Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 605
Filter
1.
Article in English | MEDLINE | ID: mdl-39326942

ABSTRACT

The repeated dose liver micronucleus (RDLMN) assay has been sufficiently validated in terms of the numbers and types of chemicals studied. However, it remains unclear whether aging affects assay results. The OECD Test Guideline 407 (Repeated Dose 28-Day Oral Toxicity Study in Rodents) indicates that dosing should begin as soon as feasible after weaning and in any event before 9 weeks of age. Therefore, it is particularly important to determine whether there are age-related differences between 6 and 8 weeks of age at the start of dosing when considering the possibility of integrating this assay into a 4-week repeated dose general toxicity study. We evaluated the impact of the rats' age on the RDLMN assay with three chemicals: N-nitrosodipropylamine, quinoline, and carbendazim. There were no significant age-related differences for the first two chemicals, whereas a markedly higher frequency of micronucleated hepatocytes (MNHEPs) was observed in younger rats for carbendazim. However, regardless of the age of animals, micronucleus induction was detected in all three chemicals. Combined with the previous reports on clofibrate and diethylnitrosamine, we concluded that animals of any age from 6 to 8 weeks could be used in the RDLMN assay.


Subject(s)
Aging , Benzimidazoles , Carbamates , Liver , Micronucleus Tests , Quinolines , Animals , Micronucleus Tests/methods , Carbamates/toxicity , Rats , Quinolines/toxicity , Liver/drug effects , Liver/pathology , Male , Benzimidazoles/toxicity , Aging/drug effects , Nitrosamines/toxicity , Hepatocytes/drug effects , Hepatocytes/pathology , Rats, Sprague-Dawley , Dose-Response Relationship, Drug
2.
J Environ Sci Health B ; 59(9): 571-583, 2024.
Article in English | MEDLINE | ID: mdl-39158493

ABSTRACT

Livestock wastewater (LWW) has a complex characteristic of high organic matter content, metals, nutrients, and pharmaceutical compounds. Advanced oxidation processes (AOP) are a potential option for treating this wastewater. This study evaluated real LWW and the performance of UV/H2O2 and UV/peroxymonosulfate (UV/PMS) for its treatment. The experiments were conducted in a UV photoreactor (16 mW/m2, λ = 254 nm). The oxidant agents (Ox) tested were H2O2 and PMS, each at low, medium, and high TOC/Ox molar ratios. A pretreatment based on chemical precipitation was implemented. Annually, the LWW showed total organic carbon (TOC) values of 859 ± 13.37 mg/L, 168.85 ± 1.62 mg/L of total Kjeldahl nitrogen (TKN), and toxicity of 96% v/v. In the dry season, albendazole (ABZ) (95.3 ± 35.16 mg/L), Cu (4.3 ± 0.23 mg/L), Fe (3.8 ± 0.38 mg/L), and suspended solids (SS) (1015 ± 586.9 mg/L) were identified, so pretreatment was implemented. The UV/PMS process with the lowest molar ratio [TOC/Ox 1:0.75] removed significantly lower TOC concentrations (p < 0.05), but toxicity decreased entirely. The study of mineralization and toxicity provided insight into the changes in LWW during treatment with AOP. Furthermore, it contributed to establishing the technical basis for implementing efficient treatment processes.


Subject(s)
Benzimidazoles , Hydrogen Peroxide , Livestock , Oxidation-Reduction , Ultraviolet Rays , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Wastewater/toxicity , Animals , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Benzimidazoles/chemistry , Benzimidazoles/toxicity , Waste Disposal, Fluid/methods , Hydrogen Peroxide/chemistry , Peroxides/chemistry
3.
Environ Sci Pollut Res Int ; 31(32): 44815-44827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38955968

ABSTRACT

To reveal the toxicological mechanisms of pesticide mixtures on soil organisms, this study concentrated on evaluating enzymatic activity and gene expression changes in the earthworm Eisenia fetida (Savigny 1826). Despite being frequently exposed to multiple pesticides, including the common combination of abamectin (ABA) and carbendazim (CAR), environmental organisms have primarily been studied for the effects of individual pesticides. Acute toxicity results exhibited that the combination of ABA and CAR caused a synergistic impact on E. fetida. The levels of MDA, ROS, T-SOD, and caspase3 demonstrated a significant increase across most individual and combined groups, indicating the induction of oxidative stress and cell death. Additionally, the expression of three genes (hsp70, gst, and crt) exhibited a significant decrease following exposure to individual pesticides and their combinations, pointing toward cellular damage and impaired detoxification function. In contrast, a noteworthy increase in ann expression was observed after exposure to both individual pesticides and their mixtures, suggesting the stimulation of reproductive capacity in E. fetida. The present findings contributed to a more comprehensive understanding of the potential toxicity mechanisms of the ABA and CAR mixture, specifically on oxidative stress, cell death, detoxification dysfunction, and reproductive capacity in earthworms. Collectively, these data offered valuable toxicological insights into the combined effects of pesticides on soil organisms, enhancing our understanding of the underlying risks associated with the coexistence of different pesticides in natural soil environments.


Subject(s)
Benzimidazoles , Carbamates , Ivermectin , Oligochaeta , Soil Pollutants , Soil , Animals , Oligochaeta/drug effects , Ivermectin/analogs & derivatives , Ivermectin/toxicity , Carbamates/toxicity , Benzimidazoles/toxicity , Soil/chemistry , Soil Pollutants/toxicity , Oxidative Stress , Pesticides/toxicity
4.
Environ Sci Pollut Res Int ; 31(31): 44036-44048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38922465

ABSTRACT

Fungicides are pesticides that are frequently used in agriculture because of their action against fungal diseases. However, the widespread application of pesticides around the world raises environmental and public health concerns, since these compounds are toxic and can pose risks to ecosystems and human health. The aim of this study was to evaluate the phytotoxic, cytogenotoxic, and biochemical effects of azoxystrobin and carbendazim on Lactuca sativa L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects of azoxystrobin and carbendazim on Phaseolus vulgaris L. and their physiological effects on Phaseolus vulgaris L. by analyzing the cell cycle and chromosomal and nuclear alterations in L. sativa; the biochemical effects by analyzing the activity of antioxidant enzymes in L. sativa; and the physiological effects by analyzing chlorophyll content and chlorophyll a fluorescence in P. vulgaris. It was observed that both fungicides were phytotoxic and cytotoxic, reducing root growth and the mitotic index, cytogenotoxic, increasing the occurrence of chromosomal alterations, as well as inducing oxidative stress and an increase in chlorophyll fluorescence emission and altered energy absorption in the plants used as a test system. In view of this, studies such as the one presented here indicate that the use of pesticides, even in small quantities, can lead to damage to the metabolism of plant organisms.


Subject(s)
Benzimidazoles , Carbamates , Fungicides, Industrial , Lactuca , Phaseolus , Strobilurins , Phaseolus/drug effects , Strobilurins/toxicity , Benzimidazoles/toxicity , Fungicides, Industrial/toxicity , Carbamates/toxicity , Lactuca/drug effects , Pyrimidines/toxicity , Chlorophyll/metabolism
5.
Toxicol In Vitro ; 97: 105812, 2024 May.
Article in English | MEDLINE | ID: mdl-38522494

ABSTRACT

Carbendazim (CBZ) is a benzimidazole fungicide widely used worldwide in industrial, agricultural, and veterinary practices. Although, CBZ was found in all brain tissues causing serious neurotoxicity, its impact on brain immune cells remain scarcely understood. Our study investigated the in vitro effects of CBZ on activated microglial BV-2 cells. Lipopolysaccharide (LPS)-stimulated BV-2 cells were exposed to increasing concentrations of CBZ and cytokine release was measured by ELISA, and Cytometric Bead Array (CBA) assays. Mitochondrial superoxide anion (O2·-) generation was evaluated by Dihydroethidium (DHE) and nitric oxide (NO) was assessed by Griess reagent. Lipid peroxidation was evaluated by measuring the malonaldehyde (MDA) levels. The transmembrane mitochondrial potential (ΔΨm) was detected by cytometry analysis with dihexyloxacarbocyanine iodide (DiOC6(3)) assay. CBZ concentration-dependently increased IL-1ß, IL-6, TNF-α and MCP-1 by LPS-activated BV-2 cells. CBZ significantly promoted oxidative stress by increasing NO, O2·- generation, and MDA levels. In contrast, CBZ significantly decreased ΔΨm. Pre-treatment of BV-2 cells with N-acetylcysteine (NAC) reversed all the above mentioned immunotoxic parameters, suggesting a potential protective role of NAC against CBZ-induced immunotoxicity via its antioxidant and anti-inflammatory effects on activated BV-2 cells. Therefore, microglial proinflammatory over-activation by CBZ may be a potential mechanism by which CBZ could induce neurotoxicity and neurodegenerative disorders.


Subject(s)
Acetylcysteine , Carbamates , Microglia , Acetylcysteine/pharmacology , Lipopolysaccharides/toxicity , Benzimidazoles/toxicity , Nitric Oxide
6.
Food Chem Toxicol ; 180: 114049, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37734466

ABSTRACT

This study aimed to investigate the toxicological profile of 1-(6-(1H-benzo[d]imidazole-2-yl)-2-methylpyridin-3-yl) ethanone (BMPE), both in vitro and in vivo. The proapoptotic/necrotic and cell cycle arrest potentials of BMPE were assessed in MCF-7 cell line. The in vivo toxicology was assessed in female Balb/c mice by repeated dosing of 5, 25, and 50 mg/kg for 21 consecutive days, then different biochemical, inflammatory, and oxidative markers were assessed in sera/tissue homogenates of treated animals. The new derivative showed a potent selective cytotoxicity against malignant cell lines with IC50 value 0.2 µM/mL, while the cytotoxic effect on normal Wi-38 cells was observed at IC50 value 0.4 µM/mL; i.e. twofold the effective anticancer dose. BMPE exhibited an early DNA fragmentation-derived cell apoptosis observed at the G0/G1 checkpoint. In vivo, BMPE was biochemically/immunologically tolerable at a pharmacological dose range of 5-25 mg/kg, with no significant rates of mortality/morbidity and minimal-to-moderate histopathological alterations recorded. The new derivative represents an attractive therapeutic candidate for breast cancer, considering its noticeable modulatory effect on the oxidative-inflammatory axis that would relate to its potent antitumor effect.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Animals , Mice , Female , Drug Screening Assays, Antitumor , Antineoplastic Agents/therapeutic use , MCF-7 Cells , Cell Cycle Checkpoints , Apoptosis , Benzimidazoles/toxicity , Cell Proliferation , Cell Line, Tumor , Structure-Activity Relationship , Neoplasms/drug therapy
7.
Environ Sci Pollut Res Int ; 30(19): 54257-54279, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36929260

ABSTRACT

Despite its wide production and several applications, veterinary antiparasitics from macrocyclic lactones and benzimidazole classes have not received much scientific attention concerning their environmental risks. Thus, we aimed to provide insights into the state of the environmental research on macrocyclic lactone and benzimidazole parasiticides, emphasizing their toxicity to non-target aquatic organisms. We searched for relevant information on these pharmaceutical classes on PubMed and Web of Science. Our search yielded a total of 45 research articles. Most articles corresponded to toxicity testing (n = 29), followed by environmental fate (n = 14) and other issues (n = 2) of selected parasiticides. Macrocyclic lactones were the most studied chemical group (65% of studies). Studies were conducted mainly with invertebrate taxa (70%), with crustaceans being the most predominant group (n = 27; 51%). Daphnia magna was the most used species (n = 8; 15%). Besides, it also proved to be the most sensitive organism, yielding the lowest toxicity measure (EC50 0.25 µg/L for decreased mobility after 48 h-abamectin exposure) reported. Moreover, most studies were performed in laboratory settings, tracking a limited number of endpoints (acute mortality, immobility, and community disturbance). We posit that macrocyclic lactones and benzimidazoles warrant coordinated action to understand their environmental risks.


Subject(s)
Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Lactones/toxicity , Aquatic Organisms , Daphnia , Antiparasitic Agents , Benzimidazoles/toxicity
8.
Chemosphere ; 314: 137723, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592835

ABSTRACT

Carbendazim is a highly effective benzimidazole fungicide and is widely used throughout the world. The effects of carbendazim contamination on the biology and environment should be paid more attention. We reviewed the published papers to evaluate the biological and environmental risks of carbendazim residues. The carbendazim has been frequently detected in the soil, water, air, and food samples and disrupted the soil and water ecosystem balances and functions. The carbendazim could induce embryonic, reproductive, developmental and hematological toxicities to different model animals. The carbendazim contamination can be remediated by photodegradation and chemical and microbial degradation. The carbendazim could enter into human body through food, drinking water and skin contact. Most of the existing studies were completed in the laboratory, and further studies should be conducted to reveal the effects of successive carbendazim applications in the field.


Subject(s)
Ecosystem , Fungicides, Industrial , Humans , Animals , Fungicides, Industrial/toxicity , Fungicides, Industrial/chemistry , Benzimidazoles/toxicity , Benzimidazoles/chemistry , Soil
9.
Food Chem ; 403: 134329, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36156404

ABSTRACT

Dielectric barrier discharge (DBD) cold plasma, as a new nonthermal technology, has attracted increasing attention in pesticide degradation. In this study, DBD plasma was used to degrade carbendazim (MBC) in aqueous solution. Under the optimal conditions (160 kv, 50 Hz), MBC solution (0.5 µg/mL) was degraded by 89.04% after plasma treatment for 10 min. Four MBC degradation products were identified, one of which was a common oxidative degradation product (5-hydroxycarbendazim, m/z 208.07); the others were identified (m/z 118.06, m/z 132.08 and m/z 104.05) to have formed by the cleavage of the benzimidazole heterocyclic ring. The degradation pathways were obtained by analysis of degradation products at different treatment times. The toxicity of the degradation products was estimated based on the survival rate of yeast, indicating much lower toxicity levels compared to that of MBC. This study provides a theoretical basis for the application of DBD plasma in the degradation of benzimidazole pesticides in foods.


Subject(s)
Plasma Gases , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Carbamates/toxicity , Benzimidazoles/toxicity , Benzimidazoles/analysis
10.
J Hazard Mater ; 445: 130558, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36495641

ABSTRACT

Benzimidazole fungicides are frequently detected in aquatic environments and pose a serious health risk. Here, we investigated the metabolic capacity of the recently discovered complete ammonia-oxidizing (comammox) Nitrospira inopinata and kreftii to transform a representative set of benzimidazole fungicides (i.e., benzimidazole, albendazole, carbendazim, fuberidazole, and thiabendazole). Ammonia-oxidizing bacteria and archaea, as well as the canonical nitrite-oxidizing Nitrospira exhibited no or minor biotransformation activity towards all the five benzimidazole fungicides. In contrast, the investigated comammox bacteria actively transformed all the five benzimidazole fungicides, except for thiabendazole. The identified transformation products indicated hydroxylation, S-oxidation, and glycosylation as the major biotransformation pathways of benzimidazole fungicides. We speculated that these reactions were catalyzed by comammox-specific ammonia monooxygenase, cytochrome P450 monooxygenases, and glycosylases, respectively. Interestingly, the exposure to albendazole enhanced the expression of the antibiotic resistance gene acrB of Nitrospira inopinata, suggesting that some benzimidazole fungicides could act as environmental stressors that trigger cellular defense mechanisms. Altogether, this study demonstrated the distinct substrate specificity of comammox bacteria towards benzimidazole fungicides and implies their significant roles in the biotransformation of these fungicides in nitrifying environments.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/toxicity , Fungicides, Industrial/metabolism , Proteomics , Ammonia/metabolism , Albendazole , Thiabendazole , Nitrification , Bacteria/metabolism , Archaea/metabolism , Biotransformation , Oxidation-Reduction , Benzimidazoles/toxicity , Benzimidazoles/metabolism , Phylogeny
11.
Analyst ; 147(19): 4389-4398, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36125110

ABSTRACT

The change in lysosomal pH is an important physiological indicator in the process of cell autophagy. Herein, a ratiometric fluorescent probe, 4-(2-(1H-benzo[d]imidazol-2-yl)vinyl)-N,N-dimethylaniline (BD), has been synthesized and applied for lysosomal pH detection and cell autophagy imaging. In this probe, the imidazole group and dimethylamino group possess excellent lysosomal targeting ability and the benzimidazole moiety acts as a proton reaction site. BD reveals an obvious ratiometric fluorescence emission with an ideal pKa value of 4.73 and a linear response in the range of 4.06-5.20, which is considered useful for the quantitative detection and imaging of lysosomal pH change. Meanwhile, BD exhibits a larger Stokes shift, good selectivity, strong photostability, good reversibility and good biocompatibility, which makes BD capable of being applied to complex biological environments. Ratiometric fluorescence imaging studies show that BD can selectively monitor the pH in the lysosomes of live cells, and even real-time dynamic monitoring of cell autophagy can be conducted. Moreover, BD also shows excellent application potential in the field of anticounterfeiting.


Subject(s)
Fluorescent Dyes , Protons , Autophagy , Benzimidazoles/toxicity , Fluorescent Dyes/toxicity , HeLa Cells , Humans , Hydrogen-Ion Concentration , Imidazoles , Lysosomes , Optical Imaging
12.
Sci Rep ; 12(1): 9986, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705592

ABSTRACT

Widespread application of carbendazim (CBZ) is a major environmental impact because of its residues that caused multi-organ dysfunction. Recently, Chitosan nanoparticles (CS-NPs) are extensively used as nanocarriers due to their non-toxic and biodegradable nature. Therefore, the current study aimed to investigate the possible mechanistic pathway of modified CS-NPs to reduce the hepatic and nephrotoxicity of CBZ in rats. CS-NPs were synthesized by the ionic gelation method by using ascorbic acid instead of acetic acid to increase its antioxidant efficiency. Twenty-adult male Wistar rats were grouped (n = 5) as follows: Group (1) negative control, group (2) received CS-NPs, group (3) received CBZ, and group (4) co-administered CS-NPs with CBZ. Rats received the aforementioned materials daily by oral gavage for 28 days and weighed weekly. The results revealed that CBZ receiving group showed severe histopathological alterations in the liver and kidney sections including cellular necrosis and interstitial inflammation confirmed by immunostaining and showed marked immunopositivity of iNOS and caspase-3 protein. There were marked elevations in the serum levels of ALT, AST, urea, and creatinine with a significant increase in MDA levels and decrease in TAC levels. Upregulation of the Keap1 gene and down-regulation of Nrf2 and HO-1 genes were also observed. Co-treatment of rats by CS-NPs with CBZ markedly improved all the above-mentioned toxicological parameters and return liver and kidney tissues to normal histological architecture. We concluded that CBZ caused hepatorenal toxicity via oxidative stress and the Nrf2/HO-1 pathway and CS-NPs could reduce CBZ toxicity via their antioxidant, anti-apoptotic, and anti-inflammatory effects.


Subject(s)
Chitosan , Kidney , Liver , Nanoparticles , Animals , Male , Rats , Antioxidants/pharmacology , Benzimidazoles/toxicity , Carbamates/toxicity , Chitosan/chemistry , Chitosan/pharmacology , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nanoparticles/chemistry , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats, Wistar , Signal Transduction/drug effects
13.
Toxicol In Vitro ; 83: 105397, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35643342

ABSTRACT

In response to the EU cosmetics directive regulation and REACH legislation which encourage cell culture methods in order to reduce or replace the use of animals in toxicology studies, we settled the culture of prepubertal domestic cat seminiferous tubules in our validated BioAlter® model, usually used with prepubertal rat, called here BioAlter®-rat, by opposition to BioAlter®-cat settled here. We carried out a comparative study on the effects of 3 testicular toxicants, 1,3-dinitrobenzene at 60 µM, 2-methoxyacetic acid at 2.5 mM and carbendazim at 50 nM or 500 nM in both BioAlter®-cat and BioAlter®-rat over a 3-week culture period. Sertoli cell or each germ cell populations as well as the levels of Sertoli cell or germ cell specific mRNAs were studied. The harmful effects of the 3 toxicants on pre-meiotic, meiotic and post-meiotic cell numbers and on Sertoli or germ cell specific mRNAs were clearly observed in the two species, even if there might be some small differences in the intensity of the effects on some of the studied parameters. Hence, BioAlter®-cat might be a solution to the requirements of the EU cosmetics directive and REACH legislation for male reproductive toxicology studies.


Subject(s)
Seminiferous Tubules , Spermatogenesis , Acetates/toxicity , Animals , Benzimidazoles/toxicity , Carbamates/toxicity , Cats , Dinitrobenzenes/toxicity , Male , Rats , Seminiferous Tubules/drug effects , Sertoli Cells/drug effects , Spermatogenesis/drug effects , Testis/drug effects
14.
Ecotoxicol Environ Saf ; 239: 113648, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35605324

ABSTRACT

Gut microbiota and nutrition play major roles in honey bee health. Recent reports have shown that pesticides can disrupt the gut microbiota and cause malnutrition in honey bees. Carbendazim is the most commonly used fungicide in China, but it is not clear whether carbendazim negatively affects the gut microbes and nutrient intake levels in honey bees. To address this research gap, we assessed the effects of carbendazim on the survival, pollen consumption, and sequenced 16 S rRNA gene to determine the bacterial composition in the midgut and hindgut. Our results suggest that carbendazim exposure does not cause acute death in honey bees even at high concentrations (5000 mg/L), which are extremely unlikely to exist under field conditions. Carbendazim does not disturb the microbiome composition in the gut of young worker bees during gut microbial colonization and adult worker bees with established gut communities in the mid and hindgut. However, carbendazim exposure significantly decreases pollen consumption in honey bees. Thus, exposure of bees to carbendazim can perturb their beneficial nutrition homeostasis, potentially reducing honey bee immunity and increasing their susceptibility to infection by pathogens, which influence effectiveness as pollinators, even colony health.


Subject(s)
Gastrointestinal Microbiome , Animals , Bees , Benzimidazoles/toxicity , Carbamates/toxicity , Pollen
15.
Neurotoxicology ; 91: 31-43, 2022 07.
Article in English | MEDLINE | ID: mdl-35513110

ABSTRACT

Carbendazim (CBZ) contamination of food and water is a principal factor in many negative impacts on public health. Nanoencapsulation of agrochemicals by nontoxic polymers as chitosan nanoparticles (CS-NPs) is one of the most applications of nanotechnology in agriculture. Despite its many advantages, such as it provides controlled release property, more stability and solubility of the active ingredient, it is not authorized to be used in the market because there are no adequate studies on the nano pesticides induced toxicity on experimental animals. So, we aim to study the possible impacts of CBZ-loading CS-NPs on the whole brain of rats and to explain its mechanism of action. 20 male Wistar rats were partitioned into 4 groups as follows: Group (1), normal saline; group (2), 5 mg/kg CS-NPs; group (3), 300 mg/kg CBZ; group (4) 300 mg/kg CS/CBZ-NCs. After 28 days, some neurobehavioral parameters were assessed to all rats then euthanization was done to collect the brain. Our results revealed that CBZ prompted neurotoxicity manifested by severe neurobehavioral changes and a significant increase of MDA with a decrease of GSH and CAT in brain tissue. In addition, there were severe neuropathological alterations confirmed by immunohistochemistry which showed strong bax, GFAP, and TNF-á½° protein expression in some brain areas. CBZ also induced apoptosis manifested by up-regulation of JNK and P53 with down-regulation of Bcl-2 in brain tissue. Otherwise, encapsulation of CBZ with CS-NPs could reduce CBZ-induced neurotoxicity and improve all studied toxicological parameters. We recommend using CBZ-loading CS-NPs as an alternative approach for fungicide application in agricultural and veterinary practices but further studies are needed to ensure its safety on other organs.


Subject(s)
Chitosan , Nanoparticles , Animals , Benzimidazoles/toxicity , Carbamates/toxicity , Chitosan/pharmacology , Male , Nanoparticles/therapeutic use , Neuroprotective Agents , Rats , Rats, Wistar
16.
Toxicol Appl Pharmacol ; 445: 116039, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35489524

ABSTRACT

Efforts in precision medicine to combat aberrant epigenome have led to the development of epigenetic targeting drugs. We have previously reported the capability of the BZD9L1 epigenetic modulator to impede colorectal tumour growth in vitro and in vivo through sirtuin (SIRT) inhibition. Although most benzimidazole derivatives are commonly less toxic, their effects on SIRTs and cytochrome P450 (CYP) regulations have not been explored alongside toxicity assessments. SIRTs are histone deacetylases that are crucial in maintaining metabolic homeostasis, whereas CYP is essential in drug metabolism. This study aims to determine the toxicology profile of BZD9L1 through oral acute and repeated dose toxicity evaluations, along with molecular analyses of SIRT, CYP and relevant toxicity markers through western blot and quantitative polymerase chain reaction (qPCR). BZD9L1 demonstrated no sign of acute toxicity at the limit dose (2000 mg/kg). The 28-day toxicity study highlighted the tolerability of repeated dose administration without adverse effects. BZD9L1 showed a sex-divergent regulation of hepatic SIRT1-7, CYP2A5 and CYP2D proteins. Furthermore, BZD9L1 did not induce the expression of organ injury proteins or alter the gene expression of cellular function indicators in mouse liver and kidneys, hence demonstrating, at least in part, the safety of BZD9L1 in short-term evaluations. The present study cautions for personalised strategies when employing benzimidazole-derived epigenetic therapeutics.


Subject(s)
Benzimidazoles , Cytochrome P-450 Enzyme System , Sex Characteristics , Sirtuins , Animals , Benzimidazoles/toxicity , Cytochrome P-450 Enzyme System/metabolism , Epigenesis, Genetic , Female , Liver , Male , Mice , Piperidines , Sirtuins/genetics , Sirtuins/metabolism
17.
J Biochem Mol Toxicol ; 36(8): e23079, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35437878

ABSTRACT

Carbendazim (CBZ) is a common environmental pollutant that can contaminate food and water and severely damage human health. Some studies revealed the adverse effect of CBZ on different organs, but its detailed toxicity mechanism has not been elucidated yet. Thus, the present study aims to clarify the mechanisms of CBZ-induced hepatorenal toxicity in rats. Therefore, we partitioned 40 male Wistar rats into four groups (n = 10): a negative control group and three treatment groups, which received 100, 300, and 600 mg/kg of CBZ. All rats received the treatment daily by oral gavage. We collected blood and organ samples (liver and kidney) at 14 and 28 days postdosing. CBZ caused extensive pathological alterations in both the liver and kidneys, such as cellular degeneration and necrosis accompanied by severe inflammatory reactions in a dose- and time-dependent manner. All the CBZ-treated groups displayed strong tumor necrosis factor-α and nuclear factor-κB (NF-κB) immunopositivity. Additionally, CBZ dose-dependently elevated the alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine serum levels and reduced the serum albumin levels. Furthermore, CBZ-induced apoptosis, as indicated by the observed Bax gene upregulation and Bcl-2 gene downregulation in both organs. All these changes may be related to oxidative stress, as indicated by the increase in malondialdehyde levels and the decrease in total antioxidant capacity. Our results demonstrate that CBZ-induced dose- and time-dependent hepatorenal damage through oxidative stress, which activated both the NF-κB signaling pathway and Bcl-based programmed cell death.


Subject(s)
Benzimidazoles , Carbamates , Kidney , Liver , NF-kappa B , Oxidative Stress , Animals , Antioxidants/metabolism , Benzimidazoles/toxicity , Carbamates/toxicity , Chemical and Drug Induced Liver Injury , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , NF-kappa B/metabolism , Rats , Rats, Wistar , Signal Transduction
18.
Toxicol Appl Pharmacol ; 434: 115825, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34902352

ABSTRACT

Dyslipidemia or its severe version like familial hypercholesterolemia causes a high risk for cardiovascular diseases. Lomitapide, a microsomal triglyceride transfer protein inhibitor, is approved to treat familial hypercholesterolemia, associated with liver fat accumulation. In this work, we investigated the effect of the combination of lomitapide and triiodothyronine (T3) in Zucker fatty rats. Lomitapide (1 mg/kg, PO), or T3 (13 µg/kg, PO), or their combination, were given to these rats once daily for fourteen days. Body weight and food intake were recorded once daily during the treatment period. Serum and hepatic lipids, glucose tolerance, serum aminotransferases, bile fluids, hepatic gene expression, and liver histology were assessed at the end of the treatment. Lomitapide treatment reduced body weight, food intake, glucose intolerance, and serum lipids, and elevated serum aminotransferases and liver lipids. When combined with T3, lomitapide showed an enhanced reduction in body weight, food intake, serum cholesterol, serum LDL, and glucose intolerance. The combination treatment increased bile flow rate and biliary cholesterol excretion rate. Combining T3 with lomitapide attenuated the elevation of serum aminotransferases and liver lipids. Hepatic ABCB11, ABCG5, ABCG8, CYP7A1, CPT1, and ACOX1 expressions were increased with combination treatment. Histological analysis indicated that T3 attenuated hepatic fat accumulation caused by lomitapide. These data suggests that combining lomitapide with T3 may reduce lomitapide-induced hepatic toxicity and provide additional benefits in obesity and glucose intolerance.


Subject(s)
Benzimidazoles/toxicity , Bile Acids and Salts/metabolism , Carrier Proteins/antagonists & inhibitors , Chemical and Drug Induced Liver Injury/drug therapy , Triiodothyronine/pharmacology , Animals , Gene Expression Regulation/drug effects , Homeostasis , Liver/drug effects , Liver/pathology , Male , Rats , Rats, Zucker
19.
Sci Rep ; 11(1): 24269, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34931035

ABSTRACT

Synthetic opioids are gaining more and more popularity among recreational users as well as regular abusers. One of such novel psychoactive substance, is etazene, which is the most popular opioid drug in the darknet market nowadays. Due to limited information available concerning its activity, we aimed to characterize its developmental toxicity, including cardiotoxicity with the use of in vivo Danio rerio and in silico tools. Moreover, we aimed, for the first time, to characterize the metabolite of etazene, which could become a potential marker of its use for future forensic analysis. The results of our study proved severe dose-dependent developmental toxicity of etazene (applied concentrations 10-300 µM), including an increase in mortality, developmental malformations, and serious cardiotoxic effects, as compared with well-known and used opioid-morphine (applied concentrations 1-50 mM). In silico findings indicate the high toxic potential of etazene which may lead to drug-drug interactions and accumulation of substances. Furthermore, phase I metabolite of etazene resulting from N-dealkylation reaction was identified, and therefore it should be considered as a target for toxicological screening. Nonetheless, the exact mechanism of observed effects in response to etazene should be further examined.


Subject(s)
Analgesics, Opioid , Nervous System , Zebrafish , Animals , Analgesics, Opioid/toxicity , Arrhythmias, Cardiac , Benzimidazoles/toxicity , Brain/drug effects , Cell Death , Chromatography, Liquid , Computer Simulation , Fentanyl/analogs & derivatives , Gene Expression Regulation, Developmental , Models, Chemical , Morphine , Nervous System/drug effects , Substance-Related Disorders , Tandem Mass Spectrometry , Time Factors , Zebrafish/embryology
20.
Molecules ; 26(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34576932

ABSTRACT

Our study aimed to characterise the action mode of N-phenacyldibromobenzimidazoles against C. albicans and C. neoformans. Firstly, we selected the non-cytotoxic most active benzimidazoles based on the structure-activity relationships showing that the group of 5,6-dibromobenzimidazole derivatives are less active against C. albicans vs. 4,6-dibromobenzimidazole analogues (5e-f and 5h). The substitution of chlorine atoms to the benzene ring of the N-phenacyl substituent extended the anti-C. albicans action (5e with 2,4-Cl2 or 5f with 3,4-Cl2). The excellent results for N-phenacyldibromobenzimidazole 5h against the C. albicans reference and clinical isolate showed IC50 = 8 µg/mL and %I = 100 ± 3, respectively. Compound 5h was fungicidal against the C. neoformans isolate. Compound 5h at 160-4 µg/mL caused irreversible damage of the fungal cell membrane and accidental cell death (ACD). We reported on chitinolytic activity of 5h, in accordance with the patterns observed for the following substrates: 4-nitrophenyl-N-acetyl-ß-d-glucosaminide and 4-nitrophenyl-ß-d-N,N',N″-triacetylchitothiose. Derivative 5h at 16 µg/mL: (1) it affected cell wall by inducing ß-d-glucanase, (2) it caused morphological distortions and (3) osmotic instability in the C. albicans biofilm-treated. Compound 5h exerted Candida-dependent inhibition of virulence factors.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Benzimidazoles/chemistry , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/toxicity , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Benzimidazoles/toxicity , Biofilms/drug effects , Candida albicans/cytology , Candida albicans/drug effects , Cell Wall/drug effects , Chitin/metabolism , Chlorocebus aethiops , Cryptococcus neoformans/cytology , Cryptococcus neoformans/drug effects , Drug Evaluation, Preclinical , Microbial Sensitivity Tests , Microscopy, Confocal , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL