Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.392
Filter
1.
Molecules ; 29(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39275099

ABSTRACT

Peptides are receiving significant attention in pharmaceutical sciences due to their applications as anti-inflammatory drugs; however, many aspects of their interactions and mechanisms at the molecular level are not well-known. This work explores the molecular structure of two peptides-(i) cysteine (Cys)-asparagine (Asn)-serine (Ser) (CNS) as a molecule in the gas phase and solvated in water in zwitterion form, and (ii) the crystal structure of the dipeptide serine-asparagine (SN), a reliable peptide indication whose experimental cell parameters are well known. A search was performed by means of atomistic calculations based on density functional theory (DFT). These calculations matched the experimental crystal structure of SN, validating the CNS results and useful for assignments of our experimental spectroscopic IR bands. Our calculations also explore the intercalation of CNS into the interlayer space of montmorillonite (MNT). Our quantum mechanical calculations show that the conformations of these peptides change significantly during intercalation into the confined interlayer space of MNT. This intercalation is energetically favorable, indicating that this process can be a useful preparation for therapeutic anti-inflammatory applications and showing high stability and controlled release processes.


Subject(s)
Anti-Inflammatory Agents , Bentonite , Cysteine , Density Functional Theory , Serine , Bentonite/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cysteine/chemistry , Serine/chemistry , Asparagine/chemistry , Models, Molecular , Peptides/chemistry , Intercalating Agents/chemistry
2.
Sci Rep ; 14(1): 20551, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232064

ABSTRACT

Silicate has been proven to be highly-effective at immobilizing soil heavy metals, but the effects of silicate stabilizers on rice grain cadmium (Cd) reduction and rice quality under field conditions are not clear. In this study, a field experiment was conducted over three consecutive years was conducted to examine the Cd reduction in rice grains and to reveal the potential effects of silicate stabilizers on rice grain nutrients, by setting different amounts of bentonite (B), silica‒calcium fertilizer (SC) and zeolite powder (ZP). The results revealed that the application of the B, SC and ZP significantly decreased the soil CaCl2‒Cd concentration (> 39%) and significantly reduced the grain Cd concentration in both early rice (> 70%) and late rice (> 18%) under field conditions; the silicate stabilizers reduced the soil available iron (Fe) but did not limit rice grain Fe nutrition. Additionally, the three silicates promoted rice yield and improved the rice grain Ca and Mg contents; and the application of B increased the amylose concentration of the late rice grains. In conclusion, high amounts of silicate stabilizers did not adversely influence the soil conventional nutrient indices, rice minerals or rice taste, but changes in rice selenium content need attention. Overall, in comparison with lime, silicate stabilizers can improve not only the safety of rice but also the nutritional and taste qualities of rice and are more eco-friendly for long-term use in soil.


Subject(s)
Cadmium , Fertilizers , Oryza , Silicates , Soil , Oryza/growth & development , Oryza/drug effects , Cadmium/analysis , Soil/chemistry , Fertilizers/analysis , Soil Pollutants/analysis , Bentonite , Edible Grain , Zeolites/pharmacology
3.
Proc Natl Acad Sci U S A ; 121(37): e2320482121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39226349

ABSTRACT

Oral delivery of proteins faces challenges due to the harsh conditions of the gastrointestinal (GI) tract, including gastric acid and intestinal enzyme degradation. Permeation enhancers are limited in their ability to deliver proteins with high molecular weight and can potentially cause toxicity by opening tight junctions. To overcome these challenges, we propose the use of montmorillonite (MMT) as an adjuvant that possesses both inflammation-oriented abilities and the ability to regulate gut microbiota. This adjuvant can be used as a universal protein oral delivery technology by fusing with advantageous binding amino acid sequences. We demonstrated that anti-TNF-α nanobody (VII) can be intercalated into the MMT interlayer space. The carboxylate groups (-COOH) of aspartic acid (D) and glutamic acid (E) interact with the MMT surface through electrostatic interactions with sodium ions (Na+). The amino groups (NH2) of asparagine (N) and glutamine (Q) are primarily attracted to the MMT layers through hydrogen bonding with oxygen atoms on the surface. This binding mechanism protects VII from degradation and ensures its release in the intestinal tract, as well as retaining biological activity, leading to significantly enhanced therapeutic effects on colitis. Furthermore, VII@MMT increases the abundance of short-chain fatty acids (SCFAs)-producing strains, including Clostridia, Prevotellaceae, Alloprevotella, Oscillospiraceae, Clostridia_vadinBB60_group, and Ruminococcaceae, therefore enhance the production of SCFAs and butyrate, inducing regulatory T cells (Tregs) production to modulate local and systemic immune homeostasis. Overall, the MMT adjuvant provides a promising universal strategy for protein oral delivery by rational designed protein.


Subject(s)
Bentonite , Gastrointestinal Microbiome , Tumor Necrosis Factor-alpha , Bentonite/chemistry , Animals , Administration, Oral , Tumor Necrosis Factor-alpha/metabolism , Mice , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Single-Domain Antibodies/administration & dosage , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Humans , Inflammation/drug therapy , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/pharmacology
4.
Environ Geochem Health ; 46(10): 383, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167286

ABSTRACT

Traditional cement solidifying or stabilizing heavy metal-contaminated sites often face issues like alkalinity loss, cracking, and poor long-term performance. Therefore, bentonite-supported nano-zero-valent iron (B-nZVI) was introduced to optimize the remediation effect of cement in this paper. The effects of B-nZVI, ordinary Portland cement (OPC), and B-nZVI + OPC on the chemical stability of heavy metals and the physical strength of lead-contaminated soil were compared using semi-dynamic leaching methods, BCR tests, unconfined strength analysis, and micro-assisted analysis. Results demonstrated that the addition of B-nZVI effectively enhanced the remediation efficacy of OPC on lead-contaminated soil. The combination of B-nZVI and OPC exhibited a synergistic repair effect, offering superior physical strength and chemical stability for lead remediation. B-nZVI facilitated the adsorption and enrichment of Pb2+, thereby reducing oxidizable lead and enhancing short-term stabilization. Meanwhile, OPC precipitation and silicate gelling stabilized exchangeable lead into the residual form, necessitating repeated hydration gelling. Additionally, B-nZVI's sealing effect via water absorption delayed the leaching of exchangeable lead, thereby reducing lead migration. Even with only 1% B-nZVI added to the 12% OPC base, the leaching amount of Pb2+ decreased significantly from 67.6 to 6.59 mg/kg after 7 d of curing. The unconfined strength of contaminated soil treated with the composite solidifying agent for 7 d was 12.87% higher than that of OPC alone, and for 28 d, it was 36.48% higher. This optimization scheme presents a promising approach for effective and sustainable remediation of heavy metal-contaminated sites.


Subject(s)
Construction Materials , Environmental Restoration and Remediation , Iron , Lead , Soil Pollutants , Soil Pollutants/chemistry , Lead/chemistry , Environmental Restoration and Remediation/methods , Iron/chemistry , Bentonite/chemistry , Metals, Heavy/chemistry , Adsorption
5.
Skin Res Technol ; 30(8): e70010, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39167012

ABSTRACT

BACKGROUND: This study aims to elucidate the therapeutic effects and underlying mechanisms of montmorillonite powder on wound healing in mice with Stage II pressure ulcers, thereby providing a robust foundation for its clinical application in the treatment of such ulcers. MATERIALS AND METHODS: Sixty 8-week-old specific pathogen-free male BALB/c mice were randomly allocated into three groups: a model group (where Stage II pressure ulcers were induced using the magnet pressure method and the wounds were dressed with gauze soaked in 0.9% sodium chloride solution), a treatment group (where, following the induction of Stage II pressure ulcer models, wounds were uniformly treated with montmorillonite powder), and a control group (where magnets were placed in the same location without exerting magnetic pressure). Skin histopathology was assessed via light microscopy. Wound healing progress over various intervals was quantified utilizing Image-Pro Plus software. Histopathological alterations in the wounds were examined through hematoxylin and eosin (H&E) staining. The expression of growth factor proteins within the wound tissue was analyzed using the streptavidin-peroxidase method. Furthermore, the levels of vascular endothelial growth factor (VEGF), collagen types I and III (COL-I, COL-III) proteins were quantified via Western blotting, serum concentrations of inflammatory mediators in mice were determined by enzyme-linked immunosorbent assay, and the levels of oxidative stress markers in wound tissues were measured using UV-visible spectrophotometry. RESULTS: The treatment group exhibited significantly reduced serum levels of interleukin-1ß, interleukin-6, and tumor necrosis factor-alpha, and elevated levels of interleukin-4 compared to the model group (p < 0.05). Additionally, the expression of transforming growth factor-beta1, basic fibroblast growth factor, epidermal growth factor, VEGF, COL-I, and COL-III proteins in wound tissues was significantly higher in the treatment group than in the model group (p < 0.05). Levels of superoxide dismutase and glutathione peroxidase in wound tissues were higher, and levels of malondialdehyde were lower in the treatment group compared to the model group (p < 0.05). CONCLUSION: Montmorillonite powder facilitates wound healing and augments the healing rate of Stage II pressure ulcers in model mice. Its mechanism of action is likely associated with mitigating wound inflammation, reducing oxidative stress damage, promoting angiogenesis, and enhancing the synthesis of growth factors and collagen.


Subject(s)
Bentonite , Disease Models, Animal , Mice, Inbred BALB C , Powders , Pressure Ulcer , Wound Healing , Animals , Bentonite/pharmacology , Male , Pressure Ulcer/drug therapy , Pressure Ulcer/pathology , Mice , Wound Healing/drug effects , Skin/pathology , Skin/drug effects , Skin/injuries , Skin/metabolism , Oxidative Stress/drug effects , Cytokines/metabolism , Vascular Endothelial Growth Factor A/metabolism
6.
Int J Biol Macromol ; 277(Pt 2): 134118, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098460

ABSTRACT

Coated fertilizers have been widely used to improve fertility in barren land. However, improving soil structure and water-retention capacity is also essential for arid and semi-arid areas with sandy soils to promote crop growth. Most currently available coated fertilizers rarely meet these requirements, limiting their application scope. Therefore, this study "tailored" pectin-montmorillonite (PM) multifunctional coatings for arid areas, featuring intercalation reactions and nanoscale entanglement between pectin and montmorillonite via hydrogen bonding and electrostatic and van der Waals forces. Notably, PM coatings have demonstrated an effective "relay" model of action. First, the PM-50 coating could act as a "shield" to protect urea pills, increasing the mechanical strength (82.12 %). Second, this coating prolonged the release longevity of urea (<0.5 h to 15 days). Further, the remaining coating performed a water-retention function. Subsequently, the degraded coating improved the soil properties. Thus, this coating facilitated the growth of wheat seedlings in a simulated arid environment. Moreover, the cytotoxicity test, life cycle assessment, and soil biodegradation experiment showed that the PM coating exhibited minimal environmental impact. Overall, the "relay" model of PM coating overcomes the application limitations of traditional coated fertilizers and provides a sustainable strategy for developing coating materials in soil degradation areas.


Subject(s)
Bentonite , Delayed-Action Preparations , Fertilizers , Pectins , Soil , Water , Pectins/chemistry , Water/chemistry , Soil/chemistry , Bentonite/chemistry , Delayed-Action Preparations/chemistry , Biodegradation, Environmental , Triticum/chemistry , Urea/chemistry
7.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125013

ABSTRACT

Carvacrol and thymol are broad-spectrum natural antimicrobial agents. To reduce their volatility and improve their antimicrobial performance, synergistic systems were prepared loading the active molecules in zinc-modified clays. Montmorillonite (MMT) and zeolite (ZEO) were modified with zinc ions (ZnMMT and ZnZEO), with well-known antimicrobial properties, and then with carvacrol or thymol, reaching the 26 ± 3% and 33 ± 2% w/w of loading, respectively. The resulting hybrid materials were characterized by FT-IR, XPS, XRD, TGA, and GC-MS to evaluate carvacrol/thymol release in simulating food matrices. Antimicrobial assays carried out using spoiler and pathogenic bacterial strains showed that the antimicrobial activity of both thymol and carvacrol was largely preserved once they were loaded into Zn-modified clays. However, MMT hybrids showed an antibacterial activity significantly higher than ZEO hybrids at 50 mg/mL of thymol and carvacrol. For this reason, deeper antimicrobial evaluations were carried out only for ZnMMT composites. ZnMMT loaded with thymol or carvacrol produced inhibition zones against most of the target strains, also at 3.12 mg/mL, while the positive controls represented by the single molecule thymol or carvacrol were not active. The hybrid materials can be useful for applications in which the antimicrobial activity of natural molecules need to be displayed over time as requested for the control of microbial pathogens and spoilage bacteria in different applications, such as active packaging, biomaterials, and medical devices.


Subject(s)
Anti-Infective Agents , Clay , Cymenes , Microbial Sensitivity Tests , Thymol , Zinc , Cymenes/chemistry , Cymenes/pharmacology , Thymol/chemistry , Thymol/pharmacology , Zinc/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Clay/chemistry , Spectroscopy, Fourier Transform Infrared , Bacteria/drug effects , Bentonite/chemistry
8.
J Environ Manage ; 367: 122013, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098069

ABSTRACT

Leachate emanating from landfills contains ammonia which may cause serious health effects on living things. An effectively designed clay barrier should not allow the contaminant to infiltrate the soil and groundwater systems. The utilization of certain industrial by-products in engineered landfill barriers, not only reduces the need for conventional liner materials but also helps in sustainable waste management. This study investigated the hydraulic conductivity, unconfined compressive strength, compaction, and adsorption characteristics of lithomargic clay blended with an optimum percentage of bentonite (10%) and granulated blast furnace slag (15%) permeated with ammonia. The results revealed that increasing the content of granulated blast furnace slag decreased the maximum dry density while increasing the optimum moisture content. In comparison to lithomargic clay, the hydraulic conductivity of the amended soil liner permeated with ammonia decreased from a value of 3 × 10-8 m/s to 5 × 10-10 m/s. The unconfined compressive strength of the amended soil specimens showed an increasing trend with curing times (i.e., 0, 14, 28, and 56 days). The batch adsorption results revealed that Freundlich and Langmuir's isotherm fits the equilibrium adsorption data and the adsorption of ammonia on clay liner follows non-linear behaviour. Overall, the experimental results implied that lithomargic clay blended with 10% bentonite and 15% granulated blast furnace slag can be used as an impermeable soil reactive barrier in engineered landfills.


Subject(s)
Ammonia , Bentonite , Solid Waste , Waste Disposal Facilities , Bentonite/chemistry , Ammonia/chemistry , Adsorption , Refuse Disposal/methods , Soil/chemistry , Waste Management/methods , Water Pollutants, Chemical/chemistry , Clay/chemistry
9.
Water Sci Technol ; 90(4): 1198-1209, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39215732

ABSTRACT

High concentrations of Na+ and NH4+ in landfill leachate lead to deterioration of bentonite barrier and pose a threat to the environment. This study focused on the pollution interception and permeability characteristics of the bentonite barrier exposed to NaCl and NH4Cl solutions. Based on previous findings, salt solution concentrations were established at 74.80, 37.40, 18.70, and 9.4 mmol/L. The bentonite contents in the mixture were set at 0, 5, 10, and 15%. The results indicate that the samples exhibit better interception of NH4+ compared to Na+. This difference arises from the cation exchange sequence, the size of the hydration radius, and the hydrogen bonding of the two cations. Additionally, the difference in hydration enthalpy between the two cations leads to variations in the swelling of bentonite, resulting in a higher hydraulic conductivity coefficient in NH4Cl solution. This study shows that although bentonite barriers have better interception for NH4+, they exhibit greater hydraulic conductivity in NH4Cl solution, increasing the risk of leachate carrying other contaminants.


Subject(s)
Bentonite , Permeability , Sodium Chloride , Bentonite/chemistry , Sodium Chloride/chemistry , Ammonium Chloride/chemistry , Cations , Water Pollutants, Chemical/chemistry
10.
Environ Sci Pollut Res Int ; 31(40): 52917-52932, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39164559

ABSTRACT

Phosphogypsum (PG) is a solid by-product of the phosphate industry, rich in contaminants and produced in large quantities. Raw materials and stabilized specimens, consisting of bentonite-lime-PG mixtures, were characterized by mineralogical, microstructural, chemical, alpha-particle, and gamma-ray spectrometry analysis before hydration and after hardening. Compressive strength and leaching tests were performed on hardened specimens. The physicochemical parameters and chemical composition of leachates from raw materials and hardened specimens were determined. PG contains high concentrations of natural radionuclides, specially from U series. Uranium-238 activities are double in PG than the worldwide average for soil values. The mobility of PTEs from PG is Cd (2.43%), Zn (2.36%), Ni (2.07%), Cu (1.04%), Pb (0.25%), and As (0.21%). Cadmium is the cation most easily released by PG in water with a concentration 0.0316 mg kg-1. When PG is added to bentonite-lime mixture, cadmium is no longer released. The radionuclide 238,234U and 210Po predominates in the leachates of PG. However, the activity of 210Po becomes negligible in the leachates of bentonite-lime-PG mixtures. The addition of PG to bentonite-lime mixtures facilitates the trapping of trace elements (PTEs) and radionuclides, providing potential applications for PG as road embankments and fill coatings.


Subject(s)
Bentonite , Calcium Sulfate , Soil , Trace Elements , Bentonite/chemistry , Calcium Sulfate/chemistry , Trace Elements/analysis , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Radioisotopes/analysis , Phosphorus/analysis , Phosphorus/chemistry , Uranium/analysis
11.
Water Res ; 264: 122220, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39116613

ABSTRACT

The environmental transport and fate of nanoscale zero-valent iron particles (nZVI) in soil and groundwater can be altered by their hetero-aggregation with clay mineral particles (CMP). This study examines the interactions between bare or carboxymethyl cellulose (CMC)-coated nZVI with typical CMP, specifically kaolinite and montmorillonite. Methods include co-settling experiments, aggregation kinetic studies, electron microscopy, Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (EDLVO) energy analysis, and density functional theory calculations, focusing on the pH dependency of these interactions. The EDLVO theory effectively described the interactions between nZVI and CMP in aquatic environments. Under acidic conditions (pH 3.5), the interfacial interaction between bare nZVI and kaolinite is regulated by van der Waals forces, while complexation, van der Waals forces, and electrostatic attraction govern the interaction of bare nZVI with montmorillonite, primarily depositing on the SiO face. In contrast, the positively charged AlO face and edge of CMP are the main deposition sites for CMC-coated nZVI through hydrogen bonding, van der Waals forces, and electrostatic attraction. At neutral (pH 6.5) and alkaline (pH 9.5) conditions, both bare and CMC-coated nZVI predominantly attach to the AlO face and edge, facilitated by complexation or hydrogen bonding, alongside van der Waals forces. The attachment of CMC-coated nZVI to CMP surfaces shows reversible aggregation or deposition due to the steric repulsion from the CMC coating. These findings hold significant implications for the environmental applications and risk of nZVI.


Subject(s)
Clay , Iron , Iron/chemistry , Clay/chemistry , Minerals/chemistry , Bentonite/chemistry , Hydrogen-Ion Concentration , Kaolin/chemistry , Kinetics
12.
J Environ Manage ; 368: 122170, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39137639

ABSTRACT

The removal of tetracycline antibiotics using adsorbents is becoming an environmentally friendly and cost-effective method. This study systematically analyzed the stability, structure, morphology, and chemical properties of various adsorbents. Batch adsorption experiments (pH, time, temperature, tetracycline concentration, and adsorbent dosage) were conducted to compare the adsorption capacity of the six adsorbents (biochar, activated carbon, montmorillonite, zeolite, chitosan, and polymerized aluminum chloride) for tetracycline removal. The results indicated that montmorillonite had the highest adsorption efficiency, followed by biochar, with chitosan showing the lowest efficiency. At an adsorbent dose of 25 g/L and an initial tetracycline concentration of 120 mg/L, the removal rates of tetracycline by montmorillonite, biochar, and chitosan were 97.6%, 69.3%, and 12.2%, respectively. Furthermore, the removal rate of tetracycline by biochar, following the response surface methodology optimal mode, increased by 5.5%. The Elovich model was better suited to explain the adsorption process of tetracycline compared to the conventional pseudo-first kinetic model and second-order kinetic model. The isothermal adsorption model suggested that both chemisorption and physisorption occurred in all removal processes, in which chemisorption dominated. Tetracycline was efficiently adsorbed through the combined effects of pore filling, electrostatic attraction, π-π interactions, and complexation reactions of surface functional groups. Additionally, montmorillonite demonstrated superior performance as an adsorbent for tetracycline removal from swine wastewater compared to the other adsorbents studied.


Subject(s)
Bentonite , Charcoal , Chitosan , Tetracycline , Wastewater , Water Pollutants, Chemical , Tetracycline/chemistry , Adsorption , Animals , Wastewater/chemistry , Swine , Bentonite/chemistry , Chitosan/chemistry , Charcoal/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Zeolites/chemistry , Water Purification/methods
13.
Int J Biol Macromol ; 277(Pt 3): 134316, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094859

ABSTRACT

Due to dwindling petroleum resources and the need for environmental protection, the development of bio-based flame retardants has received much attention. In order to explore the feasibility of fully biomass polyelectrolyte complexes (PEC) for polyolefin flame retardant applications, chitosan (CS), sodium alginate (SA), and sodium phytate (SP) were used to prepare CS-based fully biomass PEC intercalated montmorillonite (MMT) hybrid biomaterials (SA-CS@MMT and SP-CS@MMT). The effects of two hybrid biomaterials on the fire safety and mechanical properties of intumescent flame-retardant polypropylene (PP) composites were compared. The SP-CS@MMT showed the best flame retardancy and toughening effect at the same addition amount. After adding 5 wt% SP-CS@MMT, the limiting oxygen index (LOI) value of PP5 reached 30.9 %, and the peak heat release rate (pHRR) decreased from 1348 kW/m2 to 163 kW/m2. In addition, the hydrogen bonding between polyelectrolyte complexes significantly improved the mechanical properties of PP composites. Compared with PP2, the tensile strength of PP5 increased by 59 %. This study provided an efficient and eco-friendly strategy for the large-scale production of renewable biomaterials with good thermal stability and expanded the application of macromolecular biomaterials in the field of fire safety.


Subject(s)
Bentonite , Chitosan , Flame Retardants , Polyelectrolytes , Polypropylenes , Chitosan/chemistry , Bentonite/chemistry , Polypropylenes/chemistry , Polyelectrolytes/chemistry , Tensile Strength , Green Chemistry Technology/methods , Biocompatible Materials/chemistry , Mechanical Phenomena
14.
Environ Res ; 261: 119716, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39096990

ABSTRACT

Bentonite is a non-metallic mineral with montmorillonite as the main component. It is an environmentally friendly mineral material with large reserves, wide distribution, and low price. Bentonite can be easily modified organically using the surfactant saponin to obtain saponin-modified bentonite (Sap-BT). This study investigates the immobilization of crude enzymes obtained from Trametes versicolor by physical adsorption with Sap-BT. Thus, saponin-modified bentonite immobilized crude enzymes (CE-Sap-BT) were developed to remove benzo[a]pyrene. Immobilization improves the stability of free enzymes. CE-Sap-BT can maintain more than 80% of activity at 45 °C and after storage for 15 d. Additionally, CE-Sap-BT exhibited a high removal rate of benzo[a]pyrene in soil, with 65.69% after 7 d in highly contaminated allotment soil and 52.90% after 6 d in actual soil contaminated with a low concentration of benzo[a]pyrene at a very low laccase dosage (0.1 U/3 g soil). The high catalytic and removal performance of CE-Sap-BT in contaminated sites showed more excellent practical application value.


Subject(s)
Bentonite , Benzo(a)pyrene , Enzymes, Immobilized , Saponins , Soil Pollutants , Bentonite/chemistry , Benzo(a)pyrene/chemistry , Soil Pollutants/chemistry , Adsorption , Saponins/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
15.
Waste Manag ; 187: 252-261, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39079253

ABSTRACT

Desiccation-induced cracks in a compacted clay liner significantly deteriorate the hydraulic barrier performance of landfill covers. The present study explores the effects of polypropylene (PP) fiber reinforcement on the hydrological response and crack resistance of compacted steel slag (SS; 90 wt%) - bentonite (10 wt%) mixtures under drying and wetting cycles. Comprehensive tests were conducted to explore the impact of different fiber lengths (6-12 mm) and contents (0-0.4 % wt.%), including hydraulic conductivity tests for measuring the saturated hydraulic conductivity (ks), unconfined-penetration tests for measuring the tensile strength, small-sized plate tests for quantifying crack development, and large-sized bucket tests for studying the hydrological response and crack characteristics. Higher fiber contents and longer fiber lengths increased the ks-value of the specimens. For a 0.3 % fiber content, the tensile strength peaked for the 9-mm fiber. Consistently, the specimen reinforced with the 9-mm fibers exhibited significantly fewer cracks than those reinforced with the 6-mm and 12-mm fibers. It was because the 6-mm fibers had a shorter anchorage length, while the 12-mm fibers tended to agglomerate. The large-sized bucket tests showed that fiber reinforcement limited crack development significantly under wetting and drying cycles, reducing the rainfall infiltration by 40 % and enhancing the soil water retention capacity. Finally, a 0.3 wt% of 9-mm PP was recommended to reinforce the compacted SS-bentonite mixtures.


Subject(s)
Bentonite , Polypropylenes , Steel , Polypropylenes/chemistry , Bentonite/chemistry , Steel/chemistry , Tensile Strength , Hydrology , Desiccation/methods , Refuse Disposal/methods
16.
Int J Biol Macromol ; 277(Pt 2): 134133, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39074704

ABSTRACT

In recent years, numerous attempts have been made to develop a low-cost adsorbent for selectively recovering industrially important products from fermentation broth or complex mixtures. The current study is a novel attempt to selectively adsorb esterase from Trichoderma harzianum using cheap adsorbents like bentonite (BT), activated charcoal (AC), silicon dioxide (SiO2), and titanium dioxide (TiO2). AC had the highest esterase adsorption of 97.58% due to its larger surface area of 594.45 m3/g. SiO2 was found to have the highest selectivity over esterase, with an estimated purification fold of 7.2. Interestingly, the purification fold of 5.5 was found in the BT-extracted fermentation broth. The functional (FT-IR) and morphological analysis (SEM-EDX) were used to characterize the adsorption of esterase. Esterase adsorption on AC, SiO2, and TiO2 was well fitted by Freundlich isotherm, demonstrating multilayer adsorption of esterase. A pseudo-second-order kinetic model was developed for esterase adsorption in various adsorbents. Thermodynamic analysis revealed that adsorption is an endothermic process. AC has the lowest Gibbs free energy of -10.96 kJ/mol, which supports the spontaneous maximum adsorption of both esterase and protein. In the desorption study, the maximum recovery of esterase from TiO2 using sodium chloride was 41.34 %. Unlike other adsorbents, the AC-adsorbed esterase maintained its catalytic activity and stability, implying that it could be used as an immobilization system for commercial applications. According to the kinetic analysis, the overall rate of the reaction was controlled by reaction kinetics rather than external mass transfer resistance, as indicated by the Damkohler number.


Subject(s)
Esterases , Adsorption , Kinetics , Esterases/metabolism , Esterases/chemistry , Esterases/isolation & purification , Charcoal/chemistry , Titanium/chemistry , Thermodynamics , Silicon Dioxide/chemistry , Hypocreales/enzymology , Biocatalysis , Bentonite/chemistry
17.
Environ Sci Pollut Res Int ; 31(32): 45310-45325, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961022

ABSTRACT

Soil-bentonite (S-B) barriers have been widely used for heavy metal pollution containment. This study conducted batch adsorption tests and diffusion-through tests to evaluate how ionic strength and bentonite ratio influence the migration of Cr(VI) in natural clay-bentonite mixtures. The test results indicated that the adsorption of Cr(VI) exhibited an obvious anion adsorption effect, the pH of the soil mixture increased with the addition of bentonite, resulting in a decrease in the positive surface charge. This change led to a decrease in Cr(VI) adsorption capacity, from 775.19 mg/kg for pure clay to 378 mg/kg for mixture samples with excessive bentonite. Furthermore, as the ionic strength increases from 0 to 0.1 M, the Cr(VI) adsorption capacity increases slightly due to the weakening of electrostatic repulsion on the clay particle surface, but the effective diffusion coefficient (De) increases by 21.97%. The compression of the diffusion double layer (DDL) under high ionic strength conditions enlarges the diffusion path and enhances the migration of Cr(VI) through the pore flow paths. Moreover, hydrated bentonite effectively fills the interaggregate pores of natural clay, thus creating narrower and more tortuous flow paths. However, excessive bentonite increases the pH value and pore volume, resulting in changes to the soil microstructure and disrupting the continuous skeleton of natural clay, which is unfavorable for Cr(VI) containment. Based on the study of the Cr(VI) contaminated site, a bentonite ratio of 2:10 is recommended for optimal natural performance of the natural clay-bentonite barrier.


Subject(s)
Bentonite , Chromium , Clay , Soil Pollutants , Soil , Bentonite/chemistry , Osmolar Concentration , Adsorption , Chromium/chemistry , Soil/chemistry , Clay/chemistry , Soil Pollutants/chemistry , Hydrogen-Ion Concentration
18.
J Agric Food Chem ; 72(28): 15572-15585, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958707

ABSTRACT

Pimelea poisoning of cattle causes distinct symptoms and frequently death, attributable to the toxin simplexin. Pimelea poisoning was induced via addition of ground Pimelea trichostachya plant to the daily feed in a three-month trial with Droughtmaster steers. The trial tested four potential mitigation treatments, namely, biochar, activated biochar, bentonite, and a bacterial inoculum, and incorporated negative and positive control groups. All treatments tested were unable to prevent the development of simplexin poisoning effects. However, steers consuming a bentonite adsorbent together with Pimelea showed lesser rates-of-decline for body weight (P < 0.05) and four hematological parameters (P < 0.02), compared to the positive control group fed Pimelea only. Microbiome analysis revealed that despite displaying poisoning symptoms, the rumen microbial populations of animals receiving Pimelea were very resilient, with dominant bacterial populations maintained over time. Unexpectedly, clinical edema developed in some animals up to 2 weeks after Pimelea dosing was ceased.


Subject(s)
Animal Feed , Cattle Diseases , Animals , Cattle , Animal Feed/analysis , Cattle Diseases/prevention & control , Cattle Diseases/microbiology , Male , Charcoal/administration & dosage , Australia , Plant Poisoning/veterinary , Plant Poisoning/prevention & control , Bacteria/isolation & purification , Bacteria/classification , Bacteria/drug effects , Bentonite/chemistry , Rumen/microbiology , Rumen/metabolism , Gastrointestinal Microbiome/drug effects
19.
World J Microbiol Biotechnol ; 40(9): 264, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990244

ABSTRACT

Bentonite is an integral part of the engineered barrier system (EBS) in deep geological repositories (DGR) for nuclear waste, but its indigenous microorganisms may jeopardize long-term EBS integrity. To predict microbial activity in DGRs, it is essential to understand microbial reactions to the early hot phase of DGR evolution. Two bentonites (BCV and MX-80) with varied bentonite/water ratios and saturation levels (compacted to 1600 kg.m- 3 dry density/powder/suspension), were subjected to heat (90-150 °C) and irradiation (0.4 Gy.h- 1) in the long-term experiments (up to 18 months). Molecular-genetic, microscopic, and cultivation-based techniques assessed microbial survivability. Exposure to 90 °C and 150 °C notably diminished microbial viability, irrespective of bentonite form, with negligible impacts from irradiation or sample type compared to temperature. Bentonite powder samples exhibited microbial recovery after 90 °C heating for up to 6 months but not 12 months in most cases; exposure to 150 °C had an even stronger effect. Further long-term experiments at additional temperatures combined with the mathematical prediction of temperature evolution in DGR are recommended to validate the possible evolution and spatial distribution of microbially depleted zones in bentonite buffer around the waste canisters and refine predictions of microbial effects over time in the DGR.


Subject(s)
Bacteria , Bentonite , Gamma Rays , Hot Temperature , Microbial Viability , Bentonite/chemistry , Microbial Viability/radiation effects , Bacteria/classification , Bacteria/radiation effects , Bacteria/genetics , Bacteria/growth & development , Radioactive Waste/analysis , Soil Microbiology
20.
J Hazard Mater ; 477: 135267, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39047552

ABSTRACT

Developing multifunctional materials for water treatment remains a significant challenge. Bacterial cellulose (BC) holds immense potential as an adsorbent with high pollutant-binding capacity, hydrophilicity, and biosafety. In this study, N-acetylglucosamine was used as a carbon source to ferment BC, incorporating amide bonds in situ. Bentonite, renowned for its adsorption properties, was added to the culture medium, resulting in BC-bentonite composite membranes via a one-step fermentation process. Polyethyleneimine (PEI) was crosslinked with amide bonds on the membrane via glutaraldehyde through Schiff base reactions to enhance the performance of the composite membrane. The obtained membrane exhibited increased hydrophilicity, enhanced active adsorption sites, and enlarged specific surface area. It not only physically adsorbed contaminants through its unique structure but also effectively captured dye molecules (Congo red, Methylene blue, Malachite green) via electrostatic interactions. Additionally, it formed stable complexes with metal ions (Cd²âº, Pb²âº, Cu²âº) through coordination and effectively adsorbed their mixtures. Moreover, the composite membrane demonstrated the broad-spectrum antibacterial activity, effectively inhibiting the growth of tested bacteria. This study introduces an innovative method for fabricating composite membranes as adsorbents for complex water pollutants, showing significant potential for long-term wastewater treatment of organic dyes, heavy metal ions, and pathogens.


Subject(s)
Anti-Bacterial Agents , Bentonite , Cellulose , Coloring Agents , Membranes, Artificial , Polyethyleneimine , Water Pollutants, Chemical , Water Purification , Adsorption , Cellulose/chemistry , Bentonite/chemistry , Coloring Agents/chemistry , Polyethyleneimine/chemistry , Water Purification/methods , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Water Pollutants, Chemical/chemistry , Metals, Heavy/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL