Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.776
Filter
1.
Cell Death Dis ; 15(6): 390, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830885

ABSTRACT

Glioma is the most common and aggressive type of primary malignant brain tumor. The N6-methyladenosine (m6A) modification widely exists in eukaryotic cells and plays an important role in the occurrence and development of human tumors. However, the function and mechanism of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an RNA-binding protein and m6A reader in gliomas remains to be comprehensively and extensively explored. Herein, we found that HNRNPC mRNA and protein overexpression were associated with a poor prognosis for patients with gliomas, based on the data from TCGA, the CGGA, and the TMAs. Biologically, HNRNPC knockdown markedly repressed malignant phenotypes of glioma in vitro and in vivo, whereas ectopic HNRNPC expression had the opposite effect. Integrative RNA sequencing and MeRIP sequencing analyses identified interleukin-1 receptor-associated kinase 1 (IRAK1) as a downstream target of HNRNPC. The glioma public datasets and tissue microarrays (TMAs) data indicated that IRAK1 overexpression was associated with poor prognosis, and IRAK1 knockdown significantly repressed malignant biological behavior in vitro. Mechanistically, HNRNPC maintains the mRNA stability of IRAK1 in an m6A-dependent manner, resulting in activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which was necessary for the malignant behavior of glioma. Our findings demonstrate the HNRNPC-IRAK1-MAPK axis as a crucial carcinogenic factor for glioma and the novel underlying mechanism of IRAK1 upregulation, which provides a rationale for therapeutically targeting epitranscriptomic modulators in glioma.


Subject(s)
Disease Progression , Glioma , Heterogeneous-Nuclear Ribonucleoprotein Group C , Interleukin-1 Receptor-Associated Kinases , MAP Kinase Signaling System , RNA, Messenger , Humans , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Interleukin-1 Receptor-Associated Kinases/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Cell Line, Tumor , MAP Kinase Signaling System/genetics , Mice , RNA Stability/genetics , Mice, Nude , Animals , Gene Expression Regulation, Neoplastic , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Female , Male , Adenosine/analogs & derivatives , Adenosine/metabolism , Prognosis
2.
JCO Precis Oncol ; 8: e2300639, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838276

ABSTRACT

PURPOSE: Genomic alterations have been identified in patients with breast cancer brain metastases (BCBMs), but large structural rearrangements have not been extensively studied. MATERIALS AND METHODS: We analyzed the genomic profiles of 822 BCBMs and compared them with 11,988 local, breast-biopsied breast cancers (BCs) and 15,516 non-CNS metastases (Non-CNS M) derived from formalin-fixed paraffin-embedded material using targeted capture sequencing. RESULTS: Nine genes with structural rearrangements were more prevalent within BCBMs as compared with local BCs and Non-CNS M (adjusted-P < .05) and displayed a prevalence of >0.5%. The most common rearrangements within BCBMs involves cyclin-dependent kinase 12 (CDK12; 3.53%) as compared with the local BC (0.86%; adjusted-P = 7.1 × 10-8) and Non-CNS M specimens (0.68%; adjusted-P = 3.7 × 10-10). CDK12 rearrangements had a significantly higher frequency within human epidermal growth factor receptor 2 (HER2)-positive BCBMs (14.59%) compared with HER2-positive BCs (7.80%; P = 4.6 × 10-3) and HER2-positive Non-CNS M (7.87%; P = 4.8 × 10-3). CONCLUSION: The most common structural rearrangements involve CDK12 with the higher prevalence in HER2-positive BCBMs. These data support more detailed investigation of the role and importance of CDK12 rearrangements in BCBMs.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Cyclin-Dependent Kinases , Gene Rearrangement , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Receptor, ErbB-2/genetics , Cyclin-Dependent Kinases/genetics , Middle Aged , Adult , Aged
3.
J Cancer Res Clin Oncol ; 150(6): 292, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842611

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is a highly aggressive and prevalent brain tumor that poses significant challenges in treatment. SRSF9, an RNA-binding protein, is essential for cellular processes and implicated in cancer progression. Yet, its function and mechanism in GBM need clarification. METHODS: Bioinformatics analysis was performed to explore differential expression of SRSF9 in GBM and its prognostic relevance to glioma patients. SRSF9 and CDK1 expression in GBM cell lines and patients' tissues were quantified by RT-qPCR, Western blot or immunofluorescence assay. The role of SRSF9 in GBM cell proliferation and migration was assessed by MTT, Transwell and colony formation assays. Additionally, transcriptional regulation of CDK1 by SRSF9 was investigated using ChIP-PCR and dual-luciferase assays. RESULTS: The elevated SRSF9 expression correlates to GBM stages and poor survival of glioma patients. Through gain-of-function and loss-of-function strategies, SRSF9 was demonstrated to promote proliferation and migration of GBM cells. Bioinformatics analysis showed that SRSF9 has an impact on cell growth pathways including cell cycle checkpoints and E2F targets. Mechanistically, SRSF9 appears to bind to the promoter of CDK1 gene and increase its transcription level, thus promoting GBM cell proliferation. CONCLUSIONS: These findings uncover the cellular function of SRSF9 in GBM and highlight its therapeutic potential for GBM.


Subject(s)
Brain Neoplasms , CDC2 Protein Kinase , Cell Movement , Cell Proliferation , Glioblastoma , Serine-Arginine Splicing Factors , Humans , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Prognosis , Female , Male , Middle Aged
4.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 605-609, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825907

ABSTRACT

Objective: To investigate the clinicopathological features of children with metachronous or synchronous primary tumors and to identify related genetic tumor syndromes. Methods: The clinicopathological data of 4 children with multiple primary tumors diagnosed in the Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China from 2011 to 2023 were collected. The histological, immunophenotypic and molecular characteristics were examined using H&E staining, immunohistochemical staining, PCR, Sanger sequencing and next-generation sequencing (NGS). The patients were followed up. Results: Case 1 was an 8-year-old boy with the adrenal cortical carcinoma, and 5 years later a poorly differentiated gastric adenocarcinoma was detected. Case 2 was a 2-year-old boy, presented with a left ventricular choroid plexus carcinoma, and a hepatoblastoma was detected 8 months later. Case 3 was a 9-month-old girl, diagnosed with renal rhabdoid tumor first and intracranial atypical teratoid/rhabdoid tumor (AT/RT) 3 months later. Case 4 was a 7-year-old boy and had a sigmoid colon adenocarcinoma 3 years after the diagnosis of a glioblastoma. The morphology and immunohistochemical features of the metachronous or synchronous primary tumors in the 4 cases were similar to the corresponding symptom-presenting/first-diagnosed tumors. No characteristic germ line mutations were detected in cases 1 and 2 by relevant molecular detection, and the rhabdoid tumor predisposition syndrome was confirmed in case 3 using NGS. Case 4 was clearly related to constitutional mismatch repair deficiency as shown by the molecular testing and clinical features. Conclusions: Childhood multiple primary tumors are a rare disease with histological morphology and immunophenotype similar to the symptom-presenting tumors. They are either sporadic or associated with a genetic (tumor) syndrome. The development of both tumors can occur simultaneously (synchronously) or at different times (metachronously). Early identification of the children associated with genetic tumor syndromes can facilitate routine tumor screening and early treatment.


Subject(s)
Hepatoblastoma , Kidney Neoplasms , Liver Neoplasms , Neoplasms, Multiple Primary , Rhabdoid Tumor , Stomach Neoplasms , Humans , Male , Child , Female , Child, Preschool , Neoplasms, Multiple Primary/genetics , Neoplasms, Multiple Primary/pathology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Infant , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Rhabdoid Tumor/genetics , Rhabdoid Tumor/pathology , Hepatoblastoma/genetics , Hepatoblastoma/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/diagnosis , Choroid Plexus Neoplasms/genetics , Choroid Plexus Neoplasms/pathology , Choroid Plexus Neoplasms/diagnosis , Adrenocortical Carcinoma/genetics , Adrenocortical Carcinoma/pathology , Adrenal Cortex Neoplasms/pathology , Adrenal Cortex Neoplasms/genetics , Teratoma/pathology , Teratoma/genetics , Teratoma/surgery , Brain Neoplasms/genetics , Brain Neoplasms/pathology , SMARCB1 Protein/genetics , MutL Protein Homolog 1/genetics , Neoplasms, Second Primary/pathology , Neoplasms, Second Primary/genetics , High-Throughput Nucleotide Sequencing , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/pathology
5.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 585-591, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825904

ABSTRACT

Objective: To investigate the clinical, radiological, and pathological features of anaplastic gangliogliomas (AGGs) and to determine whether these tumors represent a distinct entity. Methods: Consecutive 667 cases of ganglioglioma (GG) diagnosed at the Xuanwu Hospital, Capital Medical University, Beijing, China between January 2015 and July 2023 were screened. Among these cases, 9 pathologically confirmed AGG cases were identified. Their clinical, radiological, treatment, and outcome data were analyzed retrospectively. Most of the tumor samples were subject to next-generation sequencing, while a subset of them were subject to DNA methylation profiling. Results: Among the 9 patients, there were five males and four females, with a median age of 8 years. Epileptic seizures (5/9) were the most frequently presented symptom. Radiological examinations showed three types of radiological manifestations: four cases showed abnormal MRI signals with no significant mass effects and mild enhancement; two cases demonstrated a mixed solid-cystic density lesion with peritumoral edema, which showed significant heterogeneous enhancement and obvious mass effects, and one case displayed cystic cavity formation with nodules on MRI, which showed evident enhancements. All cases exhibited mutations that were predicted to activate the MAP kinase signaling pathway, including seven with BRAF p.V600E mutation and two with NF1 mutation. Five AGGs with mutations involving the MAP kinase signaling pathway also had concurrent mutations, including three with CDKN2A homozygous deletion, one with a TERT promoter mutation, one with a H3F3A mutation, and one with a PTEN mutation. Conclusions: AGG exhibits a distinct spectrum of pathology, genetic mutations and clinical behaviors, differing from GG. Given these characteristics suggest that AGG may be a distinct tumor type, further expansion of the case series is needed. Therefore, a comprehensive integration of clinical, histological, and molecular analyses is required to correctly diagnose AGG. It will also help guide treatments and prognostication.


Subject(s)
Brain Neoplasms , DNA Methylation , Ganglioglioma , Magnetic Resonance Imaging , Mutation , PTEN Phosphohydrolase , Proto-Oncogene Proteins B-raf , Humans , Ganglioglioma/pathology , Ganglioglioma/genetics , Male , Female , Child , Retrospective Studies , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Proto-Oncogene Proteins B-raf/genetics , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Telomerase/genetics , Histones/genetics , Histones/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Epilepsy/pathology , Epilepsy/genetics
6.
Sci Rep ; 14(1): 12602, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38824202

ABSTRACT

Mitochondrial RNA modification (MRM) plays a crucial role in regulating the expression of key mitochondrial genes and promoting tumor metastasis. Despite its significance, comprehensive studies on MRM in lower grade gliomas (LGGs) remain unknown. Single-cell RNA-seq data (GSE89567) was used to evaluate the distribution functional status, and correlation of MRM-related genes in different cell types of LGG microenvironment. We developed an MRM scoring system by selecting potential MRM-related genes using LASSO regression analysis and the Random Survival Forest algorithm, based on multiple bulk RNA-seq datasets from TCGA, CGGA, GSE16011, and E-MTAB-3892. Analysis was performed on prognostic and immunological features, signaling pathways, metabolism, somatic mutations and copy number variations (CNVs), treatment responses, and forecasting of potential small-molecule agents. A total of 35 MRM-related genes were selected from the literature. Differential expression analysis of 1120 normal brain tissues and 529 LGGs revealed that 22 and 10 genes were upregulated and downregulated, respectively. Most genes were associated with prognosis of LGG. METLL8, METLL2A, TRMT112, and METTL2B were extensively expressed in all cell types and different cell cycle of each cell type. Almost all cell types had clusters related to mitochondrial RNA processing, ribosome biogenesis, or oxidative phosphorylation. Cell-cell communication and Pearson correlation analyses indicated that MRM may promoting the development of microenvironment beneficial to malignant progression via modulating NCMA signaling pathway and ICP expression. A total of 11 and 9 MRM-related genes were observed by LASSO and the RSF algorithm, respectively, and finally 6 MRM-related genes were used to establish MRM scoring system (TRMT2B, TRMT11, METTL6, METTL8, TRMT6, and TRUB2). The six MRM-related genes were then validated by qPCR in glioma and normal tissues. MRM score can predict the malignant clinical characteristics, abundance of immune infiltration, gene variation, clinical outcome, the enrichment of signaling pathways and metabolism. In vitro experiments demonstrated that silencing METTL8 significantly curbs glioma cell proliferation and enhances apoptosis. Patients with a high MRM score showed a better response to immunotherapies and small-molecule agents such as arachidonyl trifluoromethyl ketone, MS.275, AH.6809, tacrolimus, and TTNPB. These novel insights into the biological impacts of MRM within the glioma microenvironment underscore its potential as a target for developing precise therapies, including immunotherapeutic approaches.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/genetics , Glioma/pathology , Prognosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , RNA, Mitochondrial/genetics , RNA, Mitochondrial/metabolism , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , RNA Processing, Post-Transcriptional , Neoplasm Grading , Mitochondria/genetics , Mitochondria/metabolism , Biomarkers, Tumor/genetics , Gene Expression Profiling , Multiomics
7.
Oncol Res ; 32(6): 1037-1045, 2024.
Article in English | MEDLINE | ID: mdl-38827324

ABSTRACT

Background: The dysregulation of Isocitrate dehydrogenase (IDH) and the subsequent production of 2-Hydroxyglutrate (2HG) may alter the expression of epigenetic proteins in Grade 4 astrocytoma. The interplay mechanism between IDH, O-6-methylguanine-DNA methyltransferase (MGMT)-promoter methylation, and protein methyltransferase proteins-5 (PRMT5) activity, with tumor progression has never been described. Methods: A retrospective cohort of 34 patients with G4 astrocytoma is classified into IDH-mutant and IDH-wildtype tumors. Both groups were tested for MGMT-promoter methylation and PRMT5 through methylation-specific and gene expression PCR analysis. Inter-cohort statistical significance was evaluated. Results: Both IDH-mutant WHO grade 4 astrocytomas (n = 22, 64.7%) and IDH-wildtype glioblastomas (n = 12, 35.3%) had upregulated PRMT5 gene expression except in one case. Out of the 22 IDH-mutant tumors, 10 (45.5%) tumors showed MGMT-promoter methylation and 12 (54.5%) tumors had unmethylated MGMT. All IDH-wildtype tumors had unmethylated MGMT. There was a statistically significant relationship between MGMT-promoter methylation and IDH in G4 astrocytoma (p-value = 0.006). Statistically significant differences in progression-free survival (PFS) were also observed among all G4 astrocytomas that expressed PRMT5 and received either temozolomide (TMZ) or TMZ plus other chemotherapies, regardless of their IDH or MGMT-methylation status (p-value=0.0014). Specifically, IDH-mutant tumors that had upregulated PRMT5 activity and MGMT-promoter methylation, who received only TMZ, have exhibited longer PFS. Conclusions: The relationship between PRMT5, MGMT-promoter, and IDH is not tri-directional. However, accumulation of D2-hydroxyglutarate (2-HG), which partially activates 2-OG-dependent deoxygenase, may not affect their activities. In IDH-wildtype glioblastomas, the 2HG-2OG pathway is typically inactive, leading to PRMT5 upregulation. TMZ alone, compared to TMZ-plus, can increase PFS in upregulated PRMT5 tumors. Thus, using a PRMT5 inhibitor in G4 astrocytomas may help in tumor regression.


Subject(s)
Astrocytoma , DNA Methylation , DNA Modification Methylases , DNA Repair Enzymes , Disease Progression , Isocitrate Dehydrogenase , Mutation , Promoter Regions, Genetic , Protein-Arginine N-Methyltransferases , Tumor Suppressor Proteins , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , Isocitrate Dehydrogenase/genetics , Male , Female , Astrocytoma/genetics , Astrocytoma/pathology , Middle Aged , Adult , Retrospective Studies , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Neoplasm Grading , Aged , Temozolomide/therapeutic use , Temozolomide/pharmacology , Gene Expression Regulation, Neoplastic
8.
Cell Mol Life Sci ; 81(1): 247, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829550

ABSTRACT

BACKGROUND: The high degree of intratumoral genomic heterogeneity is a major obstacle for glioblastoma (GBM) tumors, one of the most lethal human malignancies, and is thought to influence conventional therapeutic outcomes negatively. The proneural-to-mesenchymal transition (PMT) of glioma stem cells (GSCs) confers resistance to radiation therapy in glioblastoma patients. POLD4 is associated with cancer progression, while the mechanisms underlying PMT and tumor radiation resistance have remained elusive. METHOD: Expression and prognosis of the POLD family were analyzed in TCGA, the Chinese Glioma Genome Atlas (CGGA) and GEO datasets. Tumorsphere formation and in vitro limiting dilution assay were performed to investigate the effect of UCHL3-POLD4 on GSC self-renewal. Apoptosis, TUNEL, cell cycle phase distribution, modification of the Single Cell Gel Electrophoresis (Comet), γ-H2AX immunofluorescence, and colony formation assays were conducted to evaluate the influence of UCHL3-POLD4 on GSC in ionizing radiation. Coimmunoprecipitation and GST pull-down assays were performed to identify POLD4 protein interactors. In vivo, intracranial xenograft mouse models were used to investigate the molecular effect of UCHL3, POLD4 or TCID on GCS. RESULT: We determined that POLD4 was considerably upregulated in MES-GSCs and was associated with a meagre prognosis. Ubiquitin carboxyl terminal hydrolase L3 (UCHL3), a DUB enzyme in the UCH protease family, is a bona fide deubiquitinase of POLD4 in GSCs. UCHL3 interacted with, depolyubiquitinated, and stabilized POLD4. Both in vitro and in vivo assays indicated that targeted depletion of the UCHL3-POLD4 axis reduced GSC self-renewal and tumorigenic capacity and resistance to IR treatment by impairing homologous recombination (HR) and nonhomologous end joining (NHEJ). Additionally, we proved that the UCHL3 inhibitor TCID induced POLD4 degradation and can significantly enhance the therapeutic effect of IR in a gsc-derived in situ xenograft model. CONCLUSION: These findings reveal a new signaling axis for GSC PMT regulation and highlight UCHL3-POLD4 as a potential therapeutic target in GBM. TCID, targeted for reducing the deubiquitinase activity of UCHL3, exhibited significant synergy against MES GSCs in combination with radiation.


Subject(s)
Neoplastic Stem Cells , Radiation Tolerance , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Radiation Tolerance/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/radiation effects , Animals , Mice , Cell Line, Tumor , Glioma/pathology , Glioma/genetics , Glioma/radiotherapy , Glioma/metabolism , Apoptosis/genetics , Apoptosis/radiation effects , Ubiquitination , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Mice, Nude , Phenotype , Gene Expression Regulation, Neoplastic , Prognosis
9.
Front Immunol ; 15: 1369972, 2024.
Article in English | MEDLINE | ID: mdl-38690285

ABSTRACT

Background: Temozolomide (TMZ) is a key component in the treatment of gliomas. Hypermutation induced by TMZ can be encountered in routine clinical practice, and its significance is progressively gaining recognition. However, the relationship between TMZ-induced hypermutation and the immunologic response remains controversial. Case presentation: We present the case of a 38-year-old male patient who underwent five surgeries for glioma. Initially diagnosed with IDH-mutant astrocytoma (WHO grade 2) during the first two surgeries, the disease progressed to grade 4 in subsequent interventions. Prior to the fourth surgery, the patient received 3 cycles of standard TMZ chemotherapy and 9 cycles of dose-dense TMZ regimens. Genomic and immunologic analyses of the tumor tissue obtained during the fourth surgery revealed a relatively favorable immune microenvironment, as indicated by an immunophenoscore of 5, suggesting potential benefits from immunotherapy. Consequently, the patient underwent low-dose irradiation combined with immunoadjuvant treatment. After completing 4 cycles of immunotherapy, the tumor significantly shrank, resulting in a partial response. However, after a 6-month duration of response, the patient experienced disease progression. Subsequent analysis of the tumor tissue obtained during the fifth surgery revealed the occurrence of hypermutation, with mutation signature analysis attributing TMZ treatment as the primary cause. Unfortunately, the patient succumbed shortly thereafter, with a survival period of 126 months. Conclusion: Patients subjected to a prolonged regimen of TMZ treatment may exhibit heightened vulnerability to hypermutation. This hypermutation induced by TMZ holds the potential to function as an indicator associated with unfavorable response to immunotherapy in gliomas.


Subject(s)
Antineoplastic Agents, Alkylating , Brain Neoplasms , Glioma , Mutation , Temozolomide , Humans , Temozolomide/therapeutic use , Male , Adult , Brain Neoplasms/therapy , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Glioma/genetics , Glioma/therapy , Glioma/drug therapy , Antineoplastic Agents, Alkylating/therapeutic use , Immunotherapy/methods , Fatal Outcome , Tumor Microenvironment/immunology
10.
Neurol India ; 72(2): 297-303, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38691473

ABSTRACT

BACKGROUND: Immune microenvironment is involved in tumor initiation and progression, and its effect on glioblastoma (GBM) is still unknown. OBJECT: We sought to investigate the association between immune status and GBM. METHODS: Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, and we identified two immune subtypes based on 29 immune-associated gene sets. RESULTS: Through single-sample gene set enrichment analysis (ssGSEA), we found that the high-immunity subtype had the most tumor-infiltrating immune cells and immune checkpoint molecules in GBM patients. Furthermore, we could more effectively identify immune signature pathways in GBM. CONCLUSION: After validation with the GEO dataset, we conclude that the identified GBM high-immune subtypes may be amenable to the application of novel immune therapy for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Tumor Microenvironment , Humans , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/pathology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Gene Expression Profiling , Transcriptome , Immune Checkpoint Proteins/genetics , Gene Expression Regulation, Neoplastic
11.
JCO Precis Oncol ; 8: e2300470, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38691815

ABSTRACT

PURPOSE: Small cell lung cancer (SCLC) often metastasizes to the brain and has poor prognosis. SCLC subtypes distinguished by expressing transcriptional factors ASCL1 or NEUROD1 have been identified. This study investigates the impact of transcription factor-defined SCLC subtype on incidence and outcomes of brain metastases (BMs). METHODS: Patients with SCLC with ASCL1 (A) and NEUROD1 (N) immunohistochemical expression status were identified and classified: (1) A+/N-, (2) A+/N+, (3) A-/N+, and (4) A-/N-. Cumulative incidence competing risk analyses were used to assess incidence of CNS progression. Cox proportional hazards models were used for multivariable analyses of overall survival (OS) and CNS progression-free survival (CNS-PFS). RESULTS: Of 164 patients, most were either A+/N- or A+/N+ (n = 62, n = 63, respectively). BMs were present at diagnosis in 24 patients (15%). Among them, the 12-month cumulative incidence of subsequent CNS progression was numerically highest for A+/N- (50% [95% CI, 10.5 to 74.7]; P = .47). Among those BM-free at diagnosis, the 12-month cumulative incidence of CNS progression was numerically the highest for A+/N- (16% [95% CI, 7.5 to 27.9]) and A-/N+ (9.1% [95% CI, 0.0 to 34.8]; P = .20). Both subtypes, A+/N- and A-/N+, had worse OS compared with A+/N+ (A+/N-: hazard ratio [HR], 1.62 [95% CI, 1.01 to 2.51]; P < .05; A-/N+: HR, 3.02 [95% CI, 1.35 to 6.76]; P = .007). Excellent response rates (28, 65% CR/PR) across subtypes were seen in patients who had CNS-directed radiotherapy versus systemic therapy alone (9, 36% CR/PR). CONCLUSION: To our knowledge, this report is the first to investigate CNS-specific outcomes based on transcription factor subtypes in patients with SCLC. BM-free patients at diagnosis with A+/N- or A-/N+ subtypes had worse outcomes compared with those with transcriptional factor coexpression. Further investigation into the mechanisms and implications of SCLC subtyping on CNS-specific outcomes is warranted to ultimately guide personalized care.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/secondary , Male , Female , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Middle Aged , Prognosis , Aged , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Adult , Aged, 80 and over , Central Nervous System Neoplasms/secondary , Central Nervous System Neoplasms/genetics , Retrospective Studies
12.
Clin Lab Med ; 44(2): 149-159, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821638

ABSTRACT

Gliomas are the most common adult and pediatric primary brain tumors. Molecular studies have identified features that can enhance diagnosis and provide biomarkers. IDH1/2 mutation with ATRX and TP53 mutations defines diffuse astrocytomas, whereas IDH1/2 mutations with 1p19q loss defines oligodendroglioma. Focal amplifications of receptor tyrosine kinase genes, TERT promoter mutation, and loss of chromosomes 10 and 13 with trisomy of chromosome 7 are characteristic features of glioblastoma and can be used for diagnosis. BRAF gene fusions and mutations in low-grade gliomas and histone H3 mutations in high-grade gliomas also can be used for diagnostics.


Subject(s)
Brain Neoplasms , Glioma , Humans , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/diagnosis , Glioma/genetics , Glioma/pathology , Glioma/diagnosis , Isocitrate Dehydrogenase/genetics , Mutation , Brain/pathology
13.
Nat Commun ; 15(1): 4549, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811525

ABSTRACT

Breast cancer metastasis to the brain is a clinical challenge rising in prevalence. However, the underlying mechanisms, especially how cancer cells adapt a distant brain niche to facilitate colonization, remain poorly understood. A unique metabolic feature of the brain is the coupling between neurons and astrocytes through glutamate, glutamine, and lactate. Here we show that extracellular vesicles from breast cancer cells with a high potential to develop brain metastases carry high levels of miR-199b-5p, which shows higher levels in the blood of breast cancer patients with brain metastases comparing to those with metastatic cancer in other organs. miR-199b-5p targets solute carrier transporters (SLC1A2/EAAT2 in astrocytes and SLC38A2/SNAT2 and SLC16A7/MCT2 in neurons) to hijack the neuron-astrocyte metabolic coupling, leading to extracellular retention of these metabolites and promoting cancer cell growth. Our findings reveal a mechanism through which cancer cells of a non-brain origin reprogram neural metabolism to fuel brain metastases.


Subject(s)
Astrocytes , Brain Neoplasms , Breast Neoplasms , MicroRNAs , Neurons , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Brain Neoplasms/secondary , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Female , Animals , Cell Line, Tumor , Astrocytes/metabolism , Astrocytes/pathology , Neurons/metabolism , Neurons/pathology , Mice , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Extracellular Vesicles/metabolism , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Gene Expression Regulation, Neoplastic , Glutamic Acid/metabolism , Glutamine/metabolism , Brain/metabolism , Brain/pathology , Lactic Acid/metabolism , Cell Proliferation
14.
Sci Rep ; 14(1): 12363, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811596

ABSTRACT

Radiotherapy is the standard treatment for glioblastoma (GBM), but the overall survival rate for radiotherapy treated GBM patients is poor. The use of adjuvant and concomitant temozolomide (TMZ) improves the outcome; however, the effectiveness of this treatment varies according to MGMT levels. Herein, we evaluated whether MGMT expression affected the radioresponse of human GBM, GBM stem-like cells (GSCs), and melanoma. Our results indicated a correlation between MGMT promoter methylation status and MGMT expression. MGMT-producing cell lines ACPK1, GBMJ1, A375, and MM415 displayed enhanced radiosensitivity when MGMT was silenced using siRNA or when inhibited by lomeguatrib, whereas the OSU61, NSC11, WM852, and WM266-4 cell lines, which do not normally produce MGMT, displayed reduced radiosensitivity when MGMT was overexpressed. Mechanistically lomeguatrib prolonged radiation-induced γH2AX retention in MGMT-producing cells without specific cell cycle changes, suggesting that lomeguatrib-induced radiosensitization in these cells is due to radiation-induced DNA double-stranded break (DSB) repair inhibition. The DNA-DSB repair inhibition resulted in cell death via mitotic catastrophe in MGMT-producing cells. Overall, our results demonstrate that MGMT expression regulates radioresponse in GBM, GSC, and melanoma, implying a role for MGMT as a target for radiosensitization.


Subject(s)
DNA Modification Methylases , DNA Repair Enzymes , Glioblastoma , Melanoma , Radiation Tolerance , Tumor Suppressor Proteins , Humans , Glioblastoma/genetics , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Glioblastoma/pathology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Melanoma/radiotherapy , DNA Modification Methylases/metabolism , DNA Modification Methylases/genetics , Cell Line, Tumor , Radiation Tolerance/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/radiation effects , Neoplastic Stem Cells/pathology , Promoter Regions, Genetic , DNA Methylation , DNA Repair , DNA Breaks, Double-Stranded/radiation effects , Gene Expression Regulation, Neoplastic , Temozolomide/pharmacology , Brain Neoplasms/genetics , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Purines
15.
Exp Cell Res ; 439(1): 114076, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38719174

ABSTRACT

Glioblastoma (GBM) is a common primary central nervous system tumor. The molecular mechanisms of glioma are unknown, and the prognosis is poor. Therefore, exploring the underlying mechanisms and screening for new prognostic markers and therapeutic targets is crucial. We utilized the weighted gene co-expression network analysis (WGCNA), Differentially Expressed Genes (DEGs), and LASSO-COX analysis to identify three target genes. Next, we constructed and evaluated a prognostic model, screening out COL8A1 as a risk gene. Through a sequence of cellular functional experiments, in vivo studies, and RNA sequencing, we delved into exploring the functional effects and molecular mechanisms of COL8A1 on GBM cells. Finally, the correlation between COL8A1 and tumor immune cells and different inflammatory responses was analyzed. Immunohistochemistry experiments revealed the influence of COL8A1 on macrophage polarization. The COL8A1 expression level was associated with the grade, prognosis, and tumor microenvironment (TME) of glioma. Functional experiments showed that COL8A1 inhibited GBM cell apoptosis and promoted migration, invasion, and proliferation in vitro and in vivo. We also found that COL8A1 promotes the epithelial-mesenchymal transition process and may mediate the activation of the ERK pathway through SHC1. In addition, immune infiltration analysis showed that COL8A1 was closely associated with macrophages in glioma tissues, significantly suppressing the signaling of M1-like -type macrophages and enhancing the signaling of M2-like -type macrophages. COL8A1 was first found to be associated with prognosis, progression, and immune microenvironment of glioma and may serve as a new marker of prognosis and a therapeutic target.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glioma , Tumor Microenvironment , Tumor Microenvironment/genetics , Humans , Cell Proliferation/genetics , Prognosis , Cell Movement/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Animals , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Mice , Cell Line, Tumor , Apoptosis/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Male , Mice, Nude , Glioblastoma/pathology , Glioblastoma/genetics , Glioblastoma/metabolism
16.
Int Rev Cell Mol Biol ; 386: 1-47, 2024.
Article in English | MEDLINE | ID: mdl-38782497

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with an average life expectancy of less than 15 months. Such high patient mortality in GBM is pertaining to the presence of clinical and molecular heterogeneity attributed to various genetic and epigenetic alterations. Such alterations in critically important signaling pathways are attributed to aberrant gene signaling. Different subclasses of GBM show predominance of different genetic alterations and therefore, understanding the complex signaling pathways and their key molecular components in different subclasses of GBM is extremely important with respect to clinical management. In this book chapter, we summarize the common and important signaling pathways that play a significant role in different subclasses and discuss their therapeutic targeting approaches in terms of preclinical studies and clinical trials.


Subject(s)
Brain Neoplasms , Glioblastoma , Signal Transduction , Humans , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Animals
17.
Neurol Res ; 46(7): 583-592, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797679

ABSTRACT

BACKGROUND: Glioma is a common intracranial tumor, exhibiting a high degree of aggressiveness and invasiveness. Pyruvate kinase M2 (PKM2) is overexpressed in glioma tissues. However, the biological role of PKM2 in glioma is unclear. METHODS: The qRT-PCR, CCK-8, Transwell, flow cytometry detection, western blot assays, ELISA assay, and pyruvate kinase activity assays were performed in glioma cells transfected with PKM2 shRNA to explore the function of PKM2 in glioma progression. Then, STRING website was used to predict the proteins that interacted with PKM2, and Co-IP assay was conducted to further validate their interaction. Subsequently, the above experiments were performed again to find the effect of catenin beta 1 (CTNNB1) overexpression on PKM2-deficient glioma cells. The transplanted tumor models were also established to further validate our findings. RESULTS: PKM2 was up-regulated in glioma cells and tissues. After inhibiting PKM2, the proliferation, migration, glycolysis, and EMT of glioma cells were significantly decreased, and the proportion of apoptosis was increased. The prediction results of STRING website showed that CTNNB1 and PKM2 had the highest interaction score. The correlation between CTNNB1 and PKM2 was further confirmed by Co-IP test. PKM2 knockdown suppressed glioma cell proliferation, migration, glycolysis, and EMT, while CTNNB1 overexpression rescued these inhibitory effects. Correspondingly, PKM2 knockdown inhibited glioma growth in vivo. CONCLUSION: In summary, these findings indicated that PKM2 promotes glioma progression by mediating CTNNB1 expression, providing a possible molecular marker for the clinical management of gliomas.


Subject(s)
Brain Neoplasms , Cell Proliferation , Disease Progression , Glioma , Thyroid Hormone-Binding Proteins , Thyroid Hormones , beta Catenin , Glioma/pathology , Glioma/genetics , Glioma/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Humans , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Line, Tumor , Animals , Thyroid Hormones/metabolism , Thyroid Hormones/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mice, Nude , Cell Movement/physiology , Apoptosis/physiology , Gene Expression Regulation, Neoplastic , Male , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics
18.
J Cell Mol Med ; 28(10): e18393, 2024 May.
Article in English | MEDLINE | ID: mdl-38809929

ABSTRACT

Glioma is a prevalent malignant tumour characterized by hypoxia as a pivotal factor in its progression. This study aims to investigate the impact of the most severely hypoxic cell subpopulation in glioma. Our findings reveal that the THBD+ macrophage subpopulation is closely associated with hypoxia in glioma, exhibiting significantly higher infiltration in tumours compared to non-tumour tissues. Moreover, a high proportion of THBD+ cells correlates with poor prognosis in glioblastoma (GBM) patients. Notably, THBD+ macrophages exhibit hypoxic characteristics and epithelial-mesenchymal transition features. Silencing THBD expression leads to a notable reduction in the proliferation and metastasis of glioma cells. Furthermore, we developed a THBD+ macrophage-related risk signature (THBDMRS) through machine learning techniques. THBDMRS emerges as an independent prognostic factor for GBM patients with a substantial prognostic impact. By comparing THBDMRS with 119 established prognostic features, we demonstrate the superior prognostic performance of THBDMRS. Additionally, THBDMRS is associated with glioma metastasis and extracellular matrix remodelling. In conclusion, hypoxia-related THBD+ macrophages play a pivotal role in glioma pathogenesis, and THBDMRS emerges as a potent and promising prognostic tool for GBM, contributing to enhanced patient survival outcomes.


Subject(s)
Glioma , Macrophages , Humans , Macrophages/metabolism , Macrophages/pathology , Prognosis , Glioma/pathology , Glioma/genetics , Glioma/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/immunology , Epithelial-Mesenchymal Transition/genetics , Tumor Microenvironment , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Hypoxia/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Risk Factors , Cell Hypoxia , Male , Female
19.
JCO Precis Oncol ; 8: e2300713, 2024 May.
Article in English | MEDLINE | ID: mdl-38810175

ABSTRACT

PURPOSE: Our study aimed to explore real-world treatment scenarios for children and adolescents with neurotrophic tropomyosin receptor kinase (NTRK)-fused tumors, emphasizing access, responses, side effects, and outcomes. PATIENTS AND METHODS: Pooled clinical data from 17 pediatric cases (11 soft-tissue sarcomas, five brain tumors, and one neuroblastoma) treated with larotrectinib and radiologic images for 14 patients were centrally reviewed. Testing for gene fusions was prompted by poor response to treatment, tumor progression, or aggressiveness. RESULTS: Six different NTRK fusion subtypes were detected, and various payment sources for testing and medication were reported. Radiologic review revealed objective tumor responses (OR) in 11 of 14 patients: Complete responses: two; partial responses: nine; and stable disease: three cases. Grades 1 or 2 Common Terminology Criteria for Adverse Events adverse effects were reported in five patients. Regarding the entire cohort's clinical information, 15 of 17 patients remain alive (median observation time: 25 months): four with no evidence of disease and 11 alive with disease (10 without progression). One patient developed resistance to the NTRK inhibitor and died from disease progression while another patient died due to an unrelated cause. CONCLUSION: This real-world study confirms favorable agnostic tumor OR rates to larotrectinib in children with NTRK-fused tumors. Better coordination to facilitate access to medication remains a challenge, particularly in middle-income countries like Brazil.


Subject(s)
Protein Kinase Inhibitors , Pyrazoles , Humans , Child , Male , Female , Adolescent , Pyrazoles/therapeutic use , Child, Preschool , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Receptor, trkA/genetics , Receptor, trkA/antagonists & inhibitors , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Sarcoma/drug therapy , Sarcoma/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Infant , Receptor, trkB/genetics , Receptor, trkC/genetics , Clinical Trials as Topic
20.
Cancer Invest ; 42(4): 345-356, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38742677

ABSTRACT

BACKGROUND: Aquaporin-8 (AQP8) is involved in impacting glioma proliferation and can effect tumour growth by regulating Intracellular reactive oxygen species (ROS) signalling levels. In addition to transporting H2O2, AQP8 has been shown to affect ROS signaling, but evidence is lacking in gliomas. In this study, we aimed to investigate how AQP8 affects ROS signaling in gliomas. MATERIALS AND METHODS: We constructed A172 and U251 cell lines with AQP8 knockdown and AQP8 rescue by CRISPR/Cas9 technology and overexpression of lentiviral vectors. We used CCK-8 and flow cytometry to test cell proliferation and cycle, immunofluorescence and Mito-Tracker CMXRos to observe the distribution of AQP8 expression in glioma cells, Amplex and DHE to study mitochondria release of H2O2, mitochondrial membrane potential (MMP) and NAD+/NADH ratio to assess mitochondrial function and protein blotting to detect p53 and p21 expression. RESULT: We found that AQP8 co-localised with mitochondria and that knockdown of AQP8 inhibited the release of H2O2 from mitochondria and led to increased levels of ROS in mitochondria, thereby impairing mitochondrial function. We also discovered that AQP8 knockdown resulted in suppression of cell proliferation and was blocked at the G0/G1 phase with increased expression of mitochondrial ROS signalling-related p53/p21. CONCLUSIONS: This finding provides further evidence for mechanistic studies of AQP8 as a prospective target for the treatment of gliomas.


Subject(s)
Aquaporins , Cell Proliferation , Glioma , Hydrogen Peroxide , Mitochondria , Reactive Oxygen Species , Humans , Mitochondria/metabolism , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Aquaporins/metabolism , Aquaporins/genetics , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL