Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 277
Filter
1.
Genes (Basel) ; 15(7)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062690

ABSTRACT

Ascorbate peroxidase (APX) is a crucial enzyme involved in cellular antioxidant defense and plays a pivotal role in modulating reactive oxygen species (ROS) levels under various environmental stresses in plants. This study utilized bioinformatics methods to identify and analyze the APX gene family of pomelo, while quantitative real-time PCR (qRT-PCR) was employed to validate and analyze the expression of CmAPXs at different stages of fruit postharvest. This study identified 96 members of the CmAPX family in the entire pomelo genome, with uneven distribution across nine chromosomes and occurrences of gene fragment replication. The subcellular localization includes peroxisome, cytoplasm, chloroplasts, and mitochondria. The CmAPX family exhibits a similar gene structure, predominantly consisting of two exons. An analysis of the upstream promoter regions revealed a significant presence of cis-acting elements associated with light (Box 4, G-Box), hormones (ABRE, TCA-element), and stress-related (MBS, LTR, ARE) responses. Phylogenetic and collinearity analyses revealed that the CmAPX gene family can be classified into three subclasses, with seven collinear gene pairs. Furthermore, CmAPXs are closely related to citrus, pomelo, and lemon, followed by Arabidopsis, and exhibit low homology with rice. Additionally, the transcriptomic heat map and qPCR results revealed that the expression levels of CmAPX57, CmAPX34, CmAPX50, CmAPX4, CmAPX5, and CmAPX81 were positively correlated with granulation degree, indicating the activation of the endogenous stress resistance system in pomelo cells by these genes, thereby conferring resistance to ROS. This finding is consistent with the results of GO enrichment analysis. Furthermore, 38 miRNAs were identified as potential regulators targeting the CmAPX family for post-transcriptional regulation. Thus, this study has preliminarily characterized members of the APX gene family in pomelo and provided valuable insights for further research on their antioxidant function and molecular mechanism.


Subject(s)
Ascorbate Peroxidases , Citrus , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Citrus/genetics , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling/methods
2.
Methods Mol Biol ; 2814: 119-131, 2024.
Article in English | MEDLINE | ID: mdl-38954202

ABSTRACT

Largely due to its simplicity, while being more like human cells compared to other experimental models, Dictyostelium continues to be of great use to discover basic molecular mechanisms and signaling pathways underlying evolutionarily conserved biological processes. However, the identification of new protein interactions implicated in signaling pathways can be particularly challenging in Dictyostelium due to its extremely fast signaling kinetics coupled with the dynamic nature of signaling protein interactions. Recently, the proximity labeling method using engineered ascorbic acid peroxidase 2 (APEX2) in mammalian cells was shown to allow the detection of weak and/or transient protein interactions and also to obtain spatial and temporal resolution. Here, we describe a protocol for successfully using the APEX2-proximity labeling method in Dictyostelium. Coupled with the identification of the labeled proteins by mass spectrometry, this method expands Dictyostelium's proteomics toolbox and should be widely useful for identifying interacting partners involved in a variety of biological processes in Dictyostelium.


Subject(s)
Ascorbate Peroxidases , Dictyostelium , Proteomics , Dictyostelium/metabolism , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Proteomics/methods , Protein Interaction Mapping/methods , Mass Spectrometry/methods , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Signal Transduction , Staining and Labeling/methods , Endonucleases , Multifunctional Enzymes
3.
Gene ; 927: 148697, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38880186

ABSTRACT

Protocatechualdehyde is a plant natural phenolic aldehyde and an active ingredient with important bioactivities in traditional Chinese medicine. Protocatechualdehyde is also a key intermediate in the synthesis of Amaryllidaceae alkaloids for supplying the C6-C1 skeleton. However, the biosynthesis of protocatechualdehyde in plants remains obscure. In this study, we measured the protocatechualdehyde contents in the root, bulb, scape and flower of the Amaryllidaceae plant Lycoris aurea (L'Hér.) Herb., and performed the correlation analysis between the protocatechualdehyde contents and the transcriptional levels of the phenolic oxidization candidate protein encoding genes. We found that a novel ascorbate peroxidase encoded by the contig_24999 in the L. aurea transcriptome database had potential role in the biosynthesis of protocatechualdehyde. The LauAPX_24999 gene was then cloned from the cDNA of the scape of L. aurea. The transient expression of LauAPX_24999 protein in Arabidopsis protoplasts demonstrated that LauAPX_24999 protein was localized in the cytoplasm, thus belonging to Class II L-ascorbate peroxidase. Subsequently, LauAPX_24999 protein was heterogenously expressed in Escherichia coli, and identified that LauAPX_24999 biosynthesized protocatechualdehyde from p-hydroxybenzaldehyde using L-ascorbic acid as the electron donor. The protein structure modelling and molecular docking indicated that p-hydroxybenzaldehyde could access to the active pocket of LauAPX_24999 protein, and reside at the δ-edge of the heme group while L-ascorbic acid binds at the γ-heme edge. To our knowledge, LauAPX_24999 is the first enzyme discovered in plants able to biosynthesize protocatechualdehyde from p-hydroxybenzaldehyde, and offers a competent enzyme resource for the biosynthesis of Amaryllidaceae alkaloids via synthetic biology.


Subject(s)
Ascorbate Peroxidases , Benzaldehydes , Catechols , Lycoris , Benzaldehydes/metabolism , Catechols/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Lycoris/genetics , Lycoris/enzymology , Lycoris/metabolism , Molecular Docking Simulation , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Tree Physiol ; 44(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38943359

ABSTRACT

Stress tolerance in apple (Malus domestica) can be improved by grafting to a stress-tolerant rootstock, such as 'SH6' (Malus honanensis × M. domestica 'Ralls Genet'). However, the mechanisms of stress tolerance in this rootstock are unclear. In Arabidopsis (Arabidopsis thaliana), the transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 10 is a key component of plant tolerance to multiple abiotic stresses and positively regulates antioxidant enzymes. However, how reactive oxygen species are eliminated upon activation of ZINC FINGER OF ARABIDOPSIS THALIANA 10 in response to abiotic stress remains elusive. Here, we report that MhZAT10 in the rootstock SH6 directly activates the transcription of three genes encoding the antioxidant enzymes MANGANESE SUPEROXIDE DISMUTASE 1 (MhMSD1), ASCORBATE PEROXIDASE 3A (MhAPX3a) and CATALASE 1 (MhCAT1) by binding to their promoters. Heterologous expression in Arabidopsis protoplasts showed that MhMSD1, MhAPX3a and MhCAT1 localize in multiple subcellular compartments. Overexpressing MhMSD1, MhAPX3a or MhCAT1 in SH6 fruit calli resulted in higher superoxide dismutase, ascorbate peroxidase and catalase enzyme activities in their respective overexpressing calli than in those overexpressing MhZAT10. Notably, the calli overexpressing MhZAT10 exhibited better growth and lower reactive oxygen species levels under simulated osmotic stress. Apple SH6 plants overexpressing MhZAT10 in their roots via Agrobacterium rhizogenes-mediated transformation also showed enhanced tolerance to osmotic stress, with higher leaf photosynthetic capacity, relative water content in roots and antioxidant enzyme activity, as well as less reactive oxygen species accumulation. Overall, our study demonstrates that the transcription factor MhZAT10 synergistically regulates the transcription of multiple antioxidant-related genes and elevates reactive oxygen species detoxification.


Subject(s)
Antioxidants , Malus , Plant Proteins , Transcription Factors , Malus/genetics , Malus/metabolism , Malus/physiology , Antioxidants/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/metabolism , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Reactive Oxygen Species/metabolism , Catalase/metabolism , Catalase/genetics
5.
Plant J ; 119(3): 1258-1271, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38804089

ABSTRACT

The successful interaction between pollen and stigma is a critical process for plant sexual reproduction, involving a series of intricate molecular and physiological events. After self-compatible pollination, a significant reduction in reactive oxygen species (ROS) production has been observed in stigmas, which is essential for pollen grain rehydration and subsequent pollen tube growth. Several scavenging enzymes tightly regulate ROS homeostasis. However, the potential role of these ROS-scavenging enzymes in the pollen-stigma interaction in Brassica napus remains unclear. Here, we showed that the activity of ascorbate peroxidase (APX), an enzyme that plays a crucial role in the detoxification of hydrogen peroxide (H2O2), was modulated depending on the compatibility of pollination in B. napus. We then identified stigma-expressed APX1s and generated pentuple mutants of APX1s using CRISPR/Cas9 technology. After compatible pollination, the BnaAPX1 pentuple mutants accumulated higher levels of H2O2 in the stigma, while the overexpression of BnaA09.APX1 resulted in lower levels of H2O2. Furthermore, the knockout of BnaAPX1 delayed the compatible response-mediated pollen rehydration and germination, which was consistent with the effects of a specific APX inhibitor, ρ-Aminophenol, on compatible pollination. In contrast, the overexpression of BnaA09.APX1 accelerated pollen rehydration and germination after both compatible and incompatible pollinations. However, delaying and promoting pollen rehydration and germination did not affect the seed set after compatible and incompatible pollination in APX1 pentuple mutants and overexpression lines, respectively. Our results demonstrate the fundamental role of BnaAPX1 in pollen rehydration and germination by regulating ROS homeostasis during the pollen-stigma interaction in B. napus.


Subject(s)
Ascorbate Peroxidases , Brassica napus , Germination , Homeostasis , Plant Proteins , Pollen , Reactive Oxygen Species , Brassica napus/genetics , Brassica napus/physiology , Brassica napus/enzymology , Brassica napus/metabolism , Reactive Oxygen Species/metabolism , Pollen/genetics , Pollen/physiology , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollination , Hydrogen Peroxide/metabolism , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Pollen Tube/genetics , Pollen Tube/metabolism
6.
PeerJ ; 12: e17249, 2024.
Article in English | MEDLINE | ID: mdl-38685943

ABSTRACT

Ascorbate peroxidase (APX) plays a critical role in molecular mechanisms such as plant development and defense against abiotic stresses. As an important economic crop, hemp (Cannabis sativa L.) is vulnerable to adverse environmental conditions, such as drought, cold, salt, and oxidative stress, which lead to a decline in yield and quality. Although APX genes have been characterized in a variety of plants, members of the APX gene family in hemp have not been completely identified. In this study, we (1) identified eight members of the CsAPX gene family in hemp and mapped their locations on the chromosomes using bioinformatics analysis; (2) examined the physicochemical characteristics of the proteins encoded by these CsAPX gene family members; (3) investigated their intraspecific collinearity, gene structure, conserved domains, conserved motifs, and cis-acting elements; (4) constructed a phylogenetic tree and analyzed interspecific collinearity; and (5) ascertained expression differences in leaf tissue subjected to cold, drought, salt, and oxidative stresses using quantitative real-time-PCR (qRT-PCR). Under all four stresses, CsAPX6, CsAPX7, and CsAPX8 consistently exhibited significant upregulation, whereas CsAPX2 displayed notably higher expression levels under drought stress than under the other stresses. Taken together, the results of this study provide basic genomic information on the expression of the APX gene family and pave the way for studying the role of APX genes in abiotic stress.


Subject(s)
Ascorbate Peroxidases , Cannabis , Gene Expression Regulation, Plant , Phylogeny , Stress, Physiological , Cannabis/genetics , Cannabis/enzymology , Cannabis/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Stress, Physiological/genetics , Multigene Family/genetics , Droughts , Plant Proteins/genetics , Plant Proteins/metabolism , Oxidative Stress/genetics , Chromosome Mapping , Genome, Plant/genetics , Chromosomes, Plant/genetics
7.
Plant Cell Physiol ; 65(4): 644-656, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38591346

ABSTRACT

The function of ascorbate peroxidase-related (APX-R) proteins, present in all green photosynthetic eukaryotes, remains unclear. This study focuses on APX-R from Chlamydomonas reinhardtii, namely, ascorbate peroxidase 2 (APX2). We showed that apx2 mutants exhibited a faster oxidation of the photosystem I primary electron donor, P700, upon sudden light increase and a slower re-reduction rate compared to the wild type, pointing to a limitation of plastocyanin. Spectroscopic, proteomic and immunoblot analyses confirmed that the phenotype was a result of lower levels of plastocyanin in the apx2 mutants. The redox state of P700 did not differ between wild type and apx2 mutants when the loss of function in plastocyanin was nutritionally complemented by growing apx2 mutants under copper deficiency. In this case, cytochrome c6 functionally replaces plastocyanin, confirming that lower levels of plastocyanin were the primary defect caused by the absence of APX2. Overall, the results presented here shed light on an unexpected regulation of plastocyanin level under copper-replete conditions, induced by APX2 in Chlamydomonas.


Subject(s)
Ascorbate Peroxidases , Chlamydomonas reinhardtii , Mutation , Plastocyanin , Plastocyanin/metabolism , Plastocyanin/genetics , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/genetics , Copper/metabolism , Oxidation-Reduction , Photosystem I Protein Complex/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Cytochromes c6/metabolism , Cytochromes c6/genetics , Proteomics/methods , Light
8.
J Exp Bot ; 75(9): 2700-2715, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38367016

ABSTRACT

Ascorbate peroxidase (APX) reduces H2O2 to H2O by utilizing ascorbate as a specific electron donor and constitutes the ascorbate-glutathione cycle in organelles of plants including chloroplasts, cytosol, mitochondria, and peroxisomes. It has been almost 40 years since APX was discovered as an important plant-specific H2O2-scavenging enzyme, during which time many research groups have conducted molecular physiological analyses. It is now clear that APX isoforms function not only just as antioxidant enzymes but also as important factors in intracellular redox regulation through the metabolism of reactive oxygen species. The function of APX isoforms is regulated at multiple steps, from the transcriptional level to post-translational modifications of enzymes, thereby allowing them to respond flexibly to ever-changing environmental factors and physiological phenomena such as cell growth and signal transduction. In this review, we summarize the physiological functions and regulation mechanisms of expression of each APX isoform.


Subject(s)
Ascorbate Peroxidases , Isoenzymes , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Isoenzymes/metabolism , Isoenzymes/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Plants/enzymology , Plants/metabolism , Protein Isoforms/metabolism
9.
Plant Physiol Biochem ; 207: 108326, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237421

ABSTRACT

Understanding how to adapt outdoor cultures of Nannochloropsis oceanica to high light (HL) is vital for boosting productivity. The N. oceanica RB2 mutant, obtained via ethyl methanesulfonate mutagenesis, was chosen for its tolerance to Rose Bengal (RB), a singlet oxygen (1O2) generator. Compared to the wild type (WT), the RB2 mutant showed higher resilience to excess light conditions. Analyzing the ascorbate-glutathione cycle (AGC), involving ascorbate peroxidases (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7), in the RB2 mutant under HL stress provided valuable insights. At 250 µmol photon m-2 s-1 (HL), the WT strain displayed superoxide anion radicals (O2▪-) and hydrogen peroxide (H2O2) accumulation, increased lipid peroxidation, and cell death compared to normal light (NL) conditions (50 µmol photon m-2 s-1). The RB2 mutant didn't accumulate O2▪- and H2O2 after HL exposure, and exhibited increased APX, DHAR, and GR activities and transcript levels compared to WT and remained consistent after HL treatment. Although the RB2 mutant had a smaller ascorbate (AsA) pool than the WT, its ability to regenerate dehydroascorbate (DHA) increased post HL exposure, indicated by a higher AsA/DHA ratio. Additionally, under HL conditions, the RB2 mutant displayed an improved glutathione (GSH) regeneration rate (GSH/GSSG ratio) without changing the GSH pool size. Remarkably, H2O2 or menadione (a O2▪- donor) treatment induced cell death in the WT strain but not in the RB2 mutant. These findings emphasize the essential role of AGC in the RB2 mutant of Nannochloropsis in handling photo-oxidative stress.


Subject(s)
Hydrogen Peroxide , Rose Bengal , Hydrogen Peroxide/metabolism , Ascorbic Acid/metabolism , Antioxidants/metabolism , Glutathione Reductase/metabolism , Oxidative Stress , Glutathione/metabolism , Acclimatization , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism
10.
Protoplasma ; 261(3): 581-592, 2024 May.
Article in English | MEDLINE | ID: mdl-38191719

ABSTRACT

Overdoses of pesticides lead to a decrease in the yield and quality of plants, such as beans. The unconscious use of deltamethrin, one of the synthetic insecticides, increases the amount of reactive oxygen species (ROS) by causing oxidative stress in plants. In this case, plants tolerate stress by activating the antioxidant defense mechanism and many genes. 5-Aminolevulinic acid (ALA) improves tolerance to stress by acting exogenously in low doses. There are many gene families that are effective in the regulation of this mechanism. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. In this study, the expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and stress-associated protein (SAP) genes were determined by Q-PCR in deltamethrin (0.5 ppm) and various doses (20, 40, and 80 mg/l) of ALA-treated bean seedlings. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. It was determined that deltamethrin increased the expression of SOD (1.8-fold), GPX (1.4-fold), CAT (2.7-fold), and SAP (2.5-fold) genes, while 20 and 40 mg/l ALA gradually increased the expression of these genes at levels close to control, but 80 mg/l ALA increased the expression of these genes almost to the same level as deltamethrin (2.1-fold, 1.4-fold, 2.6-fold, and 2.6-fold in SOD, GPX, CAT, and SAP genes, respectively). In addition, retrotransposon-microsatellite amplified polymorphism (REMAP) was performed to determine the polymorphism caused by retrotransposon movements. While deltamethrin treatment has caused a decrease in genomic template stability (GTS) (27%), ALA treatments have prevented this decline. At doses of 20, 40, and 80 mg/L of ALA treatments, the GTS ratios were determined to be 96.8%, 74.6%, and 58.7%, respectively. Collectively, these findings demonstrated that ALA has the utility of alleviating pesticide stress effects on beans.


Subject(s)
Aminolevulinic Acid , Nitriles , Pesticides , Pyrethrins , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/metabolism , Seedlings/metabolism , Retroelements/genetics , Pesticides/metabolism , Pesticides/pharmacology , Antioxidants/metabolism , Catalase/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Gene Expression , Glutathione/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism
11.
Int J Mol Sci ; 24(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38139399

ABSTRACT

The antioxidative enzyme ascorbate peroxidase (APX) exerts a critically important function through scavenging reactive oxygen species (ROS), alleviating oxidative damage in plants, and enhancing their tolerance to salinity. Here, we identified 28 CmAPX genes that display an uneven distribution pattern throughout the 12 chromosomes of the melon genome by carrying out a bioinformatics analysis. Phylogenetic analyses revealed that the CmAPX gene family comprised seven different clades, with each clade of genes exhibiting comparable motifs and structures. We cloned 28 CmAPX genes to infer their encoded protein sequences; we then compared these sequences with proteins encoded by rice APX proteins (OsAPX2), Puccinellia tenuiflora APX proteins (PutAPX) and with pea APX proteins. We found that the CmAPX17, CmAPX24, and CmAPX27 genes in Clade I were closely related, and their structures were highly conserved. CmAPX27 (MELO3C020719.2.1) was found to promote resistance to 150 mM NaCl salt stress, according to quantitative real-time fluorescence PCR. Transcriptome data revealed that CmAPX27 was differentially expressed among tissues, and the observed differences in expression were significant. Virus-induced gene silencing of CmAPX27 significantly decreased salinity tolerance, and CmAPX27 exhibited differential expression in the leaf, stem, and root tissues of melon plants. This finding demonstrates that CmAPX27 exerts a key function in melon's tolerance to salt stress. Generally, CmAPX27 could be a target in molecular breeding efforts aimed at improving the salt tolerance of melon; further studies of CmAPX27 could unveil novel physiological mechanisms through which antioxidant enzymes mitigate the deleterious effects of ROS stress.


Subject(s)
Antioxidants , Oxidative Stress , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Reactive Oxygen Species/metabolism , Phylogeny , Antioxidants/metabolism , Gene Expression Regulation, Plant
12.
Plant Physiol ; 193(1): 339-355, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37249039

ABSTRACT

Drought and flooding are the two most important environmental factors limiting maize (Zea mays L.) production globally. This study aimed to investigate the physiological mechanisms and accurate evaluation indicators and methods of maize germplasm involved in drought and flooding stresses. The twice replicated pot experiments with 60 varieties, combined with the field validation experiment with 3 varieties, were conducted under well-watered, drought, and flooding conditions. Most varieties exhibited stronger tolerance to drought than flooding due to higher antioxidant enzyme activities, osmotic adjustment substances, and lower reactive oxygen species. In contrast, flooding stress resulted in higher levels of reactive oxygen species (particularly O2-), ascorbate peroxidase, catalase, peroxidase, and soluble sugars but lower levels of superoxide dismutase, proline, and soluble protein compared with well-watered conditions. Superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, proline, soluble sugars, and protein contents, in addition to plant height, leaf area/plant, and stem diameter, were accurate and representative indicators for evaluating maize tolerance to drought and flooding stresses and could determine a relatively high mean forecast accuracy of 100.0% for the comprehensive evaluation value. A total of 4 principal components were extracted, in which different principal components played a vital role in resisting different water stresses. Finally, the accuracy of the 3 varieties screened by multivariate analysis was verified in the field. This study provides insights into the different physiological mechanisms and accurate evaluation methods of maize germplasm involved in drought and flooding stresses, which could be valuable for further research and breeding.


Subject(s)
Droughts , Zea mays , Catalase/metabolism , Zea mays/metabolism , Reactive Oxygen Species/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Stress, Physiological , Plant Breeding , Antioxidants/metabolism , Peroxidases/genetics , Peroxidases/metabolism , Peroxidase/metabolism , Superoxide Dismutase/metabolism , Water/metabolism , Proline/metabolism , Multivariate Analysis , Sugars/metabolism
13.
J Plant Res ; 136(3): 371-382, 2023 May.
Article in English | MEDLINE | ID: mdl-36862271

ABSTRACT

Ascorbate peroxidase (APX) is one of the most important antioxidant enzymes in the reactive oxygen metabolic pathway of plants. The role of APX under biotic and abiotic stress conditions has been explored, but the response pattern of APX under biotic stresses is relatively less known. In this study, seven CsAPXs gene family members were identified based on the sweet orange (Citrus sinensis) genome and subjected to evolutionary and structural analysis using bioinformatics software. The APX genes of lemon (ClAPXs) were cloned and showed a high conservation to CsAPXs by sequences alignment. In citrus yellow vein clearing virus (CYVCV)-infected Eureka lemons (C. limon) at 30th day post inoculation, APX activity and accumulation of hydrogen peroxide (H2O2) and malondialdehyde were measured to be 3.63, 2.29, and 1.73 times to that of the healthy control. The expression levels of 7 ClAPX genes in different periods of CYVCV-infected Eureka lemon were analyzed. Notably, ClAPX1, ClAPX5, and ClAPX7 showed higher expression levels compared to healthy plants, while ClAPX2, ClAPX3, and ClAPX4 showed lower expression levels. Functional identification of ClAPX1 in Nicotiana benthamiana showed that increasing the expression of ClAPX1 could significantly reduce the accumulation of H2O2, and it was verified that ClAPX1 is located in the plasma membrane of the cell. The present study provided information on the evolution and function of citrus APXs and revealed for the first time their response pattern to CYVCV infection.


Subject(s)
Citrus , Ascorbate Peroxidases/genetics , Citrus/metabolism , Hydrogen Peroxide/metabolism , Plants/metabolism , Antioxidants , Gene Expression Regulation, Plant
16.
Biol Futur ; 74(1-2): 231-246, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36609909

ABSTRACT

Five desi (GL 12,021, GL 29,095, GL 29,078, H11 22 and CSJ 515) and three wild (GLW 22, GLW 58 and GLW 187) chickpea cultivars showed induced defense response against Helicoverpa armigera infestation as a result of enhanced activities of superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase, polyphenol oxidase, phenylalanine ammonia lyase, tyrosine ammonia lyase in leaves, pod walls and seeds. Catalase activity increased in leaves of GL 12,021, H11 22, GL 29,095, CSJ 515, GLW 22, and GL 29,078 after infestation compared to resistant check; catalase and peroxidase activities in GL 29,095 and GL 29,078; ascorbate peroxidase and glutathione reductase activities in leaves of GLW 58. The increased activity of superoxide dismutase in pod wall of H1122; catalase in pod wall of 29,078, GL 29,095 and GL 22; ascorbate peroxidase and glutathione reductase in pod wall of GLW 58; phenylalanine ammonia lyase and tyrosine ammonia lyase in pod wall of GLW 187, H11 22, GL 20,978, GLW 22 and GLW 58 after infestation as compared to resistant check might be responsible for mitigating infestation induced oxidative stress. MDA content decreased in leaves, pod wall and seeds of GLW 187 and GL 12,021 after infestation. Lower percent pod damage (9.58-12.44%) in GL 12,021, GLW 187, GL 29,095, H11 22, GL 29,078, GLW 22 and GLW 58 as compared to resistant (16.18%) and susceptible (21.50) checks might be attributed to differential induced defense mechanism in them. The identified desi and wild genotypes might be used in breeding program to develop cultivars with improved resistance to herbivore.


Subject(s)
Cicer , Moths , Animals , Catalase , Cicer/genetics , Ascorbate Peroxidases/genetics , Phenylalanine Ammonia-Lyase/genetics , Glutathione Reductase/genetics , Moths/physiology , Antioxidants , Superoxide Dismutase , Genotype , Tyrosine
17.
Trends Biotechnol ; 41(3): 301-303, 2023 03.
Article in English | MEDLINE | ID: mdl-36710130

ABSTRACT

Enhanced ascorbate peroxidase 2 (APEX2) is a protein generated with directed evolution by Lam et al. that has transformed our understanding of subcellular entities and phenomena. The rapid kinetics of this engineered protein highlights the power of directed evolution to expand the molecular toolkit for biologists.


Subject(s)
Ascorbate Peroxidases , Directed Molecular Evolution , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism
18.
Plant Physiol ; 192(1): 102-118, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36575825

ABSTRACT

In planta, H2O2 is produced as a by-product of enzymatic reactions and during defense responses. Ascorbate peroxidase (APX) is a key enzyme involved in scavenging cytotoxic H2O2. Here, we report the crystal structure of cytosolic APX from sorghum (Sorghum bicolor) (Sobic.001G410200). While the overall structure of SbAPX was similar to that of other APXs, SbAPX uniquely displayed four bound ascorbates rather than one. In addition to the ɣ-heme pocket identified in other APXs, ascorbates were bound at the δ-meso and two solvent-exposed pockets. Consistent with the presence of multiple binding sites, our results indicated that the H2O2-dependent oxidation of ascorbate displayed positive cooperativity. Bound ascorbate at two surface sites established an intricate proton network with ascorbate at the ɣ-heme edge and δ-meso sites. Based on crystal structures, steady-state kinetics, and site-directed mutagenesis results, both ascorbate molecules at the ɣ-heme edge and the one at the surface are expected to participate in the oxidation reaction. We provide evidence that the H2O2-dependent oxidation of ascorbate by APX produces a C2-hydrated bicyclic hemiketal form of dehydroascorbic acid at the ɣ-heme edge, indicating two successive electron transfers from a single-bound ascorbate. In addition, the δ-meso site was shared with several organic compounds, including p-coumaric acid and other phenylpropanoids, for the potential radicalization reaction. Site-directed mutagenesis of the critical residue at the ɣ-heme edge (R172A) only partially reduced polymerization activity. Thus, APX removes stress-generated H2O2 with ascorbates, and also uses this same H2O2 to potentially fortify cell walls via oxidative polymerization of phenylpropanoids in response to stress.


Subject(s)
Peroxidases , Sorghum , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Peroxidases/metabolism , Sorghum/genetics , Sorghum/metabolism , Hydrogen Peroxide , Models, Molecular , Binding Sites , Ascorbic Acid/metabolism , Heme
19.
Plant Physiol ; 191(2): 1416-1434, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36461917

ABSTRACT

Biphasic production of reactive oxygen species (ROS) has been observed in plants treated with avirulent bacterial strains. The first transient peak corresponds to pattern-triggered immunity (PTI)-ROS, whereas the second long-lasting peak corresponds to effector-triggered immunity (ETI)-ROS. PTI-ROS are produced in the apoplast by plasma membrane-localized NADPH oxidases, and the recognition of an avirulent effector increases the PTI-ROS regulatory module, leading to ETI-ROS accumulation in the apoplast. However, how apoplastic ETI-ROS signaling is relayed to the cytosol is still unknown. Here, we found that in the absence of cytosolic ascorbate peroxidase 1 (APX1), the second phase of ETI-ROS accumulation was undetectable in Arabidopsis (Arabidopsis thaliana) using luminol-based assays. In addition to being a scavenger of cytosolic H2O2, we discovered that APX1 served as a catalyst in this chemiluminescence ROS assay by employing luminol as an electron donor. A horseradish peroxidase (HRP)-mimicking APX1 mutation (APX1W41F) further enhanced its catalytic activity toward luminol, whereas an HRP-dead APX1 mutation (APX1R38H) reduced its luminol oxidation activity. The cytosolic localization of APX1 implies that ETI-ROS might accumulate in the cytosol. When ROS were detected using a fluorescent dye, green fluorescence was observed in the cytosol 6 h after infiltration with an avirulent bacterial strain. Collectively, these results indicate that ETI-ROS eventually accumulate in the cytosol, and cytosolic APX1 catalyzes luminol oxidation and allows monitoring of the kinetics of ETI-ROS in the cytosol. Our study provides important insights into the spatial dynamics of ROS accumulation in plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Reactive Oxygen Species , Ascorbate Peroxidases/genetics , Arabidopsis Proteins/genetics , Luminol , Cytosol , Hydrogen Peroxide , Arabidopsis/microbiology
20.
Food Chem ; 405(Pt A): 134858, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36370562

ABSTRACT

Hydrogen sulfide (H2S) has been identified as a critical gaseous signaling chemical. Herein, the effects of H2S treatment on the postharvest goji berries and antioxidant enzyme activities were determined. H2S application delayed the decay index, loss of firmness, color, flavor, and total sugars and loss of total protein, betaine and ascorbic acid in goji berries during postharvest storage. Meanwhile, H2S noticeably reduced the MDA, H2O2, and O2- accumulation. Additionally, it was shown that H2S increased the activity of catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), glutathione reductase (GR) and superoxide dismutase (SOD) while decreased the quantity of lipoxygenase (LOX). The mRNA expression of LDC, DCD, CAT, APX, POD, GR and SOD was up-regulated but LOX, RBOH-b and RBOH-e was down-regulated in goji berries after H2S treatment. Altogether, H2S could efficiently delay the senescence, improves postharvest quality, increase the bioactive compounds accumulation, and boost the antioxidant capacity of goji berries through modulating antioxidant enzyme system.


Subject(s)
Hydrogen Sulfide , Lycium , Lycium/chemistry , Antioxidants/metabolism , Hydrogen Sulfide/metabolism , Hydrogen Peroxide/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Glutathione Reductase/metabolism , Peroxidases , Lipoxygenase , Peroxidase
SELECTION OF CITATIONS
SEARCH DETAIL