Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.470
Filter
1.
Molecules ; 29(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39339449

ABSTRACT

The rapidly growing field of cannabinoid research is gaining recognition for its impact in neuropsychopharmacology and mood regulation. However, prenyltransferase (NphB) (a key enzyme in cannabinoid precursor synthesis) still needs significant improvement in order to be usable in large-scale industrial applications due to low activity and limited product range. By rational design and high-throughput screening, NphB's catalytic efficiency and product diversity have been markedly enhanced, enabling direct production of a range of cannabinoids, without the need for traditional enzymatic conversions, thus broadening the production scope of cannabinoids, including cannabigerol (CBG), cannabigerolic acid (CBGA), cannabigerovarin (CBGV), and cannabigerovarinic acid (CBGVA). Notably, the W3 mutant achieved a 10.6-fold increase in CBG yield and exhibited a 10.3- and 20.8-fold enhancement in catalytic efficiency for CBGA and CBGV production, respectively. The W4 mutant also displayed an 9.3-fold increase in CBGVA activity. Molecular dynamics simulations revealed that strategic reconfiguration of the active site's hydrogen bonding network, disulfide bond formation, and enhanced hydrophobic interactions are pivotal for the improved synthetic efficiency of these NphB mutants. Our findings advance the understanding of enzyme optimization for cannabinoid synthesis and lay a foundation for the industrial-scale production of these valuable compounds.


Subject(s)
Cannabinoids , Dimethylallyltranstransferase , Cannabinoids/biosynthesis , Cannabinoids/chemistry , Cannabinoids/metabolism , Dimethylallyltranstransferase/metabolism , Dimethylallyltranstransferase/genetics , Molecular Dynamics Simulation , Catalytic Domain , Mutation
2.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273304

ABSTRACT

The management of rheumatic diseases has noticeably changed in recent years with the development of targeted therapeutic agents, namely, biological disease-modifying antirheumatic drugs. Identifying essential signaling pathways and factors crucial for the development and progression of these diseases remains a significant challenge. Therapy could be used to delay the onset or reduce harm. The endocannabinoid system's presence within the synovium can be identified as a suggested target for therapeutic interventions due to its role in modulating pain, inflammation, and joint metabolism. This review brings together the most pertinent information concerning the actions of the endocannabinoid system present in inflamed synovial tissue and its interaction with phytocannabinoids and synthetic cannabinoids, which can be used from a therapeutic perspective to minimize the inflammatory and pain processes typical of osteoarthritis and rheumatoid arthritis.


Subject(s)
Cannabinoids , Synovial Membrane , Humans , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/metabolism , Synovial Membrane/metabolism , Synovial Membrane/drug effects , Animals , Endocannabinoids/metabolism , Rheumatic Diseases/drug therapy , Rheumatic Diseases/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Inflammation/metabolism , Inflammation/drug therapy , Antirheumatic Agents/therapeutic use , Antirheumatic Agents/pharmacology
3.
Plant Sci ; 348: 112210, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39096974

ABSTRACT

Among the commercial cannabis varieties, some are high yielders but characterized by a relatively poor root system. Roots absorb water and minerals from the soil, enabling vegetative development that directly affects yield, as vigorous plants have more resources to support reproduction. Moreover, healthy foliage is a primary key to high assimilation rates, leading to better production of photosynthetic products, including cannabinoids and terpenes, which are the main active components of cannabis. We grafted a high-THC variety, named 'Freud Super-Ego' (FSE) onto three chemotypes of rootstocks: high-THC (T), high-CBD (C), and Balanced (B). All the rootstocks had significantly greater root biomass compared to FSE. All the grafting treatments significantly improved FSE's vegetative indices and yield. The best overall vegetative performance - height, stem circumference, number of mature leaves - was that of plants grafted onto the Balanced and high-CBD rootstocks, resulting in high yields as well. However, the greatest number of inflorescences was counted when FSE was grafted onto a high-THC rootstock. According to leaf mineral content analysis, the highest nitrogen and phosphorus levels were found in leaves of FSE grafted on the balanced rootstock. The cannabinoid content profile analysis revealed that all grafting treatments raised the THC level in FSE's inflorescences by 8-12 % in comparison to the non-grafted control, and the THC rootstock led to the highest THC level. The results indicate the importance of grafting in cannabis as a tool to increase the productivity and quality of the product.


Subject(s)
Cannabis , Plant Roots , Cannabis/metabolism , Cannabis/growth & development , Cannabis/physiology , Plant Roots/growth & development , Plant Roots/metabolism , Plant Leaves/metabolism , Reproduction/drug effects , Biomass , Cannabinoids/metabolism , Phosphorus/metabolism
4.
Biosens Bioelectron ; 264: 116686, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39173339

ABSTRACT

Cannabinoids are involved in physiological and neuromodulatory processes through their interactions with the human cannabinoid receptor-based endocannabinoid system. Their association with neurodegenerative diseases and brain reward pathways underscores the importance of evaluating and modulating cannabinoid activity for both understanding physiological mechanisms and developing therapeutic drugs. The use of agonists and antagonists could be strategic approaches for modulation. In this study, we introduce a bioelectronic sensor designed to monitor cannabinoid binding to receptors and assess their agonistic and antagonistic properties. We produced human cannabinoid receptor 1 (hCB1R) via an Escherichia coli expression system and incorporated it into nanodiscs (NDs). These hCB1R-NDs were then immobilized on a single-walled carbon nanotube field-effect transistor (swCNT-FET) to construct a bioelectronic sensing platform. This novel system can sensitively detect the cannabinoid ligand anandamide (AEA) at concentrations as low as 1 fM, demonstrating high selectivity and real-time response. It also successfully identified the hCB1R agonist Δ9-tetrahydrocannabinol and observed that the hCB1R antagonist rimonabant diminished the sensor signal upon AEA binding, indicating the antagonism-based modulation of ligand interaction. Consequently, our bioelectronic sensing platform holds potential for ligand detection and analysis of agonism and antagonism.


Subject(s)
Biosensing Techniques , Endocannabinoids , Nanotubes, Carbon , Receptor, Cannabinoid, CB1 , Humans , Endocannabinoids/metabolism , Nanotubes, Carbon/chemistry , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Transistors, Electronic , Polyunsaturated Alkamides/chemistry , Polyunsaturated Alkamides/pharmacology , Arachidonic Acids/chemistry , Arachidonic Acids/pharmacology , Cannabinoids/metabolism , Cannabinoids/pharmacology , Cannabinoids/chemistry , Cannabinoid Receptor Agonists/pharmacology , Cannabinoid Receptor Agonists/chemistry , Dronabinol/pharmacology , Dronabinol/chemistry , Escherichia coli/drug effects , Escherichia coli/metabolism
5.
J Pharm Biomed Anal ; 250: 116385, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39116582

ABSTRACT

Characterizing the metabolic profiles of synthetic cannabinoids (SCs), a type of new psychoactive substances, is of particular importance for forensic detection and analysis. Although the metabolism of individual SCs derived from 1-amino-3,3-dimethyl-1-oxobutan-2-yl (ADB-SCs) has been reported, their metabolites also undergo a continuous change and combination of their tail and core regions. Therefore, elucidating the metabolic characteristics and effects of these structures is essential to enhance our understanding. In this study, the human liver microsome was used as the model for studying the in vitro phase I metabolism of 12 ADB-SCs, and the metabolites obtained were analyzed using ultra-high performance liquid chromatography-tandem four-level rod-electrostatic field orbital ion trap mass spectrometry to determine type, structure, and relative contents. The results indicated that hydroxylation and N-dealkylation were the major metabolic pathways in 12 ADB-SCs. The effects of the core and tail on the metabolism of these ADB-SCs were studied using theoretical calculations. For N-dealkylation metabolism, the strong electron-withdrawing conjugative effect of the -N= moiety in the pyrazole ring, steric hindrance of the tail, and electronic effect of substituents on the tail significantly affected metabolism. Further, it changed the relative contents of N-dealkylation metabolites. For hydroxylation, the reaction types were inconsistent at different parts. For instance, the phenyl group of the core is electrophilic, and its electron cloud density determines whether the phenyl group can be hydroxylated at the specific metabolic sites. Meanwhile, hydroxylation of the neopentyl moiety of the linked group involves the oxidation of aliphatic C-H bonds, whereas amide-hydroxylamine tautomerism affects hydroxylation metabolism. When the alkyl chain in the tail contains functional groups (such as -F and >CC<), oxidative defluorination or dihydrodiol metabolites are produced. Taken together, we systematically determined d the effect of functional groups in the core and tail of ADB-SCs on their metabolism, validating confirmed the feasibility of ADB-SC metabolism prediction based on their structural characteristics.


Subject(s)
Cannabinoids , Indazoles , Indoles , Microsomes, Liver , Tandem Mass Spectrometry , Cannabinoids/chemistry , Cannabinoids/metabolism , Cannabinoids/analysis , Humans , Indazoles/chemistry , Microsomes, Liver/metabolism , Chromatography, High Pressure Liquid/methods , Indoles/chemistry , Indoles/metabolism , Tandem Mass Spectrometry/methods , Hydroxylation
6.
Cell Biochem Funct ; 42(6): e4100, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090824

ABSTRACT

Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), is an essential phenomenon in memory formation as well as maintenance along with many other cognitive functions, such as those needed for coping with external stimuli. Synaptic plasticity consists of gradual changes in the biochemistry and morphology of pre- and postsynaptic neurons, particularly in the hippocampus. Consuming marijuana as a primary source of exocannabinoids immediately impairs attention and working memory-related tasks. Evidence regarding the effects of cannabinoids on LTP and memory is contradictory. While cannabinoids can affect a variety of specific cannabinoid receptors (CBRs) and nonspecific receptors throughout the body and brain, they exert miscellaneous systemic and local cerebral effects. Given the increasing use of cannabis, mainly among the young population, plus its potential adverse long-term effects on learning and memory processes, it could be a future global health challenge. Indeed, the impact of cannabinoids on memory is multifactorial and depends on the dosage, timing, formula, and route of consumption, plus the background complex interaction of the endocannabinoids system with other cerebral networks. Herein, we review how exogenously administrated organic cannabinoids, CBRs agonists or antagonists, and endocannabinoids can affect LTP and synaptic plasticity through various receptors in interaction with other cerebral pathways and primary neurotransmitters.


Subject(s)
Cannabinoids , Long-Term Potentiation , Memory , Neuronal Plasticity , Cannabinoids/pharmacology , Cannabinoids/metabolism , Humans , Neuronal Plasticity/drug effects , Animals , Long-Term Potentiation/drug effects , Memory/drug effects , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Receptors, Cannabinoid/metabolism , Long-Term Synaptic Depression/drug effects , Hippocampus/metabolism , Hippocampus/drug effects
7.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126088

ABSTRACT

The endogenous cannabinoid system (ECS) of the brain plays an important role in the molecular pathogenesis of Parkinson's disease (PD). It is involved in the formation of numerous clinical manifestations of the disease by regulating the level of endogenous cannabinoids and changing the activation of cannabinoid receptors (CBRs). Therefore, ECS modulation with new drugs specifically designed for this purpose may be a promising strategy in the treatment of PD. However, fine regulation of the ECS is quite a complex task due to the functional diversity of CBRs in the basal ganglia and other parts of the central nervous system. In this review, the effects of ECS modulators in various experimental models of PD in vivo and in vitro, as well as in patients with PD, are analyzed. Prospects for the development of new cannabinoid drugs for the treatment of motor and non-motor symptoms in PD are presented.


Subject(s)
Parkinson Disease , Receptors, Cannabinoid , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Humans , Animals , Receptors, Cannabinoid/metabolism , Endocannabinoids/metabolism , Cannabinoids/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/metabolism
8.
Sci Rep ; 14(1): 18314, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112591

ABSTRACT

The type 1 cannabinoid receptor (CB1R) mediates neurotransmitter release and synaptic plasticity in the central nervous system. Endogenous, plant-derived, synthetic cannabinoids bind to CB1R, initiating the inhibitory G-protein (Gi) and the ß-arrestin signaling pathways. Within the Gi signaling pathway, CB1R activates G protein-gated, inwardly-rectifying potassium (GIRK) channels. The ß-arrestin pathway reduces CB1R expression on the cell surface through receptor internalization. Because of their association with analgesia and drug tolerance, GIRK channels and receptor internalization are of interest to the development of pharmaceuticals. This research used immortalized mouse pituitary gland cells transduced with a pH-sensitive, fluorescently-tagged human CB1R (AtT20-SEPCB1) to measure GIRK channel activity and CB1R internalization. Cannabinoid-induced GIRK channel activity is measured by using a fluorescent membrane-potential sensitive dye. We developed a kinetic imaging assay that visualizes and measures CB1R internalization. All cannabinoids stimulated a GIRK channel response with a rank order potency of WIN55,212-2 > (±)CP55,940 > Δ9-THC > AEA. Efficacy was expressed relative to (±)CP55,940 with a rank order efficacy of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. All cannabinoids stimulated CB1R internalization with a rank order potency of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. Internalization efficacy was normalized to (±)CP55,940 with a rank order efficacy of WIN55,212-2 > AEA > (±)CP55,940 > Δ9-THC. (±)CP55,940 was significantly more potent and efficacious than AEA and Δ9-THC at stimulating a GIRK channel response; no significant differences between potency and efficacy were observed with CB1R internalization. No significant differences were found when comparing a cannabinoid's GIRK channel and CB1R internalization response. In conclusion, AtT20-SEPCB1 cells can be used to assess cannabinoid-induced CB1R internalization. While cannabinoids display differential Gi signaling when compared to each other, this did not extend to CB1R internalization.


Subject(s)
Benzoxazines , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Naphthalenes , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Animals , Mice , Humans , Kinetics , Naphthalenes/pharmacology , Benzoxazines/pharmacology , Cannabinoids/metabolism , Cannabinoids/pharmacology , Morpholines/pharmacology , Signal Transduction/drug effects , Cell Line , Cyclohexanols
9.
Cells ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38994982

ABSTRACT

There has been a significant increase in the consumption of cannabis for both recreational and medicinal purposes in recent years, and its use can have long-term consequences on cognitive functions, including memory. Here, we review the immediate and long-term effects of cannabis and its derivatives on glutamatergic neurotransmission, with a focus on both the presynaptic and postsynaptic alterations. Several factors can influence cannabinoid-mediated changes in glutamatergic neurotransmission, including dosage, sex, age, and frequency of use. Acute exposure to cannabis typically inhibits glutamate release, whereas chronic use tends to increase glutamate release. Conversely, the postsynaptic alterations are more complicated than the presynaptic effects, as cannabis can affect the glutamate receptor expression and the downstream signaling of glutamate. All these effects ultimately influence cognitive functions, particularly memory. This review will cover the current research on glutamate-cannabis interactions, as well as the future directions of research needed to understand cannabis-related health effects and neurological and psychological aspects of cannabis use.


Subject(s)
Cannabinoids , Cannabis , Glutamic Acid , Synaptic Transmission , Humans , Synaptic Transmission/drug effects , Cannabinoids/pharmacology , Cannabinoids/metabolism , Glutamic Acid/metabolism , Cannabis/metabolism , Animals
10.
Genes (Basel) ; 15(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39062742

ABSTRACT

The inclusion of spent hemp biomass (SHB), an extracted byproduct from industrial cannabidiol (CBD) production, in the diets of dairy cows and lambs appears to be safe with minor effects on the metabolism, including a decrease in circulating cholesterol and increase bilirubinemia, both associated with liver metabolism. Those effects could be consequence of the presence of cannabinoids, particularly Δ9-tetrahydrocannabinol (THC) and CBD in the SHB. This study aimed to study the transcriptional profile of the liver of dairy cows and lambs fed SHB. Dairy cows received SHB or alfalfa pellet for four weeks of intervention (IP) and four weeks of withdrawal periods (WP). Finishing lambs were fed a control diet (CON), 10% (LH2), or 20% (HH2) SHB for 2 months or 1 month followed by 1-month SHB withdrawal (LH1 and HH1, respectively). RNA sequencing was performed, and the mRNA was annotated using the latest reference genomes. The RNAseq data were filtered, normalized for library size and composition, and statistically analyzed by DESeq2. The bioinformatic analysis was performed by using DAVID, Gene Set Enrichment Analysis (GSEA), and the Dynamic Impact Approach. Using a 0.2 FDR cut-off, we identified only ≤24 differentially expressed genes (DEG) in the liver by feeding SHB in dairy cows and a larger number of DEGs in lambs (from 71 in HH1 vs. CON to 552 in LH1 vs. CON). The KEGG analysis demonstrated that feeding SHB in dairy cows and lambs had relatively minor to moderate metabolic alterations in dairy cows and lambs mainly associated with amino acids and lipid metabolism whereas cholesterol synthesis was overall activated in lambs. GSEA identified activation of the PPAR signaling pathway only in dairy cows. We found an opposite effect on activation of metabolism of drug and xenobiotics by cytochrome P450 enzymes in dairy cows and lambs receiving less SHB but an inhibition in HH2 lambs. Immune system-related pathways were inhibited by feeding SHB in lambs, but the impact was minor. Cumulatively, inclusion of SHB containing cannabinoids in dairy and lambs demonstrate very little effects on the alteration of transcriptomic profile of the liver.


Subject(s)
Animal Feed , Cannabinoids , Cannabis , Liver , Transcriptome , Animals , Liver/metabolism , Liver/drug effects , Cannabis/genetics , Cannabis/chemistry , Cattle/genetics , Cattle/metabolism , Transcriptome/drug effects , Sheep/genetics , Sheep/metabolism , Cannabinoids/metabolism , Animal Feed/analysis , Female , Biomass
11.
Int J Mol Sci ; 25(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062976

ABSTRACT

Phytocannabinoids with seven-carbon alkyl chains (phorols) have gained a lot of attention, as they are commonly believed to be more potent versions of typical cannabinoids with shorter alkyl chains. At the time of this article, cannabidiphorol (CBDP) and tetrahydrocannabiphorol (THCP) can both be purchased in the North American market, even though their biological activities are nearly unknown. To investigate their relative potency, we conducted in vitro receptor-binding experiments with CBDP (cannabinoid CB1/CB2 receptor antagonism, serotonin 5HT-1A agonism, dopamine D2S (short form) agonism, and mu-opioid negative allosteric modulation) and compared the observed activity with that of CBD. To our knowledge, this is the first publication to investigate CBDP's receptor activity in vitro. A similar activity profile was observed for both CBD and CBDP, with the only notable difference at the CB2 receptor. Contrary to common expectations, CBD was found to be a slightly more potent CB2 antagonist than CBDP (p < 0.05). At the highest tested concentration, CBD demonstrated antagonist activity with a 33% maximum response of SR144528 (selective CB2 antagonist/inverse agonist). CBDP at the same concentration produced a weaker antagonist activity. A radioligand binding assay revealed that among cannabinoid and serotonin receptors, CB2 is likely the main biological target of CBDP. However, both CBD and CBDP were found to be significantly less potent than SR144528. The interaction of CBDP with the mu-opioid receptor (MOR) produced unexpected results. Although the cannabidiol family is considered to be a set of negative allosteric modulators (NAMs) of opioid receptors, we observed a significant increase in met-enkephalin-induced mu-opioid internalization when cells were incubated with 3 µM of CBDP and 1 µM met-enkephalin, a type of activity expected from positive allosteric modulators (PAMs). To provide a structural explanation for the observed PAM effect, we conducted molecular docking simulations. These simulations revealed the co-binding potential of CBDP (or CBD) and met-enkephalin to the MOR.


Subject(s)
Receptor, Cannabinoid, CB2 , Humans , Receptor, Cannabinoid, CB2/metabolism , Cannabidiol/pharmacology , Cannabidiol/metabolism , Cannabidiol/chemistry , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/agonists , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Protein Binding , Cannabinoids/metabolism , Cannabinoids/pharmacology , Cannabinoids/chemistry , Dronabinol/pharmacology , Dronabinol/analogs & derivatives , Dronabinol/chemistry , Dronabinol/metabolism , Receptors, Dopamine D2/metabolism , Animals
12.
Arch Toxicol ; 98(9): 2879-2888, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38955863

ABSTRACT

5F-EDMB-PICA is a newly emerged synthetic cannabinoid which has been characterized in relevant literature in recent years. Although phase-I metabolites of 5F-EDMB-PICA have been partly reported, the phase-II metabolism of this synthetic cannabinoid has not been studied yet. In this study, we established a phase-I and phase-II metabolism model in vitro by using pooled human liver microsomes, NADPH regeneration system, and UGT incubation system, with 1 mg/ml 5F-EDMB-PICA added and incubated at 37 °C for 60 min. The metabolites were analyzed by Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer, via which we discovered and identified 14 phase-I metabolites and 4 phase-II metabolites of 5F-EDMB-PICA, involving pathways such as ester hydrolysis, dehydrogenation, hydrolytic defluorination, hydroxylation, dihydroxylation, glucuronidation, and combinations of the pathways mentioned above. We recommend considering the monohydroxylation metabolites (M9, M10) with higher content and intact ester and 5-fluoropentyl structures as potential biomarkers of 5F-EDMB-PICA.


Subject(s)
Cannabinoids , Microsomes, Liver , Humans , Microsomes, Liver/metabolism , Cannabinoids/metabolism , Glucuronosyltransferase/metabolism , Metabolic Networks and Pathways , Metabolic Detoxication, Phase I , Metabolic Detoxication, Phase II , NADP/metabolism , Hydroxylation
13.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892079

ABSTRACT

Microbes and enzymes play essential roles in soil and plant rhizosphere ecosystem functioning. However, fungicides and plant root secretions may impact the diversity and abundance of microbiota structure and enzymatic activities in the plant rhizosphere. In this study, we analyzed soil samples from the rhizosphere of four cannabinoid-rich hemp (Cannabis sativa) cultivars (Otto II, BaOx, Cherry Citrus, and Wife) subjected to three different treatments (natural infection, fungal inoculation, and fungicide treatment). DNA was extracted from the soil samples, 16S rDNA was sequenced, and data were analyzed for diversity and abundance among different fungicide treatments and hemp cultivars. Fungicide treatment significantly impacted the diversity and abundance of the hemp rhizosphere microbiota structure, and it substantially increased the abundance of the phyla Archaea and Rokubacteria. However, the abundances of the phyla Pseudomonadota and Gemmatimonadetes were substantially decreased in treatments with fungicides compared to those without fungicides in the four hemp cultivars. In addition, the diversity and abundance of the rhizosphere microbiota structure were influenced by hemp cultivars. The influence of Cherry Citrus on the diversity and abundance of the hemp rhizosphere microbiota structure was less compared to the other three hemp cultivars (Otto II, BaOx, and Wife). Moreover, fungicide treatment affected enzymatic activities in the hemp rhizosphere. The application of fungicides significantly decreased enzyme abundance in the rhizosphere of all four hemp cultivars. Enzymes such as dehydrogenase, dioxygenase, hydrolase, transferase, oxidase, carboxylase, and peptidase significantly decreased in all the four hemp rhizosphere treated with fungicides compared to those not treated. These enzymes may be involved in the function of metabolizing organic matter and degrading xenobiotics. The ecological significance of these findings lies in the recognition that fungicides impact enzymes, microbiota structure, and the overall ecosystem within the hemp rhizosphere.


Subject(s)
Cannabis , Fungicides, Industrial , Microbiota , Rhizosphere , Soil Microbiology , Cannabis/enzymology , Microbiota/drug effects , Fungicides, Industrial/pharmacology , Cannabinoids/pharmacology , Cannabinoids/metabolism , Plant Roots/microbiology , Plant Roots/drug effects , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Bacteria/enzymology , RNA, Ribosomal, 16S/genetics
14.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892247

ABSTRACT

Yeast expression of human G-protein-coupled receptors (GPCRs) can be used as a biosensor platform for the detection of pharmaceuticals. Cannabinoid receptor type 1 (CB1R) is of particular interest, given the cornucopia of natural and synthetic cannabinoids being explored as therapeutics. We show for the first time that engineering the N-terminus of CB1R allows for efficient signal transduction in yeast, and that engineering the sterol composition of the yeast membrane modulates its performance. Using an engineered cannabinoid biosensor, we demonstrate that large libraries of synthetic cannabinoids and terpenes can be quickly screened to elucidate known and novel structure-activity relationships. The biosensor strains offer a ready platform for evaluating the activity of new synthetic cannabinoids, monitoring drugs of abuse, and developing therapeutic molecules.


Subject(s)
Biosensing Techniques , Cannabinoids , Receptor, Cannabinoid, CB1 , Saccharomyces cerevisiae , Biosensing Techniques/methods , Humans , Cannabinoids/chemistry , Cannabinoids/pharmacology , Cannabinoids/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB1/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Structure-Activity Relationship , Signal Transduction/drug effects
15.
Glia ; 72(10): 1746-1765, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38856177

ABSTRACT

Cholesterol is crucial for the proper functioning of eukaryotic cells, especially neurons, which rely on cholesterol to maintain their complex structure and facilitate synaptic transmission. However, brain cells are isolated from peripheral cholesterol by the blood-brain barrier and mature neurons primarily uptake the cholesterol synthesized by astrocytes for proper function. This study aimed to investigate the effect of aging on cholesterol trafficking in astrocytes and its delivery to neurons. We found that aged astrocytes accumulated high levels of cholesterol in the lysosomal compartment, and this cholesterol buildup can be attributed to the simultaneous occurrence of two events: decreased levels of the ABCA1 transporter, which impairs ApoE-cholesterol export from astrocytes, and reduced expression of NPC1, which hinders cholesterol release from lysosomes. We show that these two events are accompanied by increased microR-33 in aged astrocytes, which targets ABCA1 and NPC1. In addition, we demonstrate that the microR-33 increase is triggered by oxidative stress, one of the hallmarks of aging. By coculture experiments, we show that cholesterol accumulation in astrocytes impairs the cholesterol delivery from astrocytes to neurons. Remarkably, we found that this altered transport of cholesterol could be alleviated through treatment with endocannabinoids as well as cannabidiol or CBD. Finally, according to data demonstrating that aged astrocytes develop an A1 phenotype, we found that cholesterol buildup is also observed in reactive C3+ astrocytes. Given that reduced neuronal cholesterol affects synaptic plasticity, the ability of cannabinoids to restore cholesterol transport from aged astrocytes to neurons holds significant implications in aging and inflammation.


Subject(s)
ATP Binding Cassette Transporter 1 , Astrocytes , Cannabinoids , Cholesterol , Lysosomes , Neurons , Astrocytes/metabolism , Astrocytes/drug effects , Animals , Cholesterol/metabolism , Neurons/metabolism , Neurons/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , ATP Binding Cassette Transporter 1/metabolism , Cannabinoids/pharmacology , Cannabinoids/metabolism , Cells, Cultured , Niemann-Pick C1 Protein , Mice , Aging/metabolism , Coculture Techniques , Mice, Inbred C57BL
16.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791416

ABSTRACT

Alzheimer's disease (AD) remains a significant health challenge, with an increasing prevalence globally. Recent research has aimed to deepen the understanding of the disease pathophysiology and to find potential therapeutic interventions. In this regard, G protein-coupled receptors (GPCRs) have emerged as novel potential therapeutic targets to palliate the progression of neurodegenerative diseases such as AD. Orexin and cannabinoid receptors are GPCRs capable of forming heteromeric complexes with a relevant role in the development of this disease. On the one hand, the hyperactivation of the orexins system has been associated with sleep-wake cycle disruption and Aß peptide accumulation. On the other hand, cannabinoid receptor overexpression takes place in a neuroinflammatory environment, favoring neuroprotective effects. Considering the high number of interactions between cannabinoid and orexin systems that have been described, regulation of this interplay emerges as a new focus of research. In fact, in microglial primary cultures of APPSw/Ind mice model of AD there is an important increase in CB2R-OX1R complex expression, while OX1R antagonism potentiates the neuroprotective effects of CB2R. Specifically, pretreatment with the OX1R antagonist has been shown to strongly potentiate CB2R signaling in the cAMP pathway. Furthermore, the blockade of OX1R can also abolish the detrimental effects of OX1R overactivation in AD. In this sense, CB2R-OX1R becomes a new potential therapeutic target to combat AD.


Subject(s)
Alzheimer Disease , Cannabinoids , Orexins , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Animals , Humans , Cannabinoids/pharmacology , Cannabinoids/metabolism , Cannabinoids/therapeutic use , Orexins/metabolism , Orexin Receptors/metabolism , Receptors, Cannabinoid/metabolism , Signal Transduction , Amyloid beta-Peptides/metabolism
17.
Infect Immun ; 92(6): e0002024, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38775488

ABSTRACT

The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.


Subject(s)
Bacterial Infections , Cannabinoids , Endocannabinoids , Gastrointestinal Microbiome , Host-Pathogen Interactions , Endocannabinoids/metabolism , Humans , Bacterial Infections/immunology , Bacterial Infections/microbiology , Animals , Host-Pathogen Interactions/immunology , Cannabinoids/metabolism , Cannabinoids/pharmacology
18.
Metabolomics ; 20(3): 62, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796627

ABSTRACT

INTRODUCTION: The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical intricacy and the resultant medicinal qualities of the plant. OBJECTIVES: Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond the cannabinoids. METHODS: Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC). RESULTS: The results revealed the presence of different chemical compound classes including cannabinoids, but extending it to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid superclass was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the elucidated chemical profiles. CONCLUSION: These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting certain varieties for medicinal use.


Subject(s)
Cannabis , Metabolomics , Plant Leaves , Cannabis/chemistry , Cannabis/metabolism , Metabolomics/methods , Plant Leaves/metabolism , Plant Leaves/chemistry , Flowers/metabolism , Flowers/chemistry , Plant Extracts/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Cannabinoids/metabolism , Cannabinoids/analysis , Molecular Docking Simulation , Flavonoids/metabolism , Flavonoids/analysis , Mass Spectrometry/methods
19.
Curr Opin Plant Biol ; 80: 102549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38761520

ABSTRACT

Flowers of Cannabis sativa L. are densely covered with glandular trichomes containing cannabis resin that is used for medicinal and recreational purposes. The highly productive glandular trichomes have been described as 'biofactories.' In this review, we use this analogy to highlight recent advances in cannabis cell biology, metabolomics, and transcriptomics. The biofactory is built by epidermal outgrowths that differentiate into peltate-like glandular trichome heads, consisting of a disc of interconnected secretory cells with unique cellular structures. Cannabinoid and terpenoid products are warehoused in the extracellular storage cavity. Finally, multicellular stalks raise the glandular heads above the epidermis, giving cannabis flower their frosty appearance.


Subject(s)
Cannabis , Trichomes , Cannabis/metabolism , Trichomes/metabolism , Flowers/metabolism , Flowers/genetics , Cannabinoids/metabolism , Terpenes/metabolism
20.
J Agric Food Chem ; 72(23): 12975-12987, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38807047

ABSTRACT

This study discovered the impact of high-tunnel (i.e., unheated greenhouse) and open-field production on two industrial hemp cultivars (SB1 and CJ2) over their yield parameters, cannabinoid development, and volatile profiles. Development of neutral cannabinoids (CBD, THC, and CBC), acidic cannabinoids (CBDA, THCA, and CBCA), and total cannabinoids during floral maturation were investigated. The volatile profiles of hemp flowers were holistically compared via HS-SPME-GC/MS. Findings indicated a high tunnel as an efficient practice for achieving greater total weight, stem number, and caliper, especially in the SB1 cultivar. Harvesting high-tunnel-grown SB1 cultivars during early flower maturation could obtain a high CBD yield while complying with THC regulations. Considering the volatile profiles, hemp flowers mainly consisted of mono- and sesquiterpenoids, as well as oxygenated mono- and sesquiterpenoids. Volatile analysis revealed the substantial impact of cultivars on the volatile profile compared to the production systems.


Subject(s)
Cannabinoids , Cannabis , Gas Chromatography-Mass Spectrometry , Inflorescence , Volatile Organic Compounds , Cannabis/chemistry , Cannabis/growth & development , Cannabis/metabolism , Cannabinoids/analysis , Cannabinoids/metabolism , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Inflorescence/chemistry , Inflorescence/growth & development , Inflorescence/metabolism , Flowers/chemistry , Flowers/growth & development , Flowers/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL