Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.148
Filter
1.
J Environ Sci (China) ; 149: 209-220, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181635

ABSTRACT

Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.


Subject(s)
Air Pollutants , Gels , Air Pollutants/chemistry , Gels/chemistry , Atmosphere/chemistry , Adsorption , Carbon Dioxide/chemistry , Environmental Restoration and Remediation/methods , Silicon Dioxide/chemistry
2.
J Environ Sci (China) ; 149: 200-208, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181634

ABSTRACT

The acidity of atmospheric aerosols influences fundamental physicochemical processes that affect climate and human health. We recently developed a novel and facile water-probe-based method for directly measuring of the pH for micrometer-size droplets, providing a promising technique to better understand aerosol acidity in the atmosphere. The complex chemical composition of fine particles in the ambient air, however, poses certain challenges to using a water-probe for pH measurement, including interference from interactions between compositions and the influence of similar compositions on water structure. To explore the universality of our method, it was employed to measure the pH of ammonium, nitrate, carbonate, sulfate, and chloride particles. The pH of particles covering a broad range (0-14) were accurately determined, thereby demonstrating that our method can be generally applied, even to alkaline particles. Furthermore, a standard spectral library was developed by integrating the standard spectra of common hydrated ions extracted through the water-probe. The library can be employed to identify particle composition and overcome the spectral overlap problem resulting from similar effects. Using the spectral library, all ions were identified and their concentrations were determined, in turn allowing successful pH measurement of multicomponent (ammonium-sulfate-nitrate-chloride) particles. Insights into the synergistic effect of Cl-, NO3-, and NH4+ depletion obtained with our approach revealed the interplay between pH and volatile partitioning. Given the ubiquity of component partitioning and pH variation in particles, the water probe may provide a new perspective on the underlying mechanisms of aerosol aging and aerosol-cloud interaction.


Subject(s)
Aerosols , Environmental Monitoring , Spectrum Analysis, Raman , Water , Hydrogen-Ion Concentration , Spectrum Analysis, Raman/methods , Water/chemistry , Environmental Monitoring/methods , Aerosols/analysis , Air Pollutants/analysis , Air Pollutants/chemistry , Atmosphere/chemistry , Particulate Matter/analysis
3.
J Environ Sci (China) ; 149: 419-430, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181654

ABSTRACT

A novel system for measuring net photochemical ozone production rates in the atmosphere based on cavity ring-down spectroscopy (OPR-CRDS) was developed. The system consists of two chambers (a reaction chamber and a reference chamber) and a dual-channel Ox-CRDS detector. To minimize the wall loss of Ox in the chambers, the inner surfaces of both chambers are coated with Teflon film. The performance of the OPR-CRDS system was characterized. It was found that even though the photolysis frequency (J value) decreased by 10%, the decrease in the P(O3) caused by the ultraviolet-blocking film coating was less than 3%. The two chambers had a good consistency in the mean residence time and the measurement of NO2 and Ox under the condition of no sunlight. The detection limit of the OPR-CRDS was determined to be 0.20 ppbv/hr. To further verify the accuracy of the system, the direct measurement values of the OPR-CRDS system were compared with the calculation results based on radical (OH, HO2, and RO2) reactions, and a good correlation was obtained between the measured and calculated values. Finally, the developed instrument was applied to obtain the comprehensive field observations at an urban site in the Yangtze River Delta (China) for 40 days, the time series and change characteristics of the P(O3) were obtained directly, and the good environmental adaptability and stability of the OPR-CRDS system were demonstrated. It is expected that the new instrument will be beneficial to investigations of the relationship between P(O3) and its precursors.


Subject(s)
Air Pollutants , Environmental Monitoring , Ozone , Ozone/analysis , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Air Pollutants/analysis , Spectrum Analysis/methods , China , Atmosphere/chemistry , Photolysis
4.
J Environ Sci (China) ; 149: 456-464, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181657

ABSTRACT

Nitrogen-containing organic compounds (NOCs) may potentially contribute to aqueous secondary organic aerosols, yet the different formation of NOCs in aerosol particles and cloud droplets remains unclear. With the in-situ measurements performed at a mountain site (1690 m a.s.l.) in southern China, we investigated the formation of NOCs in the cloud droplets and the cloud-free particles, based on their mixing state information of NOCs-containing particles by single particle mass spectrometry. The relative abundance of NOCs in the cloud-free particles was significantly higher than those in cloud residual (cloud RES) particles. NOCs were highly correlated with carbonyl compounds (including glyoxalate and methylglyoxal) in the cloud-free particles, however, limited correlation was observed for cloud RES particles. Analysis of their mixing state and temporal variations highlights that NOCs was mainly formed from the carbonyl compounds and ammonium in the cloud-free particles, rather than in the cloud RES particles. The results support that the formation of NOCs from carbonyl compounds is facilitated in concentrated solutions in wet aerosols, rather than cloud droplets. In addition, we have identified the transport of biomass burning particles that facilitate the formation of NOCs, and that the observed NOCs is most likely contributed to the light absorption. These findings have implications for the evaluation of NOCs formation and their contribution to light absorption.


Subject(s)
Aerosols , Air Pollutants , Environmental Monitoring , Nitrogen , Organic Chemicals , Aerosols/analysis , Air Pollutants/analysis , Air Pollutants/chemistry , Nitrogen/chemistry , Nitrogen/analysis , Organic Chemicals/chemistry , China , Atmosphere/chemistry , Particulate Matter/analysis , Particulate Matter/chemistry
5.
J Environ Sci (China) ; 149: 500-511, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181662

ABSTRACT

Formic and acetic acids are the most abundant gaseous organic acids and play the key role in the atmospheric chemistry. In iodine-adduct chemical ionization mass spectrometry (CIMS), the low utilization efficiency of methyl iodide and humidity interference are two major issues of the vacuum ultraviolet (VUV) lamp initiated CIMS for on-line gaseous formic and acetic acids analysis. In this work, we present a new CIMS based on VUV lamp, and the ion-molecular reactor is separated into photoionization and chemical ionization zones by a reducer electrode. Acetone was added to the photoionization zone, and the VUV photoionization acetone provided low-energy electrons for methyl iodide to generate I-, and the addition of acetone reduced the amount of methyl iodide by 2/3. In the chemical ionization zone, a headspace vial containing ultrapure water was added for humidity calibration, and the vial changes the sensitivity as a function of humidity from ambiguity to well linear correlation (R2 > 0.95). With humidity calibration, the CIMS can quantitatively measure formic and acetic acids in the humidity range of 0%-88% RH. In this mode, limits of detection of 10 and 50 pptv are obtained for formic and acetic acids, respectively. And the relative standard deviation (RSD) of quantitation stability for 6 days were less than 10.5%. This CIMS was successfully used to determine the formic and acetic acids in the underground parking and ambient environment of the Shandong University campus (Qingdao, China). In addition, we developed a simple model based formic acid concentration to assess vehicular emissions.


Subject(s)
Mass Spectrometry , Mass Spectrometry/methods , Air Pollutants/analysis , Iodides/analysis , Iodides/chemistry , Ultraviolet Rays , Formates/analysis , Formates/chemistry , Atmosphere/chemistry , Environmental Monitoring/methods , Photochemical Processes , Acetic Acid/analysis , Acetic Acid/chemistry , Hydrocarbons, Iodinated/analysis , Hydrocarbons, Iodinated/chemistry
6.
J Environ Sci (China) ; 149: 574-584, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181669

ABSTRACT

The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol (SOA). However, to date, the reactivity of C2 Criegee intermediates (CH3CHOO) in areas contaminated with acidic gas remains poorly understood. Herein, high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations are used to explore the reaction of CH3CHOO and H2SO4 both in the gas phase and at the air-water interface. In the gas phase, the addition reaction of CH3CHOO with H2SO4 to generate CH3HC(OOH)OSO3H (HPES) is near-barrierless, regardless of the presence of water molecules. BOMD simulations show that the reaction at the air-water interface is even faster than that in the gas phase. Further calculations reveal that the HPES has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters, meanwhile the oligomerization reaction of CH3CHOO with HPES in the gas phase is both thermochemically and kinetically favored. Also, it is noted that the interfacial HPES- ion can attract H2SO4, NH3, (COOH)2 and HNO3 for particle formation from the gas phase to the water surface. Thus, the results of this work not only elucidate the high atmospheric reactivity of C2 Criegee intermediates in polluted regions, but also deepen our understanding of the formation process of atmospheric SOA induced by Criegee intermediates.


Subject(s)
Sulfuric Acids , Sulfuric Acids/chemistry , Aerosols , Models, Chemical , Air Pollutants/chemistry , Molecular Dynamics Simulation , Atmosphere/chemistry
7.
J Environ Sci (China) ; 148: 210-220, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095158

ABSTRACT

Heterogeneous oxidation by gas-phase oxidants is an important chemical transformation pathway of secondary organic aerosol (SOA) and plays an important role in controlling the abundance, properties, as well as climate and health impacts of aerosols. However, our knowledge on this heterogeneous chemistry remains inadequate. In this study, the heterogeneous oxidation of α-pinene ozonolysis SOA by hydroxyl (OH) radicals was investigated under both low and high relative humidity (RH) conditions, with an emphasis on the evolution of molecular composition of SOA and its RH dependence. It is found that the heterogeneous oxidation of SOA at an OH exposure level equivalent to 12 hr of atmospheric aging leads to particle mass loss of 60% at 25% RH and 95% at 90% RH. The heterogeneous oxidation strongly changes the molecular composition of SOA. The dimer-to-monomer signal ratios increase dramatically with rising OH exposure, in particular under high RH conditions, suggesting that aerosol water stimulates the reaction of monomers with OH radicals more than that of dimers. In addition, the typical SOA tracer compounds such as pinic acid, pinonic acid, hydroxy pinonic acid and dimer esters (e.g., C17H26O8 and C19H28O7) have lifetimes of several hours against heterogeneous OH oxidation under typical atmospheric conditions, which highlights the need for the consideration of their heterogeneous loss in the estimation of monoterpene SOA concentrations using tracer-based methods. Our study sheds lights on the heterogeneous oxidation chemistry of monoterpene SOA and would help to understand their evolution and impacts in the atmosphere.


Subject(s)
Aerosols , Air Pollutants , Bicyclic Monoterpenes , Humidity , Hydroxyl Radical , Oxidation-Reduction , Aerosols/chemistry , Hydroxyl Radical/chemistry , Bicyclic Monoterpenes/chemistry , Air Pollutants/chemistry , Air Pollutants/analysis , Ozone/chemistry , Models, Chemical , Atmosphere/chemistry , Monoterpenes/chemistry
8.
J Environ Sci (China) ; 148: 489-501, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095183

ABSTRACT

The chemistry of sulfur cycle contributes significantly to the atmospheric nucleation process, which is the first step of new particle formation (NPF). In the present study, cycloaddition reaction mechanism of sulfur trioxide (SO3) to hydrogen sulfide (H2S) which is a typical air pollutant and toxic gas detrimental to the environment were comprehensively investigate through theoretical calculations and Atmospheric Cluster Dynamic Code simulations. Gas-phase stability and nucleation potential of the product thiosulfuric acid (H2S2O3, TSA) were further analyzed to evaluate its atmospheric impact. Without any catalysts, the H2S + SO3 reaction is infeasible with a barrier of 24.2 kcal/mol. Atmospheric nucleation precursors formic acid (FA), sulfuric acid (SA), and water (H2O) could effectively lower the reaction barriers as catalysts, even to a barrierless reaction with the efficiency of cis-SA > trans-FA > trans-SA > H2O. Subsequently, the gas-phase stability of TSA was investigated. A hydrolysis reaction barrier of up to 61.4 kcal/mol alone with an endothermic isomerization reaction barrier of 5.1 kcal/mol under the catalytic effect of SA demonstrates the sufficient stability of TSA. Furthermore, topological and kinetic analysis were conducted to determine the nucleation potential of TSA. Atmospheric clusters formed by TSA and atmospheric nucleation precursors (SA, ammonia NH3, and dimethylamine DMA) were thermodynamically stable. Moreover, the gradually decreasing evaporation coefficients for TSA-base clusters, particularly for TSA-DMA, suggests that TSA may participate in NPF where the concentration of base molecules are relatively higher. The present new reaction mechanism may contributes to a better understanding of atmospheric sulfur cycle and NPF.


Subject(s)
Air Pollutants , Hydrogen Sulfide , Models, Chemical , Hydrogen Sulfide/chemistry , Air Pollutants/chemistry , Cycloaddition Reaction , Atmosphere/chemistry , Sulfur Oxides/chemistry , Kinetics , Sulfur/chemistry
9.
J Environ Sci (China) ; 148: 591-601, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095192

ABSTRACT

To explore air contamination resulting from special biomass combustion and suspended dust in Lhasa, the present study focused on the size distribution and chemical characteristics of particulate matter (PM) emission resulting from 7 types of non-fossil pollution sources. We investigated the concentration and size distribution of trace elements from 7 pollution sources collected in Lhasa. Combining Lhasa's atmospheric particulate matter data, enrichment factors (EFs) have been calculated to examine the potential impact of those pollution sources on the atmosphere quality of Lhasa. The highest mass concentration of total elements of biomass combustion appeared at PM0.4, and the second highest concentration existed in the size fraction 0.4-1 µm; the higher proportion (12 %) of toxic metals was produced by biomass combustion. The elemental composition of suspended dust and atmospheric particulate matter was close (except for As and Cd); the highest concentration of elements was all noted in PM2.5-10 (PM3-10). Potassium was found to be one of the main biomass markers. The proportion of Cu in suspended dust is significantly lower than that of atmospheric particulate matter (0.53 % and 3.75 %), which indicates that there are other anthropogenic sources. The EFs analysis showed that the Cr, Cu, Zn, and Pb produced by biomass combustion were highly enriched (EFs > 100) in all particle sizes. The EFs of most trace elements increased with decreasing particle size, indicating the greater influence of humanfactors on smaller particles.


Subject(s)
Aerosols , Air Pollutants , Dust , Environmental Monitoring , Particle Size , Particulate Matter , Air Pollutants/analysis , Aerosols/analysis , Particulate Matter/analysis , Dust/analysis , Trace Elements/analysis , Air Pollution/statistics & numerical data , Air Pollution/analysis , China , Atmosphere/chemistry
10.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095193

ABSTRACT

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , China , Microplastics/analysis , Air Pollutants/analysis , Cities , Atmosphere/chemistry , Particle Size
11.
J Environ Sci (China) ; 150: 692-703, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306440

ABSTRACT

Nitrogen oxides (NOx) are crucial in tropospheric photochemical ozone (O3) production and oxidation capacity. Currently, the widely used NOx measurement technique is chemiluminescence (CL) (CL-NOx), which tends to overestimate NO2 due to atmospheric oxidation products of NOx (i.e., NOz). We developed and characterized a NOx measurement system using the cavity attenuated phase shift (CAPS) technique (CAPS-NOx), which is free from interferences with nitrogen-containing species. The NOx measured by the CAPS-NOx and CL-NOx analyzers were compared. Results show that both analyzers showed consistent measurement results for NO, but the NO2 measured by the CAPS-NOx analyzer (NO2_CAPS) was mostly lower than that measured by the CL-NOx analyzer (NO2_CL), which led to the deviations in O3 formation sensitivity regime and Ox (= O3 + NO2) sources (i.e., regional background and photochemically produced Ox) determined by the ozone production efficiencies (OPE) calculated from NO2_CL and NO2_CAPS. Overall, OPE_CL exceeded OPE_CAPS by 18.9%, which shifted 3 out of 13 observation days from the VOCs-limited to the transition regime when judging using OPE_CL, as compared to calculations using OPE_CAPS. During the observation period, days dominated by regional background Ox accounted for 46% and 62% when determined using NO2_CL and NO2_CAPS, respectively. These findings suggest that the use of the CL-NOx analyzer tends to underestimate both the VOCs-limited regime and the regional background Ox dominated days. The newly built CAPS-NOx analyzer here can promote the accurate measurement of NO2, which is meaningful for diagnosing O3 formation regimes and Ox sources.


Subject(s)
Air Pollutants , Environmental Monitoring , Nitrogen Oxides , Ozone , Nitrogen Oxides/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Environmental Monitoring/instrumentation , Ozone/analysis , Atmosphere/chemistry
12.
J Environ Sci (China) ; 150: 277-287, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306403

ABSTRACT

As an important component of secondary aerosols, sulfate plays a crucial role in regulating atmospheric radiative balance and influencing the secondary formation of ozone (O3). In real atmosphere, atmospheric oxidants NO2 and O3 can promote the oxidation of SO2 to form sulfate (SO42-) through multiphase chemistry that occur at different time scales. Due to the combined impact of meteorology, pollution sources, atmospheric chemistry, etc., time-scale dependence of SO2-SO42- conversion makes the impact of NO2/O3 on it more complex. In this study, based on long-term time series (2013-2020) of air pollution variables from seven stations in Hong Kong, the Multifractal Detrended Cross-Correlation Analysis (MFDCCA) method has been employed to quantify the cross-correlations between SO2 and SO42- in real atmosphere at different time scales, for examining the time-scale dependence of SO2-SO42- conversion efficiency. Furthermore, the Pearson correlation analysis has been used to study the influence of NO2/O3 on SO2-SO42- conversion, and the regional and seasonal differences have been analyzed by considering factors such as meteorology, pollution sources, and regional transport. Changes in the main components of secondary aerosols are closely linked with the co-control of regional PM2.5 and O3. Therefore, the exploration of the impact of co-existing NO2/O3 gases on the secondary formation of sulfates in real atmosphere is significant.


Subject(s)
Air Pollutants , Atmosphere , Environmental Monitoring , Nitrogen Dioxide , Ozone , Sulfates , Ozone/chemistry , Sulfates/chemistry , Sulfates/analysis , Atmosphere/chemistry , Air Pollutants/analysis , Nitrogen Dioxide/analysis , Hong Kong , Aerosols/analysis , Air Pollution/statistics & numerical data , Sulfur Dioxide/analysis , Sulfur Dioxide/chemistry
13.
J Environ Sci (China) ; 150: 230-245, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306398

ABSTRACT

Benzene, toluene, ethylbenzene, and xylene (BTEX) pollution poses a serious threat to public health and the environment because of its respiratory and neurological effects, carcinogenic properties, and adverse effects on air quality. BTEX exposure is a matter of grave concern in India owing to the growing vehicular and development activities, necessitating the assessment of atmospheric concentrations and their spatial variation. This paper presents a comprehensive assessment of ambient concentrations and spatiotemporal variations of BTEX in India. The study investigates the correlation of BTEX with other criteria pollutants and meteorological parameters, aiming to identify interrelationships and diagnostic indicators for the source characterization of BTEX emissions. Additionally, the paper categorizes various regions in India according to the Air Quality Index (AQI) based on BTEX pollution levels. The results reveal that the northern zone of India exhibits the highest levels of BTEX pollution compared to central, eastern, and western regions. In contrast, the southern zone experiences the least pollution with BTEX. Seasonal analysis indicates that winter and post-monsoon periods, characterized by lower temperatures, are associated with higher BTEX levels due to the accumulation of localized emissions. When comparing the different zones in India, high traffic emissions and localized activities, such as solvent use and solvent evaporation, are found to be the primary sources of BTEX. The findings of the current study aid in source characterization and identification, and better understanding of the region's air quality problems, which helps in the development of focused BTEX pollution reduction and control strategies.


Subject(s)
Air Pollutants , Benzene Derivatives , Benzene , Environmental Monitoring , Toluene , Xylenes , India , Air Pollutants/analysis , Xylenes/analysis , Benzene Derivatives/analysis , Toluene/analysis , Benzene/analysis , Air Pollution/statistics & numerical data , Air Pollution/analysis , Seasons , Atmosphere/chemistry
14.
J Environ Sci (China) ; 150: 466-476, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306421

ABSTRACT

This study has employed the master chemical mechanism (MCM) to investigate the influence of the ozone oxidation pathways in the atmospheric formation of H2SO4 from short-chain olefins in industrialized areas. In-situ H2SO4 formation data were obtained using a high-resolution chemical ionization time-of-flight mass spectrometer, and the simulated H2SO4 concentrations calculated using updated parameters for the MCM model exhibited good agreement with observations. In the simulation analysis of different reaction pathways involved in H2SO4 formation, hydroxyl radicals were found to dominate H2SO4 production during the daytime, while olefin ozone oxidation contributed up to 65% of total H2SO4 production during the night-time. A sensitivity analysis of the H2SO4 production parameters has revealed a high sensitivity to changes in sulfur dioxide, and a relatively high sensitivity to olefins with fast ozonolysis reaction rates and bimolecular reaction rates of resulting stabilized Criegee Intermediates. A high relative humidity promotes daytime H2SO4 formation, but has an inhibiting effect during the night-time due to the different dominant reaction pathways.


Subject(s)
Air Pollutants , Alkenes , Oxidation-Reduction , Ozone , Sulfuric Acids , Ozone/chemistry , Alkenes/chemistry , Sulfuric Acids/chemistry , Air Pollutants/chemistry , Atmosphere/chemistry , Models, Chemical , Sulfur Dioxide/chemistry , Environmental Monitoring
15.
Environ Geochem Health ; 46(11): 461, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352598

ABSTRACT

Suspended atmospheric microplastics (SAMPs) display varying occurrence characteristics on different underlying surfaces in urban areas. This study investigated the occurrence characteristics, source apportionment, and transportation patterns of SAMPs in two typical underlying surfaces: the downtown area (Site T) and the industrial area (Site C) of a coastal city in China. In the spring of 2023, a total of 32 types comprising 1325 SAMPs were detected. The average MP abundances were found to be 3.74 ± 2.86 n/m3 in Site T and 2.67 ± 1.68 n/m3 in Site C. In Site T, SAMPs attributed to living source constituted 78.05%, while industry was the main source in Site C with a proportion reaching 42.89%, consistent with the functional zoning of the underlying surface. Furthermore, HYSPLIT analysis revealed that there was no significant difference between these two sites in long-distance horizontal transport affected by external airflow regardless of altitude; conversely, PCA indicated a notable correlation between vertical velocity and both abundance and species diversity. According to the hourly average wind speeds, the maximum transmission distance was computed as 350 km for updraft and the minimum transmission distances was as low as 32 m for downdraft. Subsequently, the coincidence between the source proportion of SAMPs on random day and meteorological parameters confirmed the synergistic impact on SAMPs transport influenced by functional zoning, geographic environment, and vertical velocity.


Subject(s)
Air Pollutants , Environmental Monitoring , Microplastics , China , Microplastics/analysis , Air Pollutants/analysis , Atmosphere/chemistry , Wind , Cities
17.
Ecol Lett ; 27(10): e14523, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39380337

ABSTRACT

Changing CO2 concentrations will continue to affect plant growth with consequences for ecosystem functioning. The adaptive capacity of C3 photosynthesis to changing CO2 concentrations is, however, insufficiently investigated so far. Here, we focused on the phylogenetic dynamics of maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax)-two key determinants of photosynthetic capacity in C3 plants-and their relation to deep-time dynamics in species diversification, speciation and atmospheric CO2 concentrations during the last 80 million years. We observed positive relationships between photosynthetic capacity and species diversification as well as speciation rates. We furthermore observed a shift in the relationships between photosynthetic capacity, evolutionary dynamics and prehistoric CO2 fluctuations about 30 million years ago. From this, we deduce strong links between photosynthetic capacity and evolutionary dynamics in C3 plants. We furthermore conclude that low CO2 environments in prehistory might have changed adaptive processes within the C3 photosynthetic pathway.


Subject(s)
Biological Evolution , Carbon Dioxide , Photosynthesis , Phylogeny , Plants , Carbon Dioxide/metabolism , Plants/genetics , Atmosphere , Biodiversity
18.
Glob Chang Biol ; 30(10): e17519, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39381885

ABSTRACT

In drylands, where water scarcity limits vascular plant growth, much of the primary production occurs at the soil surface. This is where complex macro- and microbial communities, in an intricate bond with soil particles, form biological soil crusts (biocrusts). Despite their critical role in regulating C and N cycling in dryland ecosystems, there is limited understanding of the fate of biologically fixed C and N from biocrusts into the mineral soil, or how climate change will affect C and N fluxes between the atmosphere, biocrusts, and subsurface soils. To address these gaps, we subjected biocrust-soil systems to experimental warming and drought under controlled laboratory conditions, monitored CO2 fluxes, and applied dual isotopic labeling pulses (13CO2 and 15N2). This allowed detailed quantification of elemental pathways into specific organic matter (OM) pools and microbial biomass via density fractionation and phospholipid fatty acid analyses. While biocrusts modulated CO2 fluxes regardless of the temperature regime, drought severely limited their photosynthetic C uptake to the extent that the systems no longer sustained net C uptake. Furthermore, the effect of biocrusts extended into the underlying 1 cm of mineral soil, where C and N accumulated as mineral-associated OM (MAOM<63µm). This was strongly associated with increased relative dominance of fungi, suggesting that fungal hyphae facilitate the downward C and N translocation and subsequent MAOM formation. Most strikingly, however, these pathways were disrupted in systems exposed to warming, where no effects of biocrusts on the elemental composition of the underlying soil nor on MAOM were determined. This was further associated with reduced net biological N fixation under combined warming and drought, highlighting how changing climatic conditions diminish some of the most fundamental ecosystem functions of biocrusts, with detrimental repercussions for C and N cycling and the persistence of soil organic matter pools in dryland ecosystems.


En regiones áridas, donde la sequía limita el crecimiento de plantas vasculares, gran parte de la producción primaria ocurre en la superficie del suelo. En este lugar, complejas comunidades microbianas, estrechamente ligadas a partículas del suelo, forman costras biológicas (conocidas también como biocostras). Aunque estas biocostras son cruciales para regular los ciclos del carbono (C) y nitrógeno (N) en ecosistemas áridos, aún existe una comprensión limitada del destino hacia el suelo mineral del C y N fijados biológicamente desde las biocostras, o sobre cómo el cambio climático afectará los flujos de C y N entre la atmósfera, las biocostras y los suelos subsuperficiales. Para abordar estas brechas, sometimos sistemas de biocostra y suelo a aumentos de temperatura y sequía experimentales en condiciones controladas de laboratorio, donde monitoreamos los flujos de CO2 y aplicamos pulsos de etiquetado isotópico dual (13CO2 y 15N2). Esto permitió una cuantificación detallada de las vías de incorporación de los elementos en grupos específicos de materia orgánica (MO) y biomasa microbiana mediante fraccionamiento por densidad y análisis de ácidos grasos de fosfolípidos (PLFA). Si bien las biocostras modularon los flujos de CO2 independientemente del régimen de la temperatura, la sequía restringió severamente la captación fotosintética de C hasta el punto de que los sistemas ya no mantuvieron la absorción neta de C. Además, el efecto de las biocostras se extendió hasta 1 cm del suelo bajo esta, donde el C y el N se acumularon como MO asociada a minerales (MAOM<63µm). Esto se relaciona estrechamente con un aumento en la dominancia relativa de hongos, lo que sugiere que las hifas de los hongos facilitan la translocación descendente de C y N y subsecuentemente la formación de MAOM. Sin embargo, lo más sorprendente es que estas vías se vieron interrumpidas en sistemas expuestos al aumento de temperatura, donde no se determinaron efectos de las biocostras en la composición elemental del suelo subyacente ni en la MAOM. Esto se asoció con una reducción de la fijación biológica neta de N bajo el efecto combinado del aumento de la temperatura y la sequía, destacando cómo las condiciones climáticas cambiantes disminuyen algunas de las funciones ecosistémicas más fundamentales de las biocostras, con repercusiones perjudiciales para el ciclo de C y N y la persistencia de los depósitos de MOS en los ecosistemas áridos.


Subject(s)
Atmosphere , Carbon Cycle , Climate Change , Droughts , Nitrogen Cycle , Soil Microbiology , Soil , Soil/chemistry , Atmosphere/chemistry , Carbon/metabolism , Carbon/analysis , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Nitrogen/metabolism , Nitrogen/analysis , Ecosystem
19.
PLoS One ; 19(10): e0308959, 2024.
Article in English | MEDLINE | ID: mdl-39388395

ABSTRACT

During the period from 2019 to 2021, a series of experiments were carried out to study the uptake of tritium by crops in an area heavily contaminated with atmospheric tritium oxide (HTO), at the former Semipalatinsk test site in Kazakhstan. A quantitative assessment is given of the tritium uptake by typical crops (lettuce, tomatoes, peppers and beans) cultivated all over Kazakhstan in the case of a short-term tritium oxide vapor exposure. The plant samples were collected during and after exposure and analyzed for the tritium concentration in two chemical forms: tissue-free water tritium (TFWT) and organically bound tritium (OBT). During the entire series of experiments, the tritium concentration in free water from leaves and ambient air was of the same order of magnitude. The tissue water tritium concentrations of stems and edible parts was 1 to 2 orders of magnitude lower than in the surrounding air. The average value of the TFWT/HTOatm ratio in the leaves and the edible part was (0.73±0.2) and (0.04±0.002), respectively. The organically-bound tritium concentration is 1-2 orders of magnitude lower than the tissue water tritium and ambient air concentrations. Under aerial tritium oxide uptake, the distribution of tritium in non-leafy crops was as follows: leaf-stem-fruit (in decreasing order). After exposure, a non-significant amount of tritium is firmly retained in plants for a long time. The tissue water tritium concentrations correlate closely with atmospheric tritium oxid (r = 0.76), correlate weakly with temperature (r = 0.43) and relative humidity (r = -0.43), and correlate moderately with solar radiation intensity (r = 0.56). There was no reliable correlation between the concentration of tritium in organic matter and in ambient air. The concentration of tritium in the free water of leaves is closely correlated with the concentration in the free water of the stems (r = 0.95) and fruits (r = 0.78). The organically-bound tritium concentration in leaves is closely correlated with the organically-bound tritium concentration in stems (r = 0.99) and fruits (r = 98). The results of the study should be considered when evaluating the impact of tritium oxide emissions on the population living near nuclear power.


Subject(s)
Crops, Agricultural , Tritium , Tritium/analysis , Kazakhstan , Crops, Agricultural/metabolism , Crops, Agricultural/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry , Atmosphere/chemistry , Oxides/analysis , Oxides/chemistry , Solanum lycopersicum/metabolism , Solanum lycopersicum/chemistry , Capsicum/metabolism , Capsicum/chemistry
20.
Environ Monit Assess ; 196(10): 891, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230583

ABSTRACT

In this study, spatiotemporal analysis of forest fires in Turkiye was undertaken, with a specific focus on the large-scale atmospheric systems responsible for causing these fires. For this purpose, long-term variations in forest fires were classified based on the occurrence types (i.e. natural/lightning, negligence/inattention, arson, accident, unknown). The role of large-scale atmospheric circulations causing natural originated forest fires was investigated using NCEP/NCAR Reanalysis sea level pressure, and surface wind products for the selected episodes. According to the main results, Mediterranean (MeR), Aegean (AR), and Marmara (MR) regions of Turkiye are highly susceptible to forest fires. Statistically significant number of forest fires in the MeR and MR regions are associated with global warming trend of the Eastern Mediterranean Basin. In monthly distribution, forest fires frequently occur in the MeR part of Turkiye during September, August, and June months, respectively, and heat waves are responsible for forest fires in 2021. As a consequence of the extending summer Asiatic monsoon to the inner parts of Turkiye and the location of Azores surface high over Balkan Peninsula result in atmospheric blocking and associated calm weather conditions in the MeR (e.g. Mugla and Antalya provinces). When this blocking continues for a long time, southerly winds on the back slopes of the Taurus Mountains create a foehn effect, calm weather conditions and lack of moisture in the soil of Antalya and Mugla settlements trigger the formation of forest fires.


Subject(s)
Environmental Monitoring , Forests , Spatio-Temporal Analysis , Wildfires , Turkey , Atmosphere/chemistry , Fires , Weather
SELECTION OF CITATIONS
SEARCH DETAIL