Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.355
Filter
1.
Biochemistry ; 63(20): 2632-2647, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39321355

ABSTRACT

CCCH-type tandem zinc finger (TZF) motifs are found in many RNA-binding proteins involved in regulating mRNA stability, translation, and splicing. In Caenorhabditis elegans, several RNA-binding proteins that regulate embryonic development and cell fate determination contain CCCH TZF domains, including POS-1. Previous biochemical studies have shown that despite high levels of sequence conservation, POS-1 recognizes a broader set of RNA sequences compared to the human homologue tristetraprolin. However, the molecular basis of these differences remains unknown. In this study, we refined the consensus RNA sequence and determined the differing binding specificities of the two zinc fingers of POS-1. We also determined the solution structure and characterized the internal dynamics of the TZF domain of POS-1. From the structure, we identified unique features that define the RNA binding specificity of POS-1. We also observed that the TZF domain of POS-1 is in equilibrium between interconverting conformations. Transitions between these conformations require internal motions involving many residues with correlated dynamics in each ZF. We propose that the correlated dynamics are necessary to allow allosteric communication between the nucleotide-binding pockets observed in the N-terminal ZF. Our study shows that both the structure and conformational plasticity of POS-1 are important in ensuring recognition of its RNA binding targets.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA-Binding Proteins , Zinc Fingers , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Animals , Humans , Protein Binding , Models, Molecular , Amino Acid Sequence , Binding Sites , RNA/metabolism , RNA/chemistry , Protein Conformation , Protein Domains
2.
Proc Natl Acad Sci U S A ; 121(37): e2400654121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39236238

ABSTRACT

The Caenorhabditis elegans HMP-2/HMP-1 complex, akin to the mammalian [Formula: see text]-catenin-[Formula: see text]-catenin complex, serves as a critical mechanosensor at cell-cell adherens junctions, transducing tension between HMR-1 (also known as cadherin in mammals) and the actin cytoskeleton. Essential for embryonic development and tissue integrity in C. elegans, this complex experiences tension from both internal actomyosin contractility and external mechanical microenvironmental perturbations. While offering a valuable evolutionary comparison to its mammalian counterpart, the impact of tension on the mechanical stability of HMP-1 and HMP-2/HMP-1 interactions remains unexplored. In this study, we directly quantified the mechanical stability of full-length HMP-1 and its force-bearing modulation domains (M1-M3), as well as the HMP-2/HMP-1 interface. Notably, the M1 domain in HMP-1 exhibits significantly higher mechanical stability than its mammalian analog, attributable to interdomain interactions with M2-M3. Introducing salt bridge mutations in the M3 domain weakens the mechanical stability of the M1 domain. Moreover, the intermolecular HMP-2/HMP-1 interface surpasses its mammalian counterpart in mechanical stability, enabling it to support the mechanical activation of the autoinhibited M1 domain for mechanotransduction. Additionally, the phosphomimetic mutation Y69E in HMP-2 weakens the mechanical stability of the HMP-2/HMP-1 interface, compromising the force-transmission molecular linkage and its associated mechanosensing functions. Collectively, these findings provide mechanobiological insights into the C. elegans HMP-2/HMP-1 complex, highlighting the impact of salt bridges on mechanical stability in [Formula: see text]-catenin and demonstrating the evolutionary conservation of the mechanical switch mechanism activating the HMP-1 modulation domain for protein binding at the single-molecule level.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Mechanotransduction, Cellular , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Animals , Caenorhabditis elegans/metabolism , Mechanotransduction, Cellular/physiology , Single Molecule Imaging , Protein Binding , Cadherins/metabolism , Cadherins/chemistry , Cadherins/genetics , Adherens Junctions/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/chemistry , Cytoskeletal Proteins , alpha Catenin
3.
Nucleic Acids Res ; 52(15): 9076-9091, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39188014

ABSTRACT

The MUT-7 family of 3'-5' exoribonucleases is evolutionarily conserved across the animal kingdom and plays essential roles in small RNA production in the germline. Most MUT-7 homologues carry a C-terminal domain of unknown function named MUT7-C appended to the exoribonuclease domain. Our analysis shows that the MUT7-C is evolutionary ancient, as a minimal version of the domain exists as an individual protein in prokaryotes. In animals, MUT7-C has acquired an insertion that diverged during evolution, expanding its functions. Caenorhabditis elegans MUT-7 contains a specific insertion within MUT7-C, which allows binding to MUT-8 and, consequently, MUT-7 recruitment to germ granules. In addition, in C. elegans and human MUT-7, the MUT7-C domain contributes to RNA binding and is thereby crucial for ribonuclease activity. This RNA-binding function most likely represents the ancestral function of the MUT7-C domain. Overall, this study sheds light on MUT7-C and assigns two functions to this previously uncharacterized domain.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Exoribonucleases , Protein Domains , Animals , Exoribonucleases/metabolism , Exoribonucleases/chemistry , Exoribonucleases/genetics , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Humans , Evolution, Molecular , RNA/metabolism , RNA/chemistry , Amino Acid Sequence , Protein Binding
4.
Nat Commun ; 15(1): 7250, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179582

ABSTRACT

The otopetrin (OTOP) proteins were recently characterized as extracellular proton-activated proton channels. Several recent OTOP channel structures demonstrated that the channels form a dimer with each subunit adopting a double-barrel architecture. However, the structural mechanisms underlying some basic functional properties of the OTOP channels remain unresolved, including extracellular pH activation, proton conducting pathway, and rapid desensitization. In this study, we performed structural and functional characterization of the Caenorhabditis elegans OTOP8 (CeOTOP8) and mouse OTOP2 (mOTOP2) and illuminated a set of conformational changes related to the proton-conducting process in OTOP. The structures of CeOTOP8 reveal the conformational change at the N-terminal part of TM12 that renders the channel in a transiently proton-transferring state, elucidating an inter-barrel, Glu/His-bridged proton passage within each subunit. The structures of mOTOP2 reveal the conformational change at the N-terminal part of TM6 that exposes the central glutamate to the extracellular solution for protonation. In addition, the structural comparison between CeOTOP8 and mOTOP2, along with the structure-based mutagenesis, demonstrates that an inter-subunit movement at the OTOP channel dimer interface plays a central role in regulating channel activity. Combining the structural information from both channels, we propose a working model describing the multi-step conformational changes during the proton conducting process.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Ion Channels , Protons , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Mice , Ion Channels/metabolism , Ion Channels/chemistry , Ion Channels/genetics , Models, Molecular , Protein Conformation , Hydrogen-Ion Concentration , Crystallography, X-Ray , Protein Multimerization
5.
EMBO J ; 43(17): 3787-3806, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009676

ABSTRACT

Anthelmintics are drugs used for controlling pathogenic helminths in animals and plants. The natural compound betaine and the recently developed synthetic compound monepantel are both anthelmintics that target the acetylcholine receptor ACR-23 and its homologs in nematodes. Here, we present cryo-electron microscopy structures of ACR-23 in apo, betaine-bound, and betaine- and monepantel-bound states. We show that ACR-23 forms a homo-pentameric channel, similar to some other pentameric ligand-gated ion channels (pLGICs). While betaine molecules are bound to the classical neurotransmitter sites in the inter-subunit interfaces in the extracellular domain, monepantel molecules are bound to allosteric sites formed in the inter-subunit interfaces in the transmembrane domain of the receptor. Although the pore remains closed in betaine-bound state, monepantel binding results in an open channel by wedging into the cleft between the transmembrane domains of two neighboring subunits, which causes dilation of the ion conduction pore. By combining structural analyses with site-directed mutagenesis, electrophysiology and in vivo locomotion assays, we provide insights into the mechanism of action of the anthelmintics monepantel and betaine.


Subject(s)
Aminoacetonitrile , Anthelmintics , Betaine , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cryoelectron Microscopy , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/drug effects , Anthelmintics/pharmacology , Anthelmintics/metabolism , Anthelmintics/chemistry , Betaine/analogs & derivatives , Betaine/metabolism , Betaine/pharmacology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Aminoacetonitrile/analogs & derivatives , Aminoacetonitrile/pharmacology , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/chemistry , Receptors, Cholinergic/genetics , Protein Conformation , Models, Molecular
6.
Life Sci Alliance ; 7(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-38925866

ABSTRACT

In Caenorhabditis elegans, inter-cellular transport of the small non-coding RNA causing systemic RNAi is mediated by the transmembrane protein SID1, encoded by the sid1 gene in the systemic RNAi defective (sid) loci. SID1 shares structural and sequence similarity with cholesterol uptake protein 1 (CHUP1) and is classified as a member of the ChUP family. Although systemic RNAi is not an evolutionarily conserved process, the sid gene products are found across the animal kingdom, suggesting the existence of other novel gene regulatory mechanisms mediated by small non-coding RNAs. Human homologs of sid gene products-hSIDT1 and hSIDT2-mediate contact-dependent lipophilic small non-coding dsRNA transport. Here, we report the structure of recombinant human SIDT1. We find that the extra-cytosolic domain of hSIDT1 adopts a double jelly roll fold, and the transmembrane domain exists as two modules-a flexible lipid binding domain and a rigid transmembrane domain core. Our structural analyses provide insights into the inherent conformational dynamics within the lipid binding domain in ChUP family members.


Subject(s)
Membrane Proteins , Animals , Humans , Amino Acid Sequence , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Lipids/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains/genetics , RNA Interference
7.
Biotechnol Bioeng ; 121(9): 2893-2906, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38822747

ABSTRACT

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.


Subject(s)
Aminobutyrates , Caenorhabditis elegans , D-Amino-Acid Oxidase , Escherichia coli , Protein Engineering , D-Amino-Acid Oxidase/metabolism , D-Amino-Acid Oxidase/genetics , D-Amino-Acid Oxidase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Protein Engineering/methods , Animals , Aminobutyrates/metabolism , Aminobutyrates/chemistry , Deamination , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry
8.
Nucleic Acids Res ; 52(11): 6718-6727, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38742627

ABSTRACT

The nucleic acid transport properties of the systemic RNAi-defective (SID) 1 family make them attractive targets for developing RNA-based therapeutics and drugs. However, the molecular basis for double-stranded (ds) RNA recognition by SID1 family remains elusive. Here, we report the cryo-EM structures of Caenorhabditis elegans (c) SID1 alone and in complex with dsRNA, both at a resolution of 2.2 Å. The dimeric cSID1 interacts with two dsRNA molecules simultaneously. The dsRNA is located at the interface between ß-strand rich domain (BRD)1 and BRD2 and nearly parallel to the membrane plane. In addition to extensive ionic interactions between basic residues and phosphate backbone, several hydrogen bonds are formed between 2'-hydroxyl group of dsRNA and the contact residues. Additionally, the electrostatic potential surface shows three basic regions are fitted perfectly into three major grooves of dsRNA. These structural characteristics enable cSID1 to bind dsRNA in a sequence-independent manner and to distinguish between DNA and RNA. The cSID1 exhibits no conformational changes upon binding dsRNA, with the exception of a few binding surfaces. Structural mapping of dozens of loss-of-function mutations allows potential interpretation of their diverse functional mechanisms. Our study marks an important step toward mechanistic understanding of the SID1 family-mediated dsRNA uptake.


Subject(s)
Caenorhabditis elegans Proteins , RNA, Double-Stranded , Animals , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Cryoelectron Microscopy , Models, Molecular , Protein Binding , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Static Electricity
9.
Elife ; 132024 May 15.
Article in English | MEDLINE | ID: mdl-38747717

ABSTRACT

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Caenorhabditis elegans Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together. We found RDE-4 is important for ATP-independent and ATP-dependent cleavage reactions, while helicase domains of both DCR-1 and DRH-1 contribute to ATP-dependent cleavage. DRH-1 plays the dominant role in ATP hydrolysis, and like mammalian RLRs, has an N-terminal domain that functions in autoinhibition. A cryo-EM structure indicates DRH-1 interacts with DCR-1's helicase domain, suggesting this interaction relieves autoinhibition. Our study unravels the mechanistic basis of the collaboration between two helicases from typically distinct innate immune defense pathways.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , RNA, Double-Stranded , Ribonuclease III , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Ribonuclease III/chemistry , Ribonuclease III/genetics , Cryoelectron Microscopy , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/chemistry , Protein Binding , Adenosine Triphosphate/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , DEAD Box Protein 58/chemistry
11.
Nat Struct Mol Biol ; 31(7): 1095-1104, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38664565

ABSTRACT

RNA uptake by cells is critical for RNA-mediated gene interference (RNAi) and RNA-based therapeutics. In Caenorhabditis elegans, RNAi is systemic as a result of SID-1-mediated double-stranded RNA (dsRNA) across cells. Despite the functional importance, the underlying mechanisms of dsRNA internalization by SID-1 remain elusive. Here we describe cryogenic electron microscopy structures of SID-1, SID-1-dsRNA complex and human SID-1 homologs SIDT1 and SIDT2, elucidating the structural basis of dsRNA recognition and import by SID-1. The homodimeric SID-1 homologs share conserved architecture, but only SID-1 possesses the molecular determinants within its extracellular domains for distinguishing dsRNA from single-stranded RNA and DNA. We show that the removal of the long intracellular loop between transmembrane helix 1 and 2 attenuates dsRNA uptake and systemic RNAi in vivo, suggesting a possible endocytic mechanism of SID-1-mediated dsRNA internalization. Our study provides mechanistic insights into dsRNA internalization by SID-1, which may facilitate the development of dsRNA applications based on SID-1.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cryoelectron Microscopy , RNA, Double-Stranded , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/chemistry , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Humans , Models, Molecular , RNA Interference , Membrane Proteins
12.
Nature ; 628(8008): 630-638, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538795

ABSTRACT

Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Lysosomes , Animals , Humans , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/ultrastructure , Homeostasis , Longevity , Lysosomes/metabolism , Lysosomes/ultrastructure , Amino Acid Motifs , Microscopy, Electron
13.
Nucleic Acids Res ; 52(9): 4985-5001, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38471816

ABSTRACT

Many microRNA (miRNA)-guided Argonaute proteins can cleave RNA ('slicing'), even though miRNA-mediated target repression is generally cleavage-independent. Here we use Caenorhabditis elegans to examine the role of catalytic residues of miRNA Argonautes in organismal development. In contrast to previous work, mutations in presumed catalytic residues did not interfere with development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the catalytic residue mutants, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on catalytic residues for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on catalytic residues for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on catalytic residues. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, an effector of Target-Directed miRNA Degradation (TDMD). Overall, this work defines a role for the catalytic residues of miRNA Argonautes in star strand decay; future work should examine whether this role contributes to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.


Subject(s)
Argonaute Proteins , Caenorhabditis elegans Proteins , Caenorhabditis elegans , MicroRNAs , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/chemistry , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/chemistry , RNA Stability/genetics , Mutation , Catalytic Domain/genetics , CRISPR-Cas Systems , RNA-Binding Proteins
14.
Nature ; 622(7982): 402-409, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37758951

ABSTRACT

Transposable elements are genomic parasites that expand within and spread between genomes1. PIWI proteins control transposon activity, notably in the germline2,3. These proteins recognize their targets through small RNA co-factors named PIWI-interacting RNAs (piRNAs), making piRNA biogenesis a key specificity-determining step in this crucial genome immunity system. Although the processing of piRNA precursors is an essential step in this process, many of the molecular details remain unclear. Here, we identify an endoribonuclease, precursor of 21U RNA 5'-end cleavage holoenzyme (PUCH), that initiates piRNA processing in the nematode Caenorhabditis elegans. Genetic and biochemical studies show that PUCH, a trimer of Schlafen-like-domain proteins (SLFL proteins), executes 5'-end piRNA precursor cleavage. PUCH-mediated processing strictly requires a 7-methyl-G cap (m7G-cap) and a uracil at position three. We also demonstrate how PUCH interacts with PETISCO, a complex that binds to piRNA precursors4, and that this interaction enhances piRNA production in vivo. The identification of PUCH concludes the search for the 5'-end piRNA biogenesis factor in C. elegans and uncovers a type of RNA endonuclease formed by three SLFL proteins. Mammalian Schlafen (SLFN) genes have been associated with immunity5, exposing a molecular link between immune responses in mammals and deeply conserved RNA-based mechanisms that control transposable elements.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Endoribonucleases , Piwi-Interacting RNA , Animals , Argonaute Proteins/metabolism , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , DNA Transposable Elements/genetics , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Holoenzymes/chemistry , Holoenzymes/metabolism , Piwi-Interacting RNA/chemistry , Piwi-Interacting RNA/genetics , Piwi-Interacting RNA/metabolism , RNA Cap Analogs/chemistry , RNA Cap Analogs/metabolism
15.
Science ; 381(6664): eadi4932, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37590372

ABSTRACT

Assembly of the CMG (CDC-45-MCM-2-7-GINS) helicase is the key regulated step during eukaryotic DNA replication initiation. Until now, it was unclear whether metazoa require additional factors that are not present in yeast. In this work, we show that Caenorhabditis elegans DNSN-1, the ortholog of human DONSON, functions during helicase assembly in a complex with MUS-101/TOPBP1. DNSN-1 is required to recruit the GINS complex to chromatin, and a cryo-electron microscopy structure indicates that DNSN-1 positions GINS on the MCM-2-7 helicase motor (comprising the six MCM-2 to MCM-7 proteins), by direct binding of DNSN-1 to GINS and MCM-3, using interfaces that we show are important for initiation and essential for viability. These findings identify DNSN-1 as a missing link in our understanding of DNA replication initiation, suggesting that initiation defects underlie the human disease syndrome that results from DONSON mutations.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , DNA Replication , Minichromosome Maintenance Proteins , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , Minichromosome Maintenance Proteins/chemistry , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Protein Domains
16.
Subcell Biochem ; 101: 189-211, 2023.
Article in English | MEDLINE | ID: mdl-36520308

ABSTRACT

The UCS (UNC-45/CRO1/She4p) family of proteins has emerged as chaperones specific for the folding, assembly, and function of myosin. UCS proteins participate in various myosin-dependent cellular processes including myofibril organization and muscle functions, cell differentiation, striated muscle development, cytokinesis, and endocytosis. Mutations in the genes that code for UCS proteins cause serious defects in myosin-dependent cellular processes. UCS proteins that contain an N-terminal tetratricopeptide repeat (TPR) domain are called UNC-45. Vertebrates usually possess two variants of UNC-45, the ubiquitous general-cell UNC-45 (UNC-45A) and the striated muscle UNC-45 (UNC-45B), which is exclusively expressed in skeletal and cardiac muscles. Except for the TPR domain in UNC-45, UCS proteins comprise of several irregular armadillo (ARM) repeats that are organized into a central domain, a neck region, and the canonical C-terminal UCS domain that functions as the chaperoning module. With or without TPR, UCS proteins form linear oligomers that serve as scaffolds that mediate myosin folding, organization into myofibrils, repair, and motility. This chapter reviews emerging functions of these proteins with a focus on UNC-45 as a dedicated chaperone for folding, assembly, and function of myosin at protein and potentially gene levels. Recent experimental evidences strongly support UNC-45 as an absolute regulator of myosin, with each domain of the chaperone playing different but complementary roles during the folding, assembly, and function of myosin, as well as recruiting Hsp90 as a co-chaperone to optimize key steps. It is becoming increasingly clear that UNC-45 also regulates the transcription of several genes involved in myosin-dependent cellular processes.


Subject(s)
Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Molecular Chaperones/metabolism , Myosins/genetics , Myosins/chemistry , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism
17.
Nature ; 610(7933): 796-803, 2022 10.
Article in English | MEDLINE | ID: mdl-36224384

ABSTRACT

The initial step in the sensory transduction pathway underpinning hearing and balance in mammals involves the conversion of force into the gating of a mechanosensory transduction channel1. Despite the profound socioeconomic impacts of hearing disorders and the fundamental biological significance of understanding mechanosensory transduction, the composition, structure and mechanism of the mechanosensory transduction complex have remained poorly characterized. Here we report the single-particle cryo-electron microscopy structure of the native transmembrane channel-like protein 1 (TMC-1) mechanosensory transduction complex isolated from Caenorhabditis elegans. The two-fold symmetric complex is composed of two copies each of the pore-forming TMC-1 subunit, the calcium-binding protein CALM-1 and the transmembrane inner ear protein TMIE. CALM-1 makes extensive contacts with the cytoplasmic face of the TMC-1 subunits, whereas the single-pass TMIE subunits reside on the periphery of the complex, poised like the handles of an accordion. A subset of complexes additionally includes a single arrestin-like protein, arrestin domain protein (ARRD-6), bound to a CALM-1 subunit. Single-particle reconstructions and molecular dynamics simulations show how the mechanosensory transduction complex deforms the membrane bilayer and suggest crucial roles for lipid-protein interactions in the mechanism by which mechanical force is transduced to ion channel gating.


Subject(s)
Caenorhabditis elegans , Cryoelectron Microscopy , Ion Channels , Mechanotransduction, Cellular , Animals , Arrestins/chemistry , Arrestins/metabolism , Arrestins/ultrastructure , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/ultrastructure , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/ultrastructure , Ion Channel Gating , Ion Channels/chemistry , Ion Channels/metabolism , Ion Channels/ultrastructure , Lipids
18.
Nat Struct Mol Biol ; 29(2): 97-107, 2022 02.
Article in English | MEDLINE | ID: mdl-35132256

ABSTRACT

Neurotransmitter release is mediated by proteins that drive synaptic vesicle fusion with the presynaptic plasma membrane. While soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) form the core of the fusion apparatus, additional proteins play key roles in the fusion pathway. Here, we report that the C-terminal amphipathic helix of the mammalian accessory protein, complexin (Cpx), exerts profound effects on membranes, including the formation of pores and the efficient budding and fission of vesicles. Using nanodisc-black lipid membrane electrophysiology, we demonstrate that the membrane remodeling activity of Cpx modulates the structure and stability of recombinant exocytic fusion pores. Cpx had particularly strong effects on pores formed by small numbers of SNAREs. Under these conditions, Cpx increased the current through individual pores 3.5-fold, and increased the open time fraction from roughly 0.1 to 1.0. We propose that the membrane sculpting activity of Cpx contributes to the phospholipid rearrangements that underlie fusion by stabilizing highly curved membrane fusion intermediates.


Subject(s)
Adaptor Proteins, Vesicular Transport/chemistry , Nerve Tissue Proteins/chemistry , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , HEK293 Cells , Humans , Lipid Bilayers/chemistry , Membrane Fusion/physiology , Molecular Dynamics Simulation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation, alpha-Helical , Protein Stability , Synaptic Vesicles/chemistry , Synaptic Vesicles/metabolism
19.
Science ; 375(6583): 839-844, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35201867

ABSTRACT

The nascent polypeptide-associated complex (NAC) interacts with newly synthesized proteins at the ribosomal tunnel exit and competes with the signal recognition particle (SRP) to prevent mistargeting of cytosolic and mitochondrial polypeptides to the endoplasmic reticulum (ER). How NAC antagonizes SRP and how this is overcome by ER targeting signals are unknown. Here, we found that NAC uses two domains with opposing effects to control SRP access. The core globular domain prevented SRP from binding to signal-less ribosomes, whereas a flexibly attached domain transiently captured SRP to permit scanning of nascent chains. The emergence of an ER-targeting signal destabilized NAC's globular domain and facilitated SRP access to the nascent chain. These findings elucidate how NAC hands over the signal sequence to SRP and imparts specificity of protein localization.


Subject(s)
Endoplasmic Reticulum/metabolism , Molecular Chaperones/metabolism , Protein Sorting Signals , Signal Recognition Particle/metabolism , Animals , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Humans , Models, Molecular , Molecular Chaperones/chemistry , Protein Binding , Protein Domains , Protein Transport , Ribosomes/metabolism , Signal Recognition Particle/chemistry , Ubiquitin/metabolism
20.
J Biol Chem ; 298(1): 101466, 2022 01.
Article in English | MEDLINE | ID: mdl-34864060

ABSTRACT

Complex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism Caenorhabditis elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. Separate, the well-defined neuromuscular circuits control these distinct tissues. Nonetheless, the emergent behaviors, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. Here, we show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behavior. This was evidenced by a systematic screening of the effect of the cholinesterase inhibitor aldicarb on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinants of the inhibitory effect of aldicarb on pharyngeal pumping are located at the body wall neuromuscular junction. In fact, the selective stimulation of the body wall muscle receptors with the agonist levamisole inhibited pumping in a lev-1-dependent fashion. Interestingly, this response was independent of unc-38, an alpha subunit of the nicotinic receptor classically expressed with lev-1 at the body wall muscle. This implies an uncharacterized lev-1-containing receptor underpins this effect. Overall, our results reveal that body wall cholinergic transmission not only controls locomotion but simultaneously inhibits feeding behavior.


Subject(s)
Caenorhabditis elegans Proteins , Cholinesterase Inhibitors , Feeding Behavior , Neuromuscular Junction , Aldicarb/pharmacology , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cholinesterase Inhibitors/pharmacology , Feeding Behavior/drug effects , Feeding Behavior/physiology , Levamisole/pharmacology , Neuromuscular Junction/drug effects , Neuromuscular Junction/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL