals , Anodonta/chemistry , Anodonta/physiology , Bacterial Toxins/analysis , Chromatography, High Pressure Liquid/veterinary , Cyanobacteria Toxins , Enzyme-Linked Immunosorbent Assay/veterinary , Fresh Water , Gastropoda/chemistry , Gastropoda/physiology , Greece , Marine Toxins/analysis , Muscles/chemistry , Peptides/analysis , Phosphoprotein Phosphatases/antagonists & inhibitors , Protein Phosphatase 1
10.
Ann N Y Acad Sci ; 1040: 464-5, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15891090

ABSTRACT

Insulin-related peptides (IRPs) from ganglions of mollusk, Anodonta cygnea, were purified and characterized (IRP1-IRP13) using insulin and insulin-like growth factor-I (IGF-I) radioreceptor test systems. The IRPs were able to bind to insulin and IGF-I receptors. Dose-dependent curve slopes indicated that most IRPs bind with higher affinity to IGF-I receptors than to insulin receptors. The IRP regulatory action on the activity of the adenylyl cyclase signal system showed that these peptides stimulated adenylyl cyclase and GTP-binding activity of G-proteins to the same extent as insulin and IGF-I. The data obtained suggest polyfunctional IRP action that apparently is determined by the molecular structure of individual isoforms.


Subject(s)
Anodonta/metabolism , Insulin/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Receptor, IGF Type 1/metabolism , Animals , Anodonta/chemistry , Insulin/genetics , Intercellular Signaling Peptides and Proteins/chemistry , Protein Binding/physiology , Receptor, IGF Type 1/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL