Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 424
Filter
1.
Chemosphere ; 364: 143291, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39243904

ABSTRACT

Nature iron is considered one of the promising catalysts in advanced oxidation processes (AOPs) that are utilized for soil remediation from polycyclic aromatic hydrocarbons (PAHs). However, the existence of anions, cations, and organic matter in soils considered impurities that restricted the utilization of iron that was harnessed naturally in the soil matrix and reduced the catalytic performance. In this regard, tropical soil naturally containing iron and relatively poor with impurities was artificially contaminated with 100 mg/50 g benzo[α]pyrene (B[α]P) and remediated using a slurry phase reactor supported with persulfate (PS). The results indicated that tropical soil containing iron and relatively poor with impurities capable of activating the oxidants and formation of radicals which successfully degraded B[α]P. The optimum removal result was 86% and obtained under the following conditions airflow = 260 mL/min, temperature 55 °C, pH 7, and [PS]0 = 1.0 g/L, at the same experimental conditions soil organic matter (SOM) mineralization was 48%. After the remediation process, there was a significant reduction in iron and aluminum contents, which considered the drawbacks of this system. Experiments to scavenge reactive species highlighted O2•- and SO4•- as the main radicals that oxidized B[α]P. Additionally, monitoring of by-products post-remediation aimed to assess toxicity and elucidate degradation pathways. Mutagenicity tests yielded positive results for two B[α]P by-products. The toxicity tests considered were the lethal concentration of 50% (LC50 96 h) for fat-head minnows revealed that all B[α]P by-products were less toxic than the parent pollutant itself. This research marks a significant advancement in soil remediation by advancing the use of the AOP method, removing the requirement for additional catalysts in the AOP system for the removal of B[α]P from soil.


Subject(s)
Benzo(a)pyrene , Environmental Restoration and Remediation , Iron , Soil Pollutants , Soil , Soil Pollutants/chemistry , Soil Pollutants/analysis , Environmental Restoration and Remediation/methods , Benzo(a)pyrene/chemistry , Benzo(a)pyrene/analysis , Iron/chemistry , Soil/chemistry , Oxidation-Reduction , Catalysis
2.
Proc Natl Acad Sci U S A ; 121(37): e2322155121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39226345

ABSTRACT

Utilizing molecular dynamics and free energy perturbation, we examine the relative binding affinity of several covalent polycyclic aromatic hydrocarbon - DNA (PAH-DNA) adducts at the central adenine of NRAS codon-61, a mutational hotspot implicated in cancer risk. Several PAHs classified by the International Agency for Research on Cancer as probable, possible, or unclassifiable as to carcinogenicity are found to have greater binding affinity than the known carcinogen, benzo[a]pyrene (B[a]P). van der Waals interactions between the intercalated PAH and neighboring nucleobases, and minimal disruption of the DNA duplex drive increases in binding affinity. PAH-DNA adducts may be repaired by global genomic nucleotide excision repair (GG-NER), hence we also compute relative free energies of complexation of PAH-DNA adducts with RAD4-RAD23 (the yeast ortholog of human XPC-RAD23) which constitutes the recognition step in GG-NER. PAH-DNA adducts exhibiting the greatest DNA binding affinity also exhibit the least RAD4-RAD23 complexation affinity and are thus predicted to resist the GG-NER machinery, contributing to their genotoxic potential. In particular, the fjord region PAHs dibenzo[a,l]pyrene, benzo[g]chrysene, and benzo[c]phenanthrene are found to have greater binding affinity while having weaker RAD4-RAD23 complexation affinity than their respective bay region analogs B[a]P, chrysene, and phenanthrene. We also find that the bay region PAHs dibenzo[a,j]anthracene, dibenzo[a,c]anthracene, and dibenzo[a,h]anthracene exhibit greater binding affinity and weaker RAD4-RAD23 complexation affinity than B[a]P. Thus, the study of PAH genotoxicity likely needs to be substantially broadened, with implications for public policy and the health sciences. This approach can be broadly applied to assess factors contributing to the genotoxicity of other unclassified compounds.


Subject(s)
DNA Adducts , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/metabolism , DNA Adducts/chemistry , DNA Adducts/metabolism , DNA Adducts/genetics , Humans , DNA Repair , Mutagens/toxicity , Mutagens/chemistry , Molecular Dynamics Simulation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Thermodynamics , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/chemistry , Benzo(a)pyrene/metabolism , DNA/chemistry , DNA/metabolism , Benzopyrenes/toxicity , Benzopyrenes/chemistry , Benzopyrenes/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry
3.
Environ Res ; 261: 119716, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39096990

ABSTRACT

Bentonite is a non-metallic mineral with montmorillonite as the main component. It is an environmentally friendly mineral material with large reserves, wide distribution, and low price. Bentonite can be easily modified organically using the surfactant saponin to obtain saponin-modified bentonite (Sap-BT). This study investigates the immobilization of crude enzymes obtained from Trametes versicolor by physical adsorption with Sap-BT. Thus, saponin-modified bentonite immobilized crude enzymes (CE-Sap-BT) were developed to remove benzo[a]pyrene. Immobilization improves the stability of free enzymes. CE-Sap-BT can maintain more than 80% of activity at 45 °C and after storage for 15 d. Additionally, CE-Sap-BT exhibited a high removal rate of benzo[a]pyrene in soil, with 65.69% after 7 d in highly contaminated allotment soil and 52.90% after 6 d in actual soil contaminated with a low concentration of benzo[a]pyrene at a very low laccase dosage (0.1 U/3 g soil). The high catalytic and removal performance of CE-Sap-BT in contaminated sites showed more excellent practical application value.


Subject(s)
Bentonite , Benzo(a)pyrene , Enzymes, Immobilized , Saponins , Soil Pollutants , Bentonite/chemistry , Benzo(a)pyrene/chemistry , Soil Pollutants/chemistry , Adsorption , Saponins/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
4.
Chem Commun (Camb) ; 60(59): 7610-7613, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38957007

ABSTRACT

Benzo[a]pyrene-modified oligonucleotides were developed for the detection of RNAs with a point mutation. The probes produced two distinct fluorescence signals in response to single nucleotide differences in the RNA sequences, allowing for discrimination between the matched and single base mismatched RNA sequences in colorimetric and ratiometric manners.


Subject(s)
Benzo(a)pyrene , Fluorescent Dyes , Point Mutation , RNA , Benzo(a)pyrene/analysis , Benzo(a)pyrene/chemistry , RNA/genetics , RNA/chemistry , RNA/analysis , Fluorescent Dyes/chemistry , Colorimetry , Spectrometry, Fluorescence , Oligonucleotides/chemistry
5.
Dalton Trans ; 53(29): 12152-12161, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38989958

ABSTRACT

Laccases (EC 1.10.3.2) are multicopper oxidases with the capability to oxidize diverse phenolic and non-phenolic substrates. While the molecular mechanism of their activity towards phenolic substrates is well-established, their reactivity towards non-phenolic substrates, such as polycyclic aromatic hydrocarbons (PAHs), remains unclear. To elucidate the oxidation mechanism of PAHs, particularly the activation mechanism of the sp2 aromatic C-H bond, we conducted a density functional theory investigation on the oxidation of two PAHs (anthracene and benzo[a]pyrene) using an extensive model of the T1 copper catalytic site of the fungal laccase from Trametes versicolor.


Subject(s)
Anthracenes , Benzo(a)pyrene , Copper , Laccase , Oxidation-Reduction , Laccase/metabolism , Laccase/chemistry , Anthracenes/chemistry , Anthracenes/metabolism , Copper/chemistry , Copper/metabolism , Benzo(a)pyrene/metabolism , Benzo(a)pyrene/chemistry , Density Functional Theory , Models, Molecular , Polyporaceae/enzymology , Catalytic Domain , Polyporales/enzymology , Polyporales/metabolism , Trametes/enzymology
6.
Chem Res Toxicol ; 37(8): 1364-1373, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38900731

ABSTRACT

Chemicals often require metabolic activation to become genotoxic. Established test guidelines recommend the use of the rat liver S9 fraction or microsomes to introduce metabolic competence to in vitro cell-based bioassays, but the use of animal-derived components in cell culture raises ethical concerns and may lead to quality issues and reproducibility problems. The aim of the present study was to compare the metabolic activation of cyclophosphamide (CPA) and benzo[a]pyrene (BaP) by induced rat liver microsomes and an abiotic cytochrome P450 (CYP) enzyme based on a biomimetic porphyrine catalyst. For the detection of genotoxic effects, the chemicals were tested in a reporter gene assay targeting the activation of the cellular tumor protein p53. Both chemicals were metabolized by the abiotic CYP enzyme and the microsomes. CPA showed no activation of p53 and low cytotoxicity without metabolic activation, but strong activation of p53 and increased cytotoxicity upon incubation with liver microsomes or abiotic CYP enzyme. The effect concentration causing a 1.5-fold induction of p53 activation was very similar with both metabolization systems (within a factor of 1.5), indicating that genotoxic metabolites were formed at comparable concentrations. BaP also showed low cytotoxicity and no p53 activation without metabolic activation. The activation of p53 was detected for BaP upon incubation with active and inactive microsomes at similar concentrations, indicating experimental artifacts caused by the microsomes or NADPH. The activation of BaP with the abiotic CYP enzyme increased the cytotoxicity of BaP by a factor of 8, but no activation of p53 was detected. The results indicate that abiotic CYP enzymes may present an alternative to rat liver S9 fraction or microsomes for the metabolic activation of test chemicals, which are completely free of animal-derived components. However, an amendment of existing test guidelines would require testing of more chemicals and genotoxicity end points.


Subject(s)
Benzo(a)pyrene , Cytochrome P-450 Enzyme System , Microsomes, Liver , Tumor Suppressor Protein p53 , Microsomes, Liver/metabolism , Animals , Rats , Benzo(a)pyrene/metabolism , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/chemistry , Cytochrome P-450 Enzyme System/metabolism , Tumor Suppressor Protein p53/metabolism , Cyclophosphamide/metabolism , Cyclophosphamide/toxicity , Mutagens/toxicity , Mutagens/metabolism , Mutagens/chemistry , Male , Activation, Metabolic , Humans , Cell Survival/drug effects
7.
Int J Biol Macromol ; 269(Pt 2): 132216, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729483

ABSTRACT

Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.


Subject(s)
Charcoal , Lignin , Sesame Oil , Lignin/chemistry , Charcoal/chemistry , Adsorption , Sesame Oil/chemistry , Benzo(a)pyrene/chemistry , Kinetics
8.
Environ Pollut ; 353: 124150, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38735466

ABSTRACT

In the environment, soil colloids are widespread and possess a significant adsorption capacity. This makes them capable of transporting different pollutants, presenting a potential risk to human and ecological well-being. This study aimed to examine the adsorption and co-migration characteristics of benzo(a)pyrene (BaP) and soil colloids in areas contaminated with organic substances, utilizing both static and dynamic batch experiments. In the static adsorption experiments, it was observed that the adsorption of BaP onto soil colloids followed the pseudo-second-order kinetic model (R2 = 0.966), and the adsorption isotherm conformed to the Langmuir model (R2 = 0.995). The BaP and soil colloids primarily formed bonds through π-π interactions and hydrogen bonds. The dynamic experimental outcomes revealed that elevating colloids concentration contributed to increased BaP mobility. Specifically, when the concentration of soil colloids in influent was 500 mg L-1, the mobility of BaP was 23.2 % compared to that without colloids of 13.4 %. Meanwhile, the lowering influent pH value contributed to increased BaP mobility. Specifically, when the influent pH value was 4.0, the mobility of BaP was 30.1 %. The BaP's mobility gradually declined as the initial concentration of BaP in polluted soil increased. Specifically, when the initial concentration of BaP in polluted soil was 5.27 mg kg-1, the mobility of BaP was 39.1 %. This study provides a support for controlling BaP pollution in soil and groundwater.


Subject(s)
Benzo(a)pyrene , Colloids , Soil Pollutants , Soil , Benzo(a)pyrene/chemistry , Colloids/chemistry , Soil Pollutants/chemistry , Adsorption , Soil/chemistry , Water Pollutants, Chemical/chemistry , Kinetics
9.
Chemosphere ; 360: 142384, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797205

ABSTRACT

Interactions between polycyclic aromatic hydrocarbons (PAHs) and titanium dioxide (TiO2) nanoparticles (NPs) can produce unforeseen photoproducts in the aqueous phase. Both PAHs and TiO2-NPs are well-studied and highly persistent environmental pollutants, but the consequences of PAH-TiO2-NP interactions are rarely explored. We investigated PAH photoproduct formation over time for benzo[a]pyrene (BaP), fluoranthene (FLT), and pyrene (PYR) in the presence of ultraviolet A (UVA) using a combination of analytical and computational methods including, identification of PAH photoproducts, assessment of expression profiles for gene indicators of PAH metabolism, and computational evaluation of the reaction mechanisms through which certain photoproducts might be formed. Chemical analyses identified diverse photoproducts, but all PAHs shared a primary photoproduct, 9,10-phenanthraquinone (9,10-PQ), regardless of TiO2-NP presence. The computed reaction mechanisms revealed the roles photodissociation and singlet oxygen chemistry likely play in PAH mediated photochemical processes that result in the congruent production of 9,10-PQ within this study. Our investigation of PAH photoproduct formation has provided substantial evidence of the many, diverse and congruent, photoproducts formed from physicochemically distinct PAHs and how TiO2-NPs influence bioavailability and time-related formation of PAH photoproducts.


Subject(s)
Nanoparticles , Photochemical Processes , Polycyclic Aromatic Hydrocarbons , Titanium , Ultraviolet Rays , Titanium/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Nanoparticles/chemistry , Fluorenes/chemistry , Pyrenes/chemistry , Benzo(a)pyrene/chemistry , Environmental Pollutants/chemistry , Biological Availability
10.
Environ Sci Technol ; 58(19): 8565-8575, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38575864

ABSTRACT

Benzo[a]pyrene is difficult to remove from soil due to its high octanol/water partition coefficient. The use of mixed surfactants can increase solubility but with the risk of secondary soil contamination, and the compounding mechanism is still unclear. This study introduced a new approach using environmentally friendly fatty acid methyl ester sulfonate (MES) and alkyl polyglucoside (APG) to solubilize benzo[a]pyrene. The best result was obtained when the ratio of MES/APG was 7:1 under 6 g/L total concentration, with an apparent solubility (Sw) of 8.58 mg/L and a molar solubilization ratio (MSR) of 1.31 for benzo[a]pyrene, which is comparable to that of Tween 80 (MSR, 0.95). The mechanism indicates that the hydroxyl groups (-OH) in APG form "O-H···OSO2-" hydrogen bonding with the sulfonic acid group (-SO3-) of MES, which reduces the electrostatic repulsion between MES molecules, thus facilitating the formation of large and stable micelles. Moreover, the strong solubilizing effect on benzo[a]pyrene should be ascribed to the low polarity of ester groups (-COOCH3) in MES. Functional groups capable of forming hydrogen bonds and having low polarity are responsible for the enhanced solubilization of benzo[a]pyrene. This understanding helps choose suitable surfactants for the remediation of PAH-contaminated soils.


Subject(s)
Benzo(a)pyrene , Solubility , Surface-Active Agents , Surface-Active Agents/chemistry , Benzo(a)pyrene/chemistry , Soil Pollutants/chemistry
11.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Article in English | MEDLINE | ID: mdl-38552695

ABSTRACT

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Subject(s)
Benzo(a)pyrene , Charcoal , Lignin , Sesame Oil , Sesamum , Charcoal/chemistry , Lignin/chemistry , Benzo(a)pyrene/chemistry , Adsorption , Sesame Oil/chemistry , Sesamum/chemistry , Zinc Compounds/chemistry , Chlorides/chemistry
12.
J Mol Biol ; 436(3): 168411, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38135181

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS protein family and responding to hundreds of natural and chemical substances. It is primarily involved in the defense against chemical insults and bacterial infections or in the adaptive immune response, but also in the development of pathological conditions ranging from inflammatory to neoplastic disorders. Despite its prominent roles in many (patho)physiological processes, the lack of high-resolution structural data has precluded for thirty years an in-depth understanding of the structural mechanisms underlying ligand-binding specificity, promiscuity and activation of AHR. We recently reported a cryogenic electron microscopy (cryo-EM) structure of human AHR bound to the natural ligand indirubin, the chaperone Hsp90 and the co-chaperone XAP2 that provided the first experimental visualization of its ligand-binding PAS-B domain. Here, we report a 2.75 Å resolution structure of the AHR complex bound to the environmental pollutant benzo[a]pyrene (B[a]P). The structure substantiates the existence of a bipartite PAS-B ligand-binding pocket with a geometrically constrained primary binding site controlling ligand binding specificity and affinity, and a secondary binding site contributing to the binding promiscuity of AHR. We also report a docking study of B[a]P congeners that validates the B[a]P-bound PAS-B structure as a suitable model for accurate computational ligand binding assessment. Finally, comparison of our agonist-bound complex with the recently reported structures of mouse and fruit fly AHR PAS-B in different activation states suggests a ligand-induced loop conformational change potentially involved in the regulation of AHR function.


Subject(s)
Benzo(a)pyrene , Environmental Pollutants , Receptors, Aryl Hydrocarbon , Humans , Benzo(a)pyrene/chemistry , Binding Sites , Ligands , Protein Domains , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/chemistry , Environmental Pollutants/chemistry
13.
Molecules ; 28(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446927

ABSTRACT

Benzo[a]pyrene is a widespread environmental pollutant and a strong carcinogen. It is important to understand its bio-toxicity and degradation mechanism. Herein, we studied the excited state dynamics of benzo[a]pyrene by using time-resolved fluorescence and transient absorption spectroscopic techniques. For the first time, it is identified that benzo[a]pyrene in its singlet excited state could react with oxygen, resulting in fluorescence quenching. Additionally, effective intersystem crossing can occur from its singlet state to the triplet state. Furthermore, the interaction between the excited benzo[a]pyrene and ct-DNA can be observed directly and charge transfer between benzo[a]pyrene and ct-DNA may be the reason. These results lay a foundation for further understanding of the carcinogenic mechanism of benzo[a]pyrene and provide insight into the photo-degradation mechanism of this molecule.


Subject(s)
Benzo(a)pyrene , Oxygen , Benzo(a)pyrene/chemistry , Kinetics , Chemical Phenomena , DNA
14.
Colloids Surf B Biointerfaces ; 224: 113211, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36863250

ABSTRACT

Nanoplastics (NPs) are mainly generated from the decomposition of plastic waste and industrial production, which have attracted much attention due to the potential risk for humans. The ability of NPs to penetrate different biological barriers has been proved, but the understanding of molecular details is very limited, especially for organic pollutant-NP combinations. Here, we investigated the uptake process of polystyrene NPs (PSNPs) combined with benzo(a)pyrene (BAP) molecules by dipalmitoylphosphatidylcholine (DPPC) bilayers by molecular dynamics (MD) simulations. The results showed that the PSNPs can adsorb and accumulate BAP molecules in water phase and then carried BAP molecules to enter DPPC bilayers. At the same time, the adsorbed BAP promoted the penetration of PSNPs into DPPC bilayers effectively by hydrophobic effect. The process of BAP-PSNP combinations penetrating into DPPC bilayers can be summarized into four steps including adhesion on the DPPC bilayer surface, uptake by the DPPC bilayer, BAP molecules detached from the PSNPs, and the PSNPs depolymerized in the bilayer interior. Furthermore, the amount of adsorbed BAP on PSNPs affected the properties of DPPC bilayers directly, especially the fluidity of DPPC bilayers that determine the physiologic function. Obviously, the combined effect of PSNPs and BAP enhanced the cytotoxicity. This work not only presented a vivid transmembrane process of BAP-PSNP combinations and revealed the nature of the effects of adsorbed benzo(a)pyrene on the dynamic behavior of polystyrene nanoplastics through phospholipid membrane, but also provide some necessary information of the potential damage for organic pollutant-nanoplastic combinations on human health at a molecular level.


Subject(s)
Environmental Pollutants , Phospholipids , Humans , Benzo(a)pyrene/chemistry , Microplastics , Polystyrenes , Molecular Dynamics Simulation , 1,2-Dipalmitoylphosphatidylcholine/chemistry
15.
Int J Mol Sci ; 24(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36835172

ABSTRACT

Benzo[a]pyrene (BaP) is noted as one of the main cancer-causing pollutants in human beings and may damage the development of crop plants. The present work was designed to explore more insights into the toxic effects of BaP on Solanum lycopersicum L. at various doses (20, 40, and 60 MPC) spiked in Haplic Chernozem. A dose-dependent response in phytotoxicity were noted, especially in the biomass of the roots and shoots, at doses of 40 and 60 MPC BaP and the accumulation of BaP in S. lycopersicum tissues. Physiological and biochemical response indices were severely damaged based on applied doses of BaP. During the histochemical analysis of the localization of superoxide in the leaves of S. lycopersicum, formazan spots were detected in the area near the leaf's veins. The results of a significant increase in malondialdehyde (MDA) from 2.7 to 5.1 times, proline 1.12- to 2.62-folds, however, a decrease in catalase (CAT) activity was recorded by 1.8 to 1.1 times. The activity of superoxide dismutase (SOD) increased from 1.4 to 2, peroxidase (PRX) from 2.3 to 5.25, ascorbate peroxidase (APOX) by 5.8 to 11.5, glutathione peroxidase (GP) from 3.8 to 7 times, respectively. The structure of the tissues of the roots and leaves of S. lycopersicum in the variants with BaP changed depending on the dose: it increased the intercellular space, cortical layer, and the epidermis, and the structure of the leaf tissues became looser.


Subject(s)
Benzo(a)pyrene , Solanum lycopersicum , Antioxidants , Benzo(a)pyrene/chemistry , Benzo(a)pyrene/toxicity , Catalase , Glutathione Peroxidase , Soil/chemistry , Solanum lycopersicum/chemistry , Solanum lycopersicum/metabolism , Superoxide Dismutase
16.
Sci Total Environ ; 868: 161454, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36638987

ABSTRACT

The evaluation of single substances or environmental samples for their genotoxic or estrogenic potential is highly relevant for human- and environment-related risk assessment. To examine the effects on a mechanism-specific level, standardized cell-based in vitro methods are widely applied. However, these methods include animal-derived components like fetal bovine serum (FBS) or rat-derived liver homogenate fractions (S9-mixes), which are a source of variability, reduced assay reproducibility and ethical concerns. In our study, we evaluated the adaptation of the cell-based in vitro OECD test guidelines TG 487 (assessment of genotoxicity) and TG 455 (detection of estrogenic activity) to an animal-component-free methodology. Firstly, the human cell lines A549 (for OECD TG 487), ERα-CALUX® and GeneBLAzer™ ERα-UAS-bla GripTite™ (for OECD TG 455) were investigated for growth in a chemically defined medium without the addition of FBS. Secondly, the biotechnological S9-mix ewoS9R was implemented in comparison to the induced rat liver S9 to simulate in vivo metabolism capacities in both OECD test guidelines. As a model compound, Benzo[a]pyrene was used due to its increased genotoxicity and endocrine activity after metabolization. The metabolization of Benzo[a]Pyrene by S9-mixes was examined via chemical analysis. All cell lines (A549, ERα-CALUX® and GeneBLAzer™ Erα-UAS-bla GripTite™) were successfully cultivated in chemically defined media without FBS. The micronucleus assay could not be conducted in chemically defined medium due to formation of cell clusters. The methods for endocrine activity assessment could be conducted in chemically defined media or reduced FBS content, but with decreased assay sensitivity. The biotechnological ewoS9R showed potential to replace rat liver S9 in the micronucleus in FBS-medium with A549 cells and in the ERα-CALUX® assay in FBS- and chemically defined medium. Our study showed promising steps towards an animal-component free toxicity testing. After further improvements, the new methodology could lead to more reproducible and reliable results for risk assessment.


Subject(s)
Animal Testing Alternatives , Toxicity Tests , Animals , Humans , Rats , Benzo(a)pyrene/chemistry , Estrogen Receptor alpha/chemistry , Micronucleus Tests/methods , Organisation for Economic Co-Operation and Development , Reproducibility of Results , Animal Testing Alternatives/methods , Animal Testing Alternatives/standards , A549 Cells , Toxicity Tests/methods
17.
Photochem Photobiol ; 99(3): 983-992, 2023.
Article in English | MEDLINE | ID: mdl-36117444

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds derived mostly from the incomplete combustion of fossil fuels and biomass. Human skin can absorb PAHs and the uptake increases with their molar mass and lipophilicity. Benzopyrene is high molecular weight PAH frequently appearing in ambient pollution. It exists in two isomeric forms: benzo[a]pyrene (BaP) and benzo[e]pyrene (BeP), which exhibit different biological activity. Although certain properties of benzopyrenes suggested photoreactivity of the compounds, no direct measurements were previously conducted to characterize their photochemical activity. In this study, quantum yield and action spectra of singlet oxygen photogeneration by BaP and BeP were measured by time-resolved near-infrared phosphorescence, and the ability of both compounds to photogenerate superoxide anion was assessed by electron paramagnetic resonance (EPR) spin-trapping. The measurements revealed high efficiency of benzopyrenes to photogenerate singlet oxygen and their ability to photogenerate superoxide anion. Using HaCaT cells as single-layer skin model, we demonstrated concentration-dependent and light-dependent cytotoxicity of BaP and BeP. The compounds induced damage to the cell mitochondria and elevated the levels of intracellular reactive oxygen species.


Subject(s)
Benzo(a)pyrene , Polycyclic Aromatic Hydrocarbons , Humans , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/chemistry , Superoxides , Singlet Oxygen , Benzopyrenes/pharmacology , Keratinocytes
18.
Water Res ; 226: 119233, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36244144

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are found ubiquitously in contaminated aquatic sediments. They are difficult to degrade, particularly the high-molecular-weight PAHs (e.g., benzo[a]pyrene, BaP). In this study, CaO2 assisted with ferrous ion (Fe(II))-citric acid (CA) was applied for the first time in BaP degradation in aquatic sediment. Among the treatment processes we studied, CaO2/Fe(Ⅱ)/CA could effectively degrade BaP at circumneutral pH (7.0 ± 0.3), reaching a maximum of nearly 80% under optimal conditions (0.84 mM CaO2, 0.21 mM Fe(Ⅱ), and 0.35 mM CA in per gram of dry sediment). Contrary to some external environmental factors such as temperature, common metal ions, and natural organic matters, a certain amount of moisture content and inorganic anions (Cl-, SO42-) exhibited a positive effect on BaP degradation, which can probably be contributed to the improved mass transfer rate in the non-homogeneous sediment-water mixture and a higher level of free radicals. The degradation kinetic dominated by hydroxyl radicals included three main stages contribution ∼29.4%, ∼43.1%, and ∼2.4% to BaP degradation, respectively. Based on the theoretical calculations of density functional theory, a pathway for BaP degradation was proposed. For the treatment of actual contaminated sediment, the CaO2/Fe(II)/CA process could realize the elimination of black-odor and effective removal of PAHs from the sediment, as well as negligible ecotoxicity on benthic organisms. This study provides a reference and guidance for the use of CaO2 based Fenton-like systems in treating PAH-contaminated black-odor river sediments.


Subject(s)
Benzo(a)pyrene , Polycyclic Aromatic Hydrocarbons , Benzo(a)pyrene/chemistry , Citric Acid , Odorants , Ferrous Compounds , Hydrogen-Ion Concentration , Catalysis
19.
World J Microbiol Biotechnol ; 38(4): 61, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35199223

ABSTRACT

Benzo[a]pyrene (BaP) is a high molecular weight polycyclic aromatic hydrocarbon produced as a result of incomplete combustion of organic substances. Over the years, the release of BaP in the atmosphere has increased rapidly, risking human lives. BaP can form bonds with DNA leading to the formation of DNA adducts thereby causing cancer. Therefore addressing the problem of its removal from the environment is quite pertinent though it calls for a very cumbersome and tedious process owing to its recalcitrant nature. To resolve such issues many efforts have been made to develop physical and chemical technologies of BaP degradation which have neither been cost-effective nor eco-friendly. Microbial degradation of BaP, on the other hand, has gained much attention due to added advantage of the high level of microbial diversity enabling great potential to degrade the substance without impairing environmental sustainability. Microorganisms produce enzymes like oxygenases, hydrolases and cytochrome P450 that enable BaP degradation. However, microbial degradation of BaP is restricted due to several factors related to its bio-availability and soil properties. Technologies like bio-augmentation and bio-stimulation have served to enhance the degradation rate of BaP. Besides, advanced technologies such as omics and nano-technology have opened new doors for a better future of microbial degradation of BaP and related compounds.


Subject(s)
Benzo(a)pyrene , Polycyclic Aromatic Hydrocarbons , Benzo(a)pyrene/chemistry , Biodegradation, Environmental , Humans , Polycyclic Aromatic Hydrocarbons/chemistry , Soil , Soil Microbiology
20.
Molecules ; 27(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35209168

ABSTRACT

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.


Subject(s)
Antioxidants/pharmacology , Benzo(a)pyrene/pharmacology , Oxidants/pharmacology , Oxidative Stress/drug effects , Animals , Antioxidants/chemistry , Benzo(a)pyrene/chemistry , Biomarkers , Disease Susceptibility , Energy Metabolism/drug effects , Gene Expression Regulation/drug effects , Humans , Lipid Peroxidation/drug effects , Molecular Structure , Oxidants/chemistry , Oxidation-Reduction/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL