Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.689
Filter
1.
Nutrients ; 16(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125261

ABSTRACT

The Mediterranean diet, featuring sourdough bread, shows promise in managing metabolic syndrome. This study explored the effects of two sourdough breads, with differing fermentation times but similar nutritional profiles, on inflammation, satiety, and gut microbiota composition in adults with metabolic syndrome. In a double-blind clinical trial, participants were randomized to consume either Elias Boulanger® long-fermentation (48 h) sourdough bread (EBLong) or Elias Boulanger® short-fermentation (2 h) sourdough bread (EBShort) over a two-month period. We assessed clinical parameters, inflammatory biomarkers, satiety-related hormones, and the richness and abundance of gut microbiota at baseline and follow-up. The participants included 31 individuals (mean age, 67, 51.6% female). EBShort was associated with reduced levels of soluble intercellular adhesion molecule (sICAM), and all participants, regardless of the intervention, exhibited a decrease in sICAM and diastolic pressure from baseline (p < 0.017). At follow-up, plasminogen activator inhibitor-1 (PAI-1) levels were lower in EBShort (-744 pg/mL; 95%CI: -282 to -1210 pg/mL) compared to EBLong. No differences in microbiota richness or abundance were observed. EBShort bread was effective in reducing some inflammation markers. The consumption of sourdough bread may offer potential benefits in reducing inflammation markers in individuals with metabolic syndrome; however, longer fermentation times did not show additional benefits.


Subject(s)
Bread , Diet, Mediterranean , Fermentation , Gastrointestinal Microbiome , Metabolic Syndrome , Humans , Metabolic Syndrome/diet therapy , Metabolic Syndrome/microbiology , Metabolic Syndrome/therapy , Female , Male , Double-Blind Method , Middle Aged , Aged , Biomarkers/blood , Plasminogen Activator Inhibitor 1/blood , Time Factors , Intercellular Adhesion Molecule-1/blood , Inflammation
2.
Nutrients ; 16(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125365

ABSTRACT

Gastrointestinal disorders dysregulate the biochemical environment of the gastrointestinal tract by altering pH conditions during the gastric phase of digestion or by reducing the secretion of pancreatin during the intestinal part of the process. Ingested functional food could therefore lose some of its health-promoting potential apart from its nutritional value. In this work, we aimed to manufacture bread marked by decreased gluten content, using a commercial or laboratory sourdough, that could be appropriate for patients afflicted with wheat allergy, hypertension and pancreatic malfunctions. A reference sample (no sourdough) was prepared alongside wheat and wheat-rye bread samples-produced with either commercial or laboratory sourdough (L. plantarum BS, L. brevis 1269, L. sanfranciscensis 20663). We measured the QQQPP allergen content (ELISA) in bread extracts digested in vitro and determined how these extracted components affect the level of active angiotensin and alpha amylase (spectrophotometry). We then elucidated how these properties changed when physiological digestion conditions (pH and pancreatin activity) were disturbed to mimic gastric hyperacidity, hypochlorhydria or exocrine pancreatic insufficiency. The key finding was that every tested type of bread produced with laboratory sourdough exhibited pronounced angiotensin-converting enzyme inhibition. The effect was preserved even in dysregulated digestive conditions. The use of laboratory sourdough prevented an increase in allergenicity when pancreatin was restricted as opposed to the commercial sourdough, which surpassed the reference sample reading at 50% pancreatin. No statistically consistent link was reported when the inhibition of alpha amylase was assayed. In conclusion, functional bread manufactured with sourdough composed of L. plantarum BS, L. brevis 1269, and L. sanfranciscensis 20663 was shown to be potentially capable of contributing to the treatment against hypertension as evidenced by in vitro research. It was also moderately safer with regard to its allergenicity.


Subject(s)
Bread , Bread/analysis , Humans , Noncommunicable Diseases , Glutens , Triticum/chemistry , Allergens , Chronic Disease , Digestion , Wheat Hypersensitivity/immunology , Fermentation , Hydrogen-Ion Concentration , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Pancreatin , alpha-Amylases/metabolism
3.
J Agric Food Chem ; 72(30): 16976-16987, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39037854

ABSTRACT

This study evaluated the impact of different digestion conditions (adult and senior) on lipolysis and bioaccessibility of plant sterols (PS) and phytosterol oxidation products (POPs) in PS-enriched wholemeal rye bread. Under adult digestion conditions, the addition of gastric lipase (GL) reduced lipolysis products (by 6.1% for free fatty acids and 11.7% for monoacylglycerols) and the bioaccessibility of PS by 6.7%, compared to the control. In digestion with both GL and cholesterol esterase (CE), these reductions were 12.9, 20.1, and 11.3%, respectively. Both modifications (GL and GL + CE) increased the bioaccessibility of POPs by 4.5-4.0%. When simulating the elderly digestion, the modified gastric and intestinal phases did not alter PS bioaccessibility but decreased POPs bioaccessibility by 21.8% compared to control, along with reduced lipolysis. Incorporating GL and CE thus approached physiological conditions and influenced lipid digestion. Elderly simulated digestion conditions resulted in a positive outcome by maintaining PS bioaccessibility while reducing potentially harmful POPs.


Subject(s)
Biological Availability , Bread , Digestion , Lipolysis , Phytosterols , Secale , Humans , Phytosterols/metabolism , Bread/analysis , Secale/chemistry , Secale/metabolism , Models, Biological , Adult , Lipase/metabolism , Aged
4.
Carbohydr Polym ; 342: 122414, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048204

ABSTRACT

This study aims to understand the molecular and supramolecular transformations of wheat endosperm biopolymers during bread-making, and their implications to fabricate self-standing films from stale white bread. A reduction in the Mw of amylopectin (51.8 × 106 vs 425.1 × 106 g/mol) and water extractable arabinoxylans WEAX (1.79 × 105 vs 7.63 × 105 g/mol), and a decrease in amylose length (245 vs 748 glucose units) was observed after bread-baking. The chain length distribution of amylopectin and the arabinose-to-xylose (A/X) ratio of WEAX remained unaffected during bread-making, suggesting that heat- or/and shear-induced chain scission is the mechanism responsible for molecular fragmentation. Bread-making also resulted in more insoluble cell wall residue, featured by water unextractable arabinoxylan of lower A/X and Mw, along with the formation of a gluten network. Flexible and transparent films with good light-blocking performance (<30 % transmittance) and DPPH-radical scavenging capacity (~8.5 %) were successfully developed from bread and flour. Bread films exhibited lower hygroscopicity, tensile strength (2.7 vs 8.5 MPa) and elastic modulus (67 vs 501 MPa) than flour films, while having a 6-fold higher elongation at break (10.0 vs 61.2 %). This study provides insights into the changes in wheat biopolymers during bread-making and sets a precedent for using stale bread as composite polymeric materials.


Subject(s)
Amylopectin , Bread , Flour , Triticum , Xylans , Triticum/chemistry , Bread/analysis , Flour/analysis , Biopolymers/chemistry , Xylans/chemistry , Amylopectin/chemistry , Tensile Strength , Arabinose/chemistry , Xylose/chemistry , Glutens/chemistry
5.
J Agric Food Chem ; 72(28): 15672-15679, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950138

ABSTRACT

A dynamic gastrointestinal digestion system (simgi) after a human oral phase was used, for the first time, to assess the bioaccessibility of plant sterols (PS) from wholemeal rye bread (74.8 ± 2.2 mg of PS/100 g d.m.) and PS-enriched wholemeal rye bread (PS-WRB) (1.6 ± 0.04 g of PS/100 g of fresh bread). The use of these solid food matrices requires a novel adaptation of the gastric phase of the system. The PS identified in the breads are campesterol, campestanol, stigmasterol, ß-sitosterol, sitostanol, Δ5-avenasterol, Δ5,24-stigmastadienol, Δ7-stigmastenol, and Δ7-avenasterol. The bioaccessibility of the total PS, only quantifiable in PS-WRB, is 19.9%, with Δ7-avenasterol being the most bioaccessible and Δ5-avenasterol being the least (p < 0.05). As shown in this study, PS-WRB can be considered to be a good choice to include in the daily diet. Furthermore, although the use of dynamic digestion methods for evaluating bioaccessibility implies high costs and technical complexity, their application means a closer approximation to in vivo scenarios.


Subject(s)
Biological Availability , Bread , Digestion , Gastrointestinal Tract , Phytosterols , Secale , Humans , Bread/analysis , Phytosterols/metabolism , Phytosterols/analysis , Secale/chemistry , Secale/metabolism , Gastrointestinal Tract/metabolism , Models, Biological
6.
Waste Manag ; 186: 345-354, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38959618

ABSTRACT

Stale bread is a waste product with a potential to be recycled. One way to manage this waste material is to process it by fermentation for the purpose of food production. This paper proposes the use of stale wheat and rye bread as ingredients in amazake, a liquid dessert traditionally obtained from rice by fermentation with the koji mould Aspergillus oryzae, followed by liquefaction by the action of fungal enzymes. The stale bread was introduced instead of rice at both the koji stage (wheat bread) and the liquefaction stage (wheat and rye bread). The resulting products had an extended volatile compound profile, from 5 to 15 compounds identified, and modified sensory parameters, compared to the traditional version. Amazake containing bread had an increased protein content, from 1.10 to 6.4 g/100 g, and were more abundant in dietary fibre (up to a maximum of 1.8 g/100 g), additionally enriched with a soluble fraction. The proposed procedure of obtaining of new formula amazake can be directly applied in households to reduce the amount of discarded bread. Due to its simplicity, it also has the potential for further modification in terms of production scale and product parameters.


Subject(s)
Bread , Recycling , Triticum , Bread/analysis , Recycling/methods , Fermentation , Aspergillus oryzae/metabolism , Dietary Fiber/analysis , Nutritive Value , Oryza , Waste Products/analysis , Taste
7.
Science ; 385(6707): eadi3048, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39052788

ABSTRACT

Protein folding both promotes and constrains adaptive evolution. We uncover this surprising duality in the role of the protein-folding chaperone heat shock protein 90 (Hsp90) in maintaining the integrity of yeast metabolism amid proteotoxic stressors within industrial domestication niches. Ethanol disrupts critical Hsp90-dependent metabolic pathways and exerts strong selective pressure for redundant duplications of key genes within these pathways, yielding the classical genomic signatures of beer and bread domestication. This work demonstrates a mechanism of adaptive canalization in an ecology of major economic importance and highlights Hsp90-dependent variation as an important source of phantom heritability in complex traits.


Subject(s)
Adaptation, Physiological , Ethanol , Fermentation , HSP90 Heat-Shock Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Selection, Genetic , Adaptation, Physiological/genetics , Beer , Bread , Ethanol/metabolism , Gene Duplication , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Metabolic Networks and Pathways/genetics , Protein Folding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Stress, Physiological/genetics , Fermentation/genetics
8.
Sci Rep ; 14(1): 16351, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39013994

ABSTRACT

To sustainably increase wheat yield to meet the growing world population's food demand in the face of climate change, Conservation Agriculture (CA) is a promising approach. Still, there is a lack of genomic studies investigating the genetic basis of crop adaptation to CA. To dissect the genetic architecture of 19 morpho-physiological traits that could be involved in the enhanced adaptation and performance of genotypes under CA, we performed GWAS to identify MTAs under four contrasting production regimes viz., conventional tillage timely sown (CTTS), conservation agriculture timely sown (CATS), conventional tillage late sown (CTLS) and conservation agriculture late sown (CALS) using an association panel of 183 advanced wheat breeding lines along with 5 checks. Traits like Phi2 (Quantum yield of photosystem II; CATS:0.37, CALS: 0.31), RC (Relative chlorophyll content; CATS:55.51, CALS: 54.47) and PS1 (Active photosystem I centers; CATS:2.45, CALS: 2.23) have higher mean values in CA compared to CT under both sowing times. GWAS identified 80 MTAs for the studied traits across four production environments. The phenotypic variation explained (PVE) by these QTNs ranged from 2.15 to 40.22%. Gene annotation provided highly informative SNPs associated with Phi2, NPQ (Quantum yield of non-photochemical quenching), PS1, and RC which were linked with genes that play crucial roles in the physiological adaptation under both CA and CT. A highly significant SNP AX94651261 (9.43% PVE) was identified to be associated with Phi2, while two SNP markers AX94730536 (30.90% PVE) and AX94683305 (16.99% PVE) were associated with NPQ. Identified QTNs upon validation can be used in marker-assisted breeding programs to develop CA adaptive genotypes.


Subject(s)
Adaptation, Physiological , Agriculture , Genome-Wide Association Study , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Adaptation, Physiological/genetics , Agriculture/methods , Polymorphism, Single Nucleotide , Plant Breeding/methods , Phenotype , Genome, Plant , Genotype , Bread
9.
Environ Sci Pollut Res Int ; 31(34): 46949-46964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38977553

ABSTRACT

Bread production is a pivotal component of global nutrition. However, its extensive production imposes significant strain on resources and energy, resulting in substantial environmental consequences. This study focuses on a multidimensional assessment of the environmental sustainability of the bread life cycle as a case study in Iran. By integrating four life cycle assessment (LCA) methods, this research demonstrates a comprehensive analysis of environmental effects, energy consumption, and exergy demand in bread production. It also identifies the hotspot stages and inputs within the bread production chain. Eventually, it proposes strategies for mitigating the environmental impacts in line with sustainable development goals. Data collection involved questionnaires by face-to-face interviews. The LCA evaluation was conducted using SimaPro software. Sustainability analysis was assessed using four different methods: CML, ReCiPe, cumulative energy demand (CED), and cumulative exergy demand (CExD) method, from cradle to bakery gate. The CML method results indicate that the highest environmental impacts are associated with marine aquatic ecotoxicity (157.04 to 193.36 kg 1,4-DB eq), fossil fuel depletion (11.05 to 12.73 MJ), eutrophication (4.20 × 10-3 to 4.70 × 10-3 kg PO4-3 eq), acidification (8.09 × 10-3 to 9.16 × 10-3 kg SO2 eq), and global warming (0.61 to 0.69 kg CO2 eq). The ReCiPe method highlights wheat production stages and gas consumption as the most significant contributors to damage in terms of human health, ecosystems, and resource consumption indicators. The CED method reveals that fossil energy accounts for over 97% of the energy consumed during the bread life cycle. Energy consumption per kilogram of bread ranges from 12.07 to 13.93 MJ. The CExD method for producing 1 kg of traditional bread falls between 32.25 and 35.88 MJ. More than 60% of this value is attributed to renewable resources of water used in irrigation during the wheat farming stage, while over 35% is linked to non-renewable fossil resources, primarily due to the consumption of natural gas in bakery operations. To assess the potential decrease in environmental emissions, a sensitivity analysis was performed, considering the effects of substituting natural gas with biogas and grid electricity with photovoltaic electricity in the bakery. Then, three improved scenarios were developed, each demonstrating effective reductions in environmental impacts, with the most remarkable decreases observed in marine aquatic ecotoxicity (55%) and fossil fuel depletion (44%). Overall, the findings demonstrate that Sangak bread production exhibits a more environmentally friendly profile than other types of bread. These results can guide decision-makers in the bread production industry towards implementing sustainable practices that prioritize resource efficiency and environmental conservation. Also, stakeholders can develop strategies to reduce the environmental impacts and work towards a more sustainable future.


Subject(s)
Bread , Environment , Iran , Sustainable Development , Conservation of Natural Resources
10.
Sci Rep ; 14(1): 13083, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38844568

ABSTRACT

In bread wheat, a literature search gave 228 QTLs for six traits, including resistance against spot blotch and the following five other related traits: (i) stay green; (ii) flag leaf senescence; (iii) green leaf area duration; (iv) green leaf area of the main stem; and (v) black point resistance. These QTLs were used for metaQTL (MQTL) analysis. For this purpose, a consensus map with 72,788 markers was prepared; 69 of the above 228 QTLs, which were suitable for MQTL analysis, were projected on the consensus map. This exercise resulted in the identification of 16 meta-QTLs (MQTLs) located on 11 chromosomes, with the PVE ranging from 5.4% (MQTL7) to 21.8% (MQTL5), and the confidence intervals ranging from 1.5 to 20.7 cM (except five MQTLs with a range of 36.1-57.8 cM). The number of QTLs associated with individual MQTLs ranged from a maximum of 17 in MQTL3 to 8 each in MQTL5 and MQTL8 and 5 each in MQTL7 and MQTL14. The 16 MQTLs, included 12 multi-trait MQTLs; one of the MQTL also overlapped a genomic region carrying the major spot blotch resistance gene Sb1. Of the total 16 MQTLs, 12 MQTLs were also validated through marker-trait associations that were available from earlier genome-wide association studies. The genomic regions associated with MQTLs were also used for the identification of candidate genes (CGs) and led to the identification of 516 CGs encoding 508 proteins; 411 of these proteins are known to be associated with resistance against several biotic stresses. In silico expression analysis of CGs using transcriptome data allowed the identification of 71 differentially expressed CGs, which were examined for further possible studies. The findings of the present study should facilitate fine-mapping and cloning of genes, enabling Marker Assisted Selection.


Subject(s)
Chromosome Mapping , Disease Resistance , Plant Diseases , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Chromosomes, Plant/genetics , Genes, Plant , Phenotype , Bread
11.
Food Chem ; 454: 139853, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38823200

ABSTRACT

The effects of SHP on the texture, rheological properties, starch crystallinity and microstructure of frozen dough were investigated. The efficacy of SHP in enhancing dough quality is concentration-dependent, with frozen dough containing 1.5% SHP exhibiting hardness comparable to fresh dough without SHP (221.31 vs. 221.42 g). Even at 0.5% SHP, there is a noticeable improvement in frozen dough quality. The rheological results showed that the viscoelasticity of dough increased with higher SHP concentration. What's more, XRD and SEM results indicated that the SHP's hydrophilicity reduces the degree of starch hydrolysis, slows down the damage of starch particles during freezing, and consequently lowers the crystallinity of starch. Additionally, CLSM observations revealed that SHP enhances the gluten network structure, diminishing the appearance of holes. Therefore, the physical, chemical properties, and microstructure of frozen dough with SHP demonstrate significant enhancement, suggesting SHP's promising antifreeze properties and potential as a food antifreeze agent.


Subject(s)
Flour , Freezing , Glycine max , Polysaccharides , Rheology , Flour/analysis , Polysaccharides/chemistry , Glycine max/chemistry , Bread/analysis , Viscosity , Starch/chemistry
12.
Food Res Int ; 189: 114482, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876611

ABSTRACT

The potential biopreservative role of a Type III sourdough (tIII-SD), produced by starter cultures of Fructilactobacillus sanfranciscensis and Lactiplantibacillus plantarum ATCC 8014, was assessed for its antifungal activity in baking applications. Fermentation was carried out using different substrates to enhance the production of antifungal metabolites for 24 and 48 h. The tIII-SD samples were analyzed in relation to pH, total titratable acidity (TTA) and the production of organic acids. The water/salt-soluble extract of the tIII-SD was evaluated in relation to the inhibition potential against key fungi that contaminate bakery products including Penicillium roqueforti, Penicillium chrysogenum and Aspergillus niger. Finally, breads with 10 % of the tIII-SD were prepared and the fungi contamination was evaluated throughout the shelf life period. The lowest pH value in sourdough was obtained from 48-hour fermentation by L. plantarum. The saline extracts exhibited varying degrees of inhibition in the in vitro test; however, the greatest enhancement of this effect was obtained when whole wheat grain flour was used. The tIII-SD crafted from a blend of wheat and flaxseed flours and fermented with F. sanfranciscensis for 48 h (BSWF48h-FS), demonstrated superior performance compared to other formulations. This variant exhibited a total shelf life of 10 days, suggesting that the utilization of tIII-SD could serve as a viable alternative for natural antifungal agents, proving beneficial for the bakery industry.


Subject(s)
Antifungal Agents , Bread , Fermentation , Food Microbiology , Bread/microbiology , Bread/analysis , Antifungal Agents/pharmacology , Aspergillus niger/drug effects , Penicillium/drug effects , Hydrogen-Ion Concentration , Flour/analysis , Food Preservation/methods , Triticum/chemistry , Triticum/microbiology , Penicillium chrysogenum , Lactobacillus plantarum/metabolism
13.
Int J Biol Macromol ; 272(Pt 1): 132906, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38851991

ABSTRACT

Sourdough bread enriched with soluble fiber (by in-situ exopolysaccharides production) and insoluble fiber (by gazpacho by-products addition) showed prebiotic effects an in vitro dynamic colonic fermentation performance with obese volunteer's microbiota. Bifidobacterium population was maintained whereas Lactobacillus increased throughout the colonic sections. Conversely, Enterobacteriaceae and Clostridium groups clearly decreased. Specific bacteria associated with beneficial effects increased in the ascending colon (Lactobacillus fermentum, Lactobacillus paracasei, Bifidobacterium longum and Bifidobacterium adolescentis) whereas Eubacterium eligens, Alistipes senegalensis, Prevotella copri and Eubacterium desmolans increased in the transversal and descending colon. Additionally, Blautia faecis and Ruminococcus albus increased in the transversal colon, and Bifidobacterium longum, Roseburia faecis and Victivallis vadensis in the descending colon. Bifidobacterium and Lactobacillus fermented the in-situ exopolysaccharides and released pectins from gazpacho by-products, as well as cellulosic degraded bacteria. This increased the short and medium chain fatty acids. Acetic acid, as well as butyric acid, increased throughout the colonic tract, which showed greater increases only in the transversal and descending colonic segments. Conversely, propionic acid was slightly affected by the colonic fermentation. These results show that sourdough bread is a useful food matrix for the enrichment of vegetable by-products (or other fibers) in order to formulate products with microbiota modulatory capacities.


Subject(s)
Bread , Dysbiosis , Fermentation , Bread/microbiology , Humans , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Dietary Fiber/metabolism , Polysaccharides, Bacterial/pharmacology , Colon/microbiology , Colon/metabolism , Bifidobacterium/metabolism , Male , Lactobacillus/metabolism
14.
BMC Public Health ; 24(1): 1538, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849795

ABSTRACT

Bread is one of the most consumed foods all over the world. Several contaminants are identified in bread. Polycyclic aromatic hydrocarbons (PAHs) is one of these contaminants. This systematic study evaluates the amount of four carcinogenic PAHs (PAH4) in various types of breads. To conduct this study, a comprehensive search was carried out using keywords of polycyclic aromatic hydrocarbons, PAHs, PAH4, and bread, with no time limitations. 17 articles were selected and fully evaluated. The observed range of PAH4 concentrations in bread varied from non-detected (ND) to 20.66 µg/kg. In the sample preparation process for analysis, an ultrasonic bath was predominantly utilized. Most chromatographic methods are able to measure PAHs in food, but the GC-MS method has been used more. To mitigate PAH levels in bread, it is suggested to incorporate antioxidants during the bread-making process. Furthermore, the type of bread, the type of fuel used to bake the bread, the temperature and the cooking time were some of the factors affecting the amount of PAH. Restricting these factors could significantly reduce PAH content. Regarding the risk assessment conducted in the manuscript, it was determined that industrial breads are usually considered safe. However, some traditional breads may pose risks in terms of their potential PAH content.


Subject(s)
Bread , Carcinogens , Food Contamination , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Bread/analysis , Carcinogens/analysis , Food Contamination/analysis , Humans , Risk Assessment , Cooking/methods
15.
Int J Food Microbiol ; 421: 110805, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38917489

ABSTRACT

Due to a large adaptability to different cultivation conditions and limited input compared to other cereals, sorghum is considered an emerging crop. Its antioxidant properties, high fiber content and low glycemic index also make it a valuable addition to a healthy diet, nevertheless, the presence of antinutritional factors and the lack of gluten, hamper its use as food ingredient. This study investigated the impact of sourdough fermentation on sorghum nutritional quality. Lactic acid bacteria dominating sorghum flour and sourdough were identified by culture-dependent analysis revealing Lactiplantibacillus plantarum as the dominant species found in the mature sourdough, whereas Weissella cibaria and Weissella paramesenteroides were the species isolated the most after the first refreshment. Among yeasts, Saccharomyces cerevisiae was the most prevalent. Lactic acid bacteria pro-technological and functional performances as starter were evaluated in sorghum type-II sourdoughs through an integrated characterization combining chromatographic and NMR spectroscopic techniques. The metabolic profile of the strains mainly grouped together W. cibaria strains and W. paramesenteroides AI7 which distinguished for the intense proteolysis but also for the presence of compounds particularly interesting from a physiological perspective (allantoin, glutathione, γ-aminobutyric acid and 2-hydroxy-3-methylbutyric acid), whose concentration increased during fermentation in a species or strain specific matter.


Subject(s)
Bread , Fermentation , Flour , Metabolome , Sorghum , Sorghum/microbiology , Bread/microbiology , Flour/microbiology , Flour/analysis , Microbiota , Food Microbiology , Saccharomyces cerevisiae/metabolism , Lactobacillales/metabolism , Lactobacillales/classification , Weissella/metabolism
16.
Food Chem ; 456: 139984, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38876063

ABSTRACT

To improve the stability of anthocyanins and techno-functionality of purple and blue wheat, the selectively hydrolyzed soy protein (reduced glycinin, RG) and ß-conglycinin (7S) were prepared and their enhanced effects were comparatively investigated. The anthocyanins in purple wheat showed higher stability compared to that of the blue wheat during breadmaking. The cyanidin-3-O-glucoside and cyanidin-3-O-rutincoside in purple wheat and delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside in blue wheat were better preserved by RG. Addition of RG and 7S enhanced the quality of steamed bread made from colored and common wheat, with RG exhibited a more prominent effect. RG and 7S suppressed the gelatinization of starch and improved the thermal stability. Both RG and 7S promoted the unfolding process of gluten proteins and facilitated the subsequent crosslinking of glutenins and gliadins by disulfide bonds. Polymerization of α- and γ-gliadin into glutenin were more evidently promoted by RG, which contributed to the improved steamed bread quality.


Subject(s)
Anthocyanins , Bread , Soybean Proteins , Triticum , Triticum/chemistry , Bread/analysis , Anthocyanins/chemistry , Soybean Proteins/chemistry , Hydrolysis , Food Handling , Color , Globulins/chemistry , Steam , Flour/analysis , Cooking , Glutens/chemistry , Hot Temperature
17.
Sci Rep ; 14(1): 14112, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898132

ABSTRACT

Hybrid development is one of the most promising strategies for boosting crop yields. Parental lines used to create hybrids must have good per se performance and disease resistance for developing superior hybrids. Indian wheat line HD3209 was developed by introducing the rust resistance genes Lr19/Sr25 into the background of popular wheat variety HD2932. The wheat line HD3209 carrying Lr19/Sr25 has been successfully and rapidly converted to the CMS line A-HD3209, with 96.01% background genome recovery, based on selection for agro-morphological traits, rust resistance, pollen sterility, and foreground and background analyses utilizing SSR markers. The converted CMS line A-HD3209 was completely sterile and nearly identical to the recurrent parent HD3209. Based on high per se performance and rust resistance, the study concludes that the derived CMS line A-HD3209 is promising and can be employed successfully in hybrid development.


Subject(s)
Disease Resistance , Genotype , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Basidiomycota/genetics , Plant Breeding/methods , Genes, Plant , Hybridization, Genetic , Bread/microbiology
18.
Theor Appl Genet ; 137(7): 160, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874613

ABSTRACT

KEY MESSAGE: The dwarfing allele Rht14 of durum wheat associates with greater stigma length, an important trait for hybrid breeding, whilst major dwarfing alleles Rht-B1b and Rht-D1b showed little to no effect. Although much understudied in wheat, the stigma is a crucial component for attaining grain set, the fundamental basis for yield, particularly in hybrid production systems where successful grain set relies on wind-driven pollen dispersal by the male parent and effective pollen capture by the female parent. Females with long stigma that exsert early are thought to be advantageous. Using glasshouse-grown lines, we examined variation in Total Stigma Length (TSL) across diverse panels comprising 27 durum and 116 bread wheat genotypes. Contrasting genotypes were selected for population development and genetic analysis. Quantitative trait loci (QTL) analysis was performed on a durum F2 population and a bread wheat recombinant inbred line (RIL) population. Contrasting with studies of anther length, we found no large effect on TSL of the GA-insensitive semi-dwarfing genes Rht-B1 and Rht-D1 in either durum or bread wheat. However, in durum cultivar Italo, we identified a region on chromosome 6A which is robustly associated with larger TSL and contains the Rht14 allele for reduced plant height, a trait that is favourable for female line development in hybrid systems. This dual effect locus explained 25.2 and 19.2% of TSL phenotypic variation in experiments across two growing seasons, with preliminary results suggesting this locus may increase TSL when transferred to bread wheat. In a bread wheat, RIL population minor QTL on 1A and 2A was indicated, but the strongest association was with Ppd-B1. Methods developed here, and the identification of a TSL-enhancing locus provides advances and further opportunities in the study of wheat stigma.


Subject(s)
Alleles , Flowers , Genetic Linkage , Genotype , Phenotype , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Flowers/genetics , Flowers/growth & development , Chromosome Mapping , Genes, Plant , Plant Breeding , Bread
19.
Food Res Int ; 190: 113905, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945555

ABSTRACT

Bee bread is a product of honeybees, which collect and ferment pollen, that contains highly nutritious and easily digestible active substances. However, its nutritional composition varies significantly with fermentation strains and seasonal changes. To unveil the patterns of microbial community and nutritional component changes in bee bread across seasons, we employed high-throughput techniques to assess the diversity of bacteria and fungi in bee bread. The results indicated that the compositions of bacteria and fungi in bee bread undergo significant seasonal variation, with noticeable changes in the microbial diversity of bee bread from different bee species. Subsequently, metabolomic analysis revealed high activity of glycerophospholipid metabolism in bee bread. Furthermore, our analysis identifaied noteworthy differences in nutritional components, including pH values, sugar content, and free amino acid levels, in bee bread across different seasons.


Subject(s)
Bacteria , Microbiota , Nutritive Value , Seasons , Bees/microbiology , Animals , Bacteria/classification , Fermentation , Amino Acids/analysis , Fungi/classification , Pollen/chemistry , Bread/analysis , Bread/microbiology , Hydrogen-Ion Concentration , Metabolomics
20.
Food Res Int ; 190: 114565, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945564

ABSTRACT

In cereal products, the use of flour containing clusters of intact cells has been indicated as a potential strategy to decrease starch digestion. Rye possesses more uniform and thicker cell walls than wheat but its protective effect against starch digestion has not been elucidated. In this study, rye flours with three different particle sizes, large (LF) (∼1700 µm), medium (MF) (∼1200 µm), and small (SF) (∼350 µm), were used to produce model bread. The textural properties of these breads were analysed using Textural Profile Analysis (TPA). The starch digestibility of both the flour and the bread was measured using Englyst's method, while the presence of intact cell clusters was examined using Confocal Laser Scanning Microscopy (CLSM). Additionally, the disintegration of bread digesta during simulated digestion was assessed through image analysis. CLSM micrographs revealed that bread made with MF and LF retained clusters of intact cells after processing, whereas bread made with SF showed damaged cell walls. Starch digestibility in LF and MF was lower (p ≤ 0.05) than that in SF. Bread produced with MF and LF exhibited the least (p ≤ 0.05) cohesive and resilient texture, disintegrated more during digestion, and exhibited higher starch digestibility (p ≤ 0.05) than bread made with SF. These results highlight the central role of bread texture on in vitro starch digestibility.


Subject(s)
Bread , Digestion , Flour , Particle Size , Secale , Starch , Bread/analysis , Starch/chemistry , Starch/metabolism , Secale/chemistry , Flour/analysis , Food Handling/methods , Microscopy, Confocal , Cell Wall/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL