Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 471
Filter
2.
Blood Cells Mol Dis ; 109: 102882, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39096784

ABSTRACT

INTRODUCTION: Telomere length related studies are limited in pediatric marrow failure cases due to difficulty in establishing population specific age related normograms. Moreover, there is paucity of data related to clinical relevance of telomere length in idiopathic aplastic anemia (IAA) and non telomere biology inherited bone marrow failure syndrome (IBMFS) cases. METHODOLOGY: Hence, in current study we investigated Relative telomere length (RTL) by RQ-PCR in 83 samples as: healthy controls (n = 44), IAA (n = 15) and IBMFS (n = 24). In addition, we performed chromosomal breakage studies and targeted NGS to screen for pathogenic variants. RESULTS & CONCLUSION: Median RTL was significantly different between control vs. IBMFS (p-0.002), IAA vs. IBMFS (p-0.0075) and DC vs. non-DC IBMFS (p-0.011) but not between control vs. IAA (p-0.46). RTL analysis had clinical utility in differentiating BMF cases as 75 % (9/12) of DC had short/very short telomeres compared to only 17 % (2/12) of non-DC IBMFS, 7 % (1/15) of IAA and 7 % (3/44) of controls (p < 0.001).


Subject(s)
Anemia, Aplastic , Bone Marrow Failure Disorders , Telomere Homeostasis , Telomere , Humans , Child , Anemia, Aplastic/genetics , Anemia, Aplastic/diagnosis , Female , Male , Telomere/genetics , Child, Preschool , Bone Marrow Failure Disorders/genetics , Adolescent , Infant , Bone Marrow Diseases/genetics , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/pathology , Telomere Shortening , Case-Control Studies
3.
J Vet Med Sci ; 86(7): 737-743, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38825482

ABSTRACT

Non-neoplastic bone marrow disorders are main causes of non-regenerative anemia in dogs. Despite the high incidence of the diseases, their molecular pathophysiology has not been elucidated. We previously reported that Miniature Dachshund (MD) was a predisposed breed to be diagnosed with non-neoplastic bone marrow disorders in Japan, and immunosuppressive treatment-resistant MDs showed higher number of platelets and morphological abnormalities in peripheral blood cells. These data implied that treatment-resistant MDs might possess distinct pathophysiological features from treatment-responsive MDs. Therefore, we conducted transcriptomic analysis of bone marrow specimens to investigate the pathophysiology of treatment-resistant MDs. Transcriptomic analysis comparing treatment-resistant MDs and healthy control dogs identified 179 differentially expressed genes (DEGs). Pathway analysis using these DEGs showed that "Wnt signaling pathway" was a significantly enriched pathway. We further examined the expression levels of DEGs associated with Wnt signaling pathway and confirmed the upregulation of AXIN2 and CCND2 and the downregulation of SFRP2 in treatment-resistant MDs compared with treatment-responsive MDs and healthy control dogs. This alteration implied the activation of Wnt signaling pathway in treatment-resistant MDs. The activation of Wnt signaling pathway has been reported in human patients with myelodysplastic syndrome (MDS), which is characterized by dysplastic features of blood cells. Therefore, the results of this study implied that treatment-resistant MDs have distinct molecular pathological features from treatment-responsive MDs and the pathophysiology of treatment-resistant MDs might be similar to that of human MDS patients.


Subject(s)
Dog Diseases , Gene Expression Profiling , Dogs , Animals , Dog Diseases/genetics , Dog Diseases/pathology , Gene Expression Profiling/veterinary , Bone Marrow/pathology , Myelodysplastic Syndromes/veterinary , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Transcriptome , Male , Female , Wnt Signaling Pathway , Bone Marrow Diseases/veterinary , Bone Marrow Diseases/genetics , Bone Marrow Diseases/pathology
4.
Blood ; 144(9): 931-939, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-38905596

ABSTRACT

ABSTRACT: Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.


Subject(s)
Precision Medicine , Shwachman-Diamond Syndrome , Humans , Shwachman-Diamond Syndrome/genetics , Precision Medicine/methods , Mutation , Bone Marrow Diseases/genetics , Bone Marrow Failure Disorders/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology
5.
Genes (Basel) ; 15(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38790188

ABSTRACT

Cytogenetic studies are essential in the diagnosis and follow up of patients with bone marrow failure syndromes (BMFSs), but obtaining good quality results is often challenging due to hypocellularity. Optical Genome Mapping (OGM), a novel technology capable of detecting most types chromosomal structural variants (SVs) at high resolution, is being increasingly used in many settings, including hematologic malignancies. Herein, we compared conventional cytogenetic techniques to OGM in 20 patients with diverse BMFSs. Twenty metaphases for the karyotype were only obtained in three subjects (15%), and no SVs were found in any of the samples. One patient with culture failure showed a gain in chromosome 1q by fluorescence in situ hybridization, which was confirmed by OGM. In contrast, OGM provided good quality results in all subjects, and SVs were detected in 14 of them (70%), mostly corresponding to cryptic submicroscopic alterations not observed by standard techniques. Therefore, OGM emerges as a powerful tool that provides complete and evaluable results in hypocellular BMFSs, reducing multiple tests into a single assay and overcoming some of the main limitations of conventional techniques. Furthermore, in addition to confirming the abnormalities detected by conventional techniques, OGM found new alterations beyond their detection limits.


Subject(s)
In Situ Hybridization, Fluorescence , Humans , Male , Female , Middle Aged , Adult , Aged , In Situ Hybridization, Fluorescence/methods , Chromosome Mapping/methods , Bone Marrow Failure Disorders/genetics , Chromosome Aberrations , Adolescent , Cytogenetic Analysis/methods , Bone Marrow Diseases/genetics , Karyotyping/methods , Young Adult
6.
Leukemia ; 38(6): 1256-1265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740980

ABSTRACT

Recent advances in in-depth data-independent acquisition proteomic analysis have enabled comprehensive quantitative analysis of >10,000 proteins. Herein, an integrated proteogenomic analysis for inherited bone marrow failure syndrome (IBMFS) was performed to reveal their biological features and to develop a proteomic-based diagnostic assay in the discovery cohort; dyskeratosis congenita (n = 12), Fanconi anemia (n = 11), Diamond-Blackfan anemia (DBA, n = 9), Shwachman-Diamond syndrome (SDS, n = 6), ADH5/ALDH2 deficiency (n = 4), and other IBMFS (n = 18). Unsupervised proteomic clustering identified eight independent clusters (C1-C8), with the ribosomal pathway specifically downregulated in C1 and C2, enriched for DBA and SDS, respectively. Six patients with SDS had significantly decreased SBDS protein expression, with two of these not diagnosed by DNA sequencing alone. Four patients with ADH5/ALDH2 deficiency showed significantly reduced ADH5 protein expression. To perform a large-scale rapid IBMFS screening, targeted proteomic analysis was performed on 417 samples from patients with IBMFS-related hematological disorders (n = 390) and healthy controls (n = 27). SBDS and ADH5 protein expressions were significantly reduced in SDS and ADH5/ALDH2 deficiency, respectively. The clinical application of this first integrated proteogenomic analysis would be useful for the diagnosis and screening of IBMFS, where appropriate clinical screening tests are lacking.


Subject(s)
Bone Marrow Diseases , Bone Marrow Failure Disorders , Proteogenomics , Humans , Bone Marrow Failure Disorders/genetics , Bone Marrow Failure Disorders/pathology , Proteogenomics/methods , Male , Female , Bone Marrow Diseases/genetics , Bone Marrow Diseases/pathology , Child , Adult , Adolescent , Child, Preschool , Anemia, Diamond-Blackfan/genetics , Anemia, Diamond-Blackfan/diagnosis , Young Adult , Fanconi Anemia/genetics , Fanconi Anemia/diagnosis , Proteomics/methods , Infant , Shwachman-Diamond Syndrome/genetics , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/diagnosis , Dyskeratosis Congenita/pathology
9.
J Pediatr Hematol Oncol ; 46(3): e214-e219, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38408162

ABSTRACT

BACKGROUND: Multisystemic findings of inherited bone marrow failure syndromes may cause difficulty in diagnosis. Exome sequencing (ES) helps to define the etiology of rare diseases and reanalysis offers a valuable new diagnostic approach. Herein, we present the clinical and molecular characteristics of a girl who was referred for cytopenia and frequent infections. CASE REPORT: A 5-year-old girl with cytopenia, dysmorphism, short stature, developmental delay, and myopia was referred for genetic counseling. Reanalysis of the ES data revealed a homozygous splice-site variant in the DNAJC21 (NM_001012339.3:c.983+1G>A), causing Shwachman-Diamond Syndrome (SDS). It was shown by the RNA sequencing that exon 7 was skipped, causing an 88-nucleotide deletion. CONCLUSIONS: Precise genetic diagnosis enables genetic counseling and improves patient management by avoiding inappropriate treatment and unnecessary testing. This report would contribute to the clinical and molecular understanding of this rare type of SDS caused by DNAJC21 variants and expand the phenotypic features of this condition.


Subject(s)
Bone Marrow Diseases , Cytopenia , Female , Humans , Child, Preschool , Congenital Bone Marrow Failure Syndromes/genetics , Exome/genetics , Shwachman-Diamond Syndrome , Homozygote , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/genetics
10.
Leuk Res ; 137: 107441, 2024 02.
Article in English | MEDLINE | ID: mdl-38301422

ABSTRACT

Inherited bone marrow failure syndromes and germline predisposition syndromes (IBMFS/GPS) are associated with increased risk for hematologic malignancies, particularly myeloid neoplasms, such as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). The diagnosis of MDS in these syndromes poses difficulty due to frequent bone marrow hypocellularity and the presence of some degree of dysplastic features related to the underlying germline defect causing abnormal maturation of one or more cell lines. Yet, the diagnosis of MDS is usually associated with a worse outcome in several IBMFS/GPS. Criteria for the diagnosis of MDS in IBMFS/GPS have not been standardized with some authors suggesting a mixture of morphologic, cytogenetic, and genetic criteria. This review highlights these challenges and suggests a more standardized approach to nomenclature and diagnostic criteria.


Subject(s)
Bone Marrow Diseases , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Bone Marrow Diseases/genetics , Bone Marrow Diseases/complications , Bone Marrow Diseases/pathology , Congenital Bone Marrow Failure Syndromes/complications , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Leukemia, Myeloid, Acute/genetics , Genetic Predisposition to Disease , Germ Cells/pathology
12.
Int J Hematol ; 119(4): 383-391, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240987

ABSTRACT

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by exocrine pancreatic insufficiency and bone marrow failure. The depletion of SBDS protein by RNA interference has been shown to cause inhibition of cell proliferation in several cell lines. However, the precise mechanism by which the loss of SBDS leads to inhibition of cell growth remains unknown. To evaluate the impaired growth of SBDS-knockdown cells, we analyzed Epstein-Barr virus-transformed lymphoblast cells (LCLs) derived from two patients with SDS (c. 183_184TA > CT and c. 258 + 2 T > C). After 3 days of culture, the growth of LCL-SDS cell lines was considerably less than that of control donor cells. By annealing control primer-based GeneFishing PCR screening, we found that galectin-1 (Gal-1) mRNA expression was elevated in LCL-SDS cells. Western blot analysis showed that the level of Gal-1 protein expression was also increased in LCL-SDS cells as well as in SBDS-knockdown 32Dcl3 murine myeloid cells. We confirmed that recombinant Gal-1 inhibited the proliferation of both LCL-control and LCL-SDS cells and induced apoptosis (as determined by annexin V-positive staining). These results suggest that the overexpression of Gal-1 contributes to abnormal cell growth in SBDS-deficient cells.


Subject(s)
Benzamides , Bone Marrow Diseases , Epstein-Barr Virus Infections , Exocrine Pancreatic Insufficiency , Galectin 1 , Tyrosine , Animals , Humans , Mice , Bone Marrow Diseases/genetics , Cell Proliferation , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/metabolism , Galectin 1/genetics , Herpesvirus 4, Human , Proteins , Shwachman-Diamond Syndrome , Tyrosine/analogs & derivatives
13.
Br J Haematol ; 204(1): 45-55, 2024 01.
Article in English | MEDLINE | ID: mdl-38049194

ABSTRACT

Neutrophils are the shortest-lived blood cells, which requires a prodigious degree of proliferation and differentiation to sustain physiologically sufficient numbers and be poised to respond quickly to infectious emergencies. More than 107 neutrophils are produced every minute in an adult bone marrow-a process that is tightly regulated by a small group of cytokines and chemical mediators and dependent on nutrients and energy. Like granulocyte colony-stimulating factor, the primary growth factor for granulopoiesis, they stimulate signalling pathways, some affecting metabolism. Nutrient or energy deficiency stresses the survival, proliferation, and differentiation of neutrophils and their precursors. Thus, it is not surprising that monogenic disorders related to metabolism exist that result in neutropenia. Among these are pathogenic mutations in HAX1, G6PC3, SLC37A4, TAFAZZIN, SBDS, EFL1 and the mitochondrial disorders. These mutations perturb carbohydrate, lipid and/or protein metabolism. We hypothesize that metabolic disturbances may drive the pathogenesis of a subset of inherited neutropenias just as defects in DNA damage response do in Fanconi anaemia, telomere maintenance in dyskeratosis congenita and ribosome formation in Diamond-Blackfan anaemia. Greater understanding of metabolic pathways in granulopoiesis will identify points of vulnerability in production and may point to new strategies for the treatment of neutropenias.


Subject(s)
Bone Marrow Diseases , Fanconi Anemia , Neutropenia , Adult , Humans , Bone Marrow Diseases/genetics , Fanconi Anemia/genetics , Bone Marrow/pathology , Bone Marrow Failure Disorders , Neutropenia/pathology , Adaptor Proteins, Signal Transducing , Monosaccharide Transport Proteins , Antiporters
14.
Br J Haematol ; 204(1): 292-305, 2024 01.
Article in English | MEDLINE | ID: mdl-37876306

ABSTRACT

Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency and skeletal abnormalities. SDS bone marrow haematopoietic progenitors show increased apoptosis and impairment in granulocytic differentiation. Loss of Shwachman-Bodian-Diamond syndrome (SBDS) expression results in reduced eukaryotic 80S ribosome maturation. Biallelic mutations in the SBDS gene are found in ~90% of SDS patients, ~55% of whom carry the c.183-184TA>CT nonsense mutation. Several translational readthrough-inducing drugs aimed at suppressing nonsense mutations have been developed. One of these, ataluren, has received approval in Europe for the treatment of Duchenne muscular dystrophy. We previously showed that ataluren can restore full-length SBDS protein synthesis in SDS-derived bone marrow cells. Here, we extend our preclinical study to assess the functional restoration of SBDS capabilities in vitro and ex vivo. Ataluren improved 80S ribosome assembly and total protein synthesis in SDS-derived cells, restored myelopoiesis in myeloid progenitors, improved neutrophil chemotaxis in vitro and reduced neutrophil dysplastic markers ex vivo. Ataluren also restored full-length SBDS synthesis in primary osteoblasts, suggesting that its beneficial role may go beyond the myeloid compartment. Altogether, our results strengthened the rationale for a Phase I/II clinical trial of ataluren in SDS patients who harbour the nonsense mutation.


Subject(s)
Bone Marrow Diseases , Exocrine Pancreatic Insufficiency , Lipomatosis , Humans , Shwachman-Diamond Syndrome , Tumor Suppressor Protein p53/genetics , Lipomatosis/genetics , Codon, Nonsense , Myelopoiesis , Neutrophils/metabolism , Chemotaxis , Bone Marrow Diseases/genetics , Bone Marrow Diseases/therapy , Exocrine Pancreatic Insufficiency/genetics , Ribosomes/metabolism
15.
J Mol Diagn ; 26(3): 191-201, 2024 03.
Article in English | MEDLINE | ID: mdl-38103590

ABSTRACT

Inherited bone marrow failure syndromes (IBMFS) are a group of heterogeneous disorders that account for ∼30% of pediatric cases of bone marrow failure and are often associated with developmental abnormalities and cancer predisposition. This article reports the laboratory validation and clinical utility of a large-scale, custom-designed next-generation sequencing panel, Children's Hospital of Philadelphia (CHOP) IBMFS panel, for the diagnosis of IBMFS in a cohort of pediatric patients. This panel demonstrated excellent analytic accuracy, with 100% sensitivity, ≥99.99% specificity, and 100% reproducibility on validation samples. In 269 patients with suspected IBMFS, this next-generation sequencing panel was used for identifying single-nucleotide variants, small insertions/deletions, and copy number variations in mosaic or nonmosaic status. Sixty-one pathogenic/likely pathogenic variants (54 single-nucleotide variants/insertions/deletions and 7 copy number variations) and 24 hypomorphic variants were identified, resulting in the molecular diagnosis of IBMFS in 21 cases (7.8%) and exclusion of IBMFS with a diagnosis of a blood disorder in 10 cases (3.7%). Secondary findings, including evidence of early hematologic malignancies and other hereditary cancer-predisposition syndromes, were observed in 9 cases (3.3%). The CHOP IBMFS panel was highly sensitive and specific, with a significant increase in the diagnostic yield of IBMFS. These findings suggest that next-generation sequencing-based panel testing should be a part of routine diagnostics in patients with suspected IBMFS.


Subject(s)
Anemia, Aplastic , Bone Marrow Diseases , Hemoglobinuria, Paroxysmal , Humans , Child , Anemia, Aplastic/diagnosis , Anemia, Aplastic/genetics , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/genetics , Congenital Bone Marrow Failure Syndromes , DNA Copy Number Variations/genetics , Reproducibility of Results , Hemoglobinuria, Paroxysmal/diagnosis , Hemoglobinuria, Paroxysmal/genetics , High-Throughput Nucleotide Sequencing/methods , Nucleotides
16.
Hematology Am Soc Hematol Educ Program ; 2023(1): 548-555, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066926

ABSTRACT

The inherited bone marrow failure syndromes (IBMFS) are a heterogenous group of disorders caused by germline mutations in related genes and characterized by bone marrow failure (BMF), disease specific organ involvement, and, in most cases, predisposition to malignancy. Their distinction from immune marrow failure can often be challenging, particularly when presentations occur in adulthood or are atypical. A combination of functional (disease specific assays) and genetic testing is optimal in assessing all new BMF patients for an inherited etiology. However, genetic testing is costly and may not be available worldwide due to resource constraints; in such cases, clinical history, standard laboratory testing, and the use of algorithms can guide diagnosis. Interpretation of genetic results can be challenging and must reflect assessment of pathogenicity, inheritance pattern, clinical phenotype, and specimen type used. Due to the progressive use of genomics, new IBMFS continue to be identified, widening the spectrum of these disorders.


Subject(s)
Anemia, Aplastic , Bone Marrow Diseases , Pancytopenia , Adult , Humans , Bone Marrow , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/genetics , Anemia, Aplastic/diagnosis , Anemia, Aplastic/genetics , Anemia, Aplastic/therapy , Congenital Bone Marrow Failure Syndromes , Bone Marrow Failure Disorders
17.
Best Pract Res Clin Haematol ; 36(4): 101516, 2023 12.
Article in English | MEDLINE | ID: mdl-38092475

ABSTRACT

The bone marrow failure syndromes (BMFS) are a diverse group of acquired and inherited diseases which may manifest in cytopenias, haematological malignancy and/or syndromic multisystem disease. Patients with BMFS frequently experience poor outcomes, and improved treatment strategies are needed. Collation of clinical characteristics and patient outcomes in a national disease-specific registry represents a powerful tool to identify areas of need and support clinical and research collaboration. Novel treatment strategies such as gene therapy, particularly in rare diseases, will depend on the ability to identify eligible patients alongside the molecular genetic features of their disease that may be amenable to novel therapy. The Australian Aplastic Anaemia and other Bone Marrow Failure Syndromes Registry (AAR) aims to improve outcomes for all paediatric and adult patients with BMFS in Australia by describing the demographics, treatments (including supportive care) and outcomes, and serving as a resource for research and practice improvement.


Subject(s)
Anemia, Aplastic , Bone Marrow Diseases , Adult , Humans , Child , Anemia, Aplastic/genetics , Anemia, Aplastic/therapy , Anemia, Aplastic/pathology , Bone Marrow Diseases/genetics , Bone Marrow Diseases/therapy , Bone Marrow Diseases/pathology , Australia/epidemiology , Bone Marrow Failure Disorders , Syndrome , Registries
18.
Curr Res Transl Med ; 71(4): 103423, 2023.
Article in English | MEDLINE | ID: mdl-38016422

ABSTRACT

Bone marrow failure syndromes are rare disorders characterized by bone marrow hypocellularity and resultant peripheral cytopenias. The most frequent form is acquired, so-called aplastic anemia or idiopathic aplastic anemia, an auto-immune disorder frequently associated with paroxysmal nocturnal hemoglobinuria, whereas inherited bone marrow failure syndromes are related to pathogenic germline variants. Among newly identified germline variants, GATA2 deficiency and SAMD9/9L syndromes have a special significance. Other germline variants impacting biological processes, such as DNA repair, telomere biology, and ribosome biogenesis, may cause major syndromes including Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome. Bone marrow failure syndromes are at risk of secondary progression towards myeloid neoplasms in the form of myelodysplastic neoplasms or acute myeloid leukemia. Acquired clonal cytogenetic abnormalities may be present before or at the onset of progression; some have prognostic value and/or represent somatic rescue mechanisms in inherited syndromes. On the other hand, the differential diagnosis between aplastic anemia and hypoplastic myelodysplastic neoplasm remains challenging. Here we discuss the value of cytogenetic abnormalities in bone marrow failure syndromes and propose recommendations for cytogenetic diagnosis and follow-up.


Subject(s)
Anemia, Aplastic , Bone Marrow Diseases , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Anemia, Aplastic/diagnosis , Anemia, Aplastic/genetics , Anemia, Aplastic/therapy , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/genetics , Bone Marrow Diseases/therapy , Bone Marrow Failure Disorders/diagnosis , Bone Marrow Failure Disorders/therapy , Bone Marrow Failure Disorders/complications , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Leukemia, Myeloid, Acute/complications , Chromosome Aberrations , Cytogenetic Analysis , Intracellular Signaling Peptides and Proteins/genetics
19.
BMC Pediatr ; 23(1): 503, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37803383

ABSTRACT

BACKGROUND: Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease which results in inherited bone marrow failure (IBMF) and is characterized by exocrine pancreatic dysfunction and diverse clinical phenotypes. In the present study, we reviewed the internationally published reports on SDS patients, in order to summarize the clinical features, epidemiology, and treatment of SDS. METHODS: We searched the WangFang and China National Knowledge Infrastructure databases with the keywords "Shwachman-Diamond syndrome," "SDS," "SBDS gene" and "inherited bone marrow failure" for relevant articles published from January 2002 to October 2022. In addition, studies published from January 2002 to October 2022 were searched from the Web of Science, PubMed, and MEDLINE databases, using "Shwachman-diamond syndrome" as the keyword. Finally, one child with SDS treated in Tongji Hospital was also included. RESULTS: The clinical features of 156 patients with SDS were summarized. The three major clinical features of SDS were found to be peripheral blood cytopenia (96.8%), exocrine pancreatic dysfunction (83.3%), and failure to thrive (83.3%). The detection rate of SDS mutations was 94.6% (125/132). Mutations in SBDS, DNAJC21, SRP54, ELF6, and ELF1 have been reported. The male-to-female ratio was approximately 1.3/1. The median age of onset was 0.16 years, but the diagnostic age lagged by a median age of 1.3 years. CONCLUSIONS: Pancreatic exocrine insufficiency and growth failure were common initial symptoms. SDS onset occurred early in childhood, and individual differences were obvious. Comprehensive collection and analysis of case-related data can help clinicians understand the clinical characteristics of SDS, which may improve early diagnosis and promote effective clinical intervention.


Subject(s)
Bone Marrow Diseases , Exocrine Pancreatic Insufficiency , Female , Humans , Infant , Male , Bone Marrow Diseases/diagnosis , Bone Marrow Diseases/epidemiology , Bone Marrow Diseases/genetics , Exocrine Pancreatic Insufficiency/diagnosis , Exocrine Pancreatic Insufficiency/epidemiology , Exocrine Pancreatic Insufficiency/therapy , Mutation , Phenotype , Shwachman-Diamond Syndrome , Signal Recognition Particle/genetics
20.
Life Sci Alliance ; 6(12)2023 12.
Article in English | MEDLINE | ID: mdl-37816584

ABSTRACT

Defects in ribosomal biogenesis profoundly affect organismal development and cellular function, and these ribosomopathies produce a variety of phenotypes. One ribosomopathy, Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, pancreatic exocrine insufficiency, and skeletal anomalies. SDS results from biallelic mutations in SBDS, which encodes a ribosome assembly factor. Some individuals express a missense mutation, SBDS R126T , along with the common K62X mutation. We reported that the sbds-null zebrafish phenocopies much of SDS. We further showed activation of Tp53-dependent pathways before the fish died during the larval stage. Here, we expressed SBDS R126T as a transgene in the sbds -/- background. We showed that one copy of the SBDS R126T transgene permitted the establishment of maternal zygotic sbds-null fish which produced defective embryos with cdkn1a up-regulation, a Tp53 target involved in cell cycle arrest. None survived beyond 3 dpf. However, two copies of the transgene resulted in normal development and lifespan. Surprisingly, neutropenia persisted. The surviving fish displayed suppression of female sex differentiation, a stress response in zebrafish. To evaluate the role of Tp53 in the pathogenesis of sbds -/- fish phenotype, we bred the fish with a DNA binding deficient allele, tp53 M214K Expression of the loss-of-function tp53 M214K did not rescue neutropenia or survival in sbds-null zebrafish. Increased expression of cdkn1a was abrogated in the tp53 M214K/M214K ;sbds -/- fish. We conclude that the amount of SBDSR126T protein is important for development, inactivation of Tp53 fails to rescue neutropenia or survival in the sbds-null background, and cdkn1a up-regulation was dependent on WT tp53 We hypothesize that additional pathways are involved in the pathophysiology of SDS.


Subject(s)
Bone Marrow Diseases , Lipomatosis , Neutropenia , Animals , Female , Zebrafish/genetics , Lipomatosis/genetics , Lipomatosis/metabolism , Lipomatosis/pathology , Bone Marrow Diseases/genetics , Bone Marrow Diseases/metabolism , Bone Marrow Diseases/pathology , Proteins/genetics , Nuclear Proteins/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL