Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
Aquat Toxicol ; 273: 107017, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964174

ABSTRACT

An in vitro study using rainbow trout spermatozoa was designed to evaluate the toxic effects of different concentrations of captan (CPT), mancozeb (MCZ), and azoxystrobin (AZX) fungicides on motility parameters, lipid peroxidation, SOD activity, total antioxidant capacity (TAC), and DPPH inhibition. Moreover, changes in fatty acids profiles caused by the fungicides were determined for the first time. The results revealed that motility parameters, SOD activities, TAC values, and DPPH inhibitions decreased significantly while lipid peroxidation increased after ≥2 µg/L of CPT, ≥1 µg/L of MCZ, and ≥5 µg/L of AZX incubations for 2 h at 4 °C. Additionally, 10 µg/L CPT, 5 µg/L MCZ, and 200 µg/L AZX reduced motility to the 50 % level. Our results clearly demonstrated significant changes in the fatty acids profiles of spermatozoa exposed to these concentrations of the fungicides. The highest lipid peroxidation and the lowest monounsaturated and polyunsaturated saturated fatty acids (MUFA and PUFA, respectively) were detected in AZX. Even though the susceptibility of spermatozoa to oxidative damage is generally attributed to PUFA contents, the results of this study have represented that MUFA content could play a part in this tendency. Moreover, the lower concentration of MCZ reduced motility to the % 50 level while it deteriorated the fatty acids profile less than did AZX. Overall, the present study demonstrated that the detrimental effects of the fungicides on mitochondrial respiration and related enzymes have more priority than oxidative stress in terms of their toxicities on spermatozoa. It has also been suggested that fish spermatozoa are a good model for determining changes in the fatty acid profiles by fungicides, probably, by other pesticides and environmental contaminants as well.


Subject(s)
Captan , Fatty Acids , Fungicides, Industrial , Maneb , Oncorhynchus mykiss , Oxidative Stress , Pyrimidines , Sperm Motility , Spermatozoa , Strobilurins , Water Pollutants, Chemical , Zineb , Animals , Male , Fungicides, Industrial/toxicity , Oxidative Stress/drug effects , Spermatozoa/drug effects , Zineb/toxicity , Maneb/toxicity , Fatty Acids/metabolism , Sperm Motility/drug effects , Strobilurins/toxicity , Water Pollutants, Chemical/toxicity , Pyrimidines/toxicity , Oncorhynchus mykiss/physiology , Captan/toxicity , Lipid Peroxidation/drug effects , Methacrylates/toxicity , Antioxidants/metabolism , Superoxide Dismutase/metabolism
2.
Sci Rep ; 14(1): 15709, 2024 07 08.
Article in English | MEDLINE | ID: mdl-38977768

ABSTRACT

Honey bees are commonly co-exposed to pesticides during crop pollination, including the fungicide captan and neonicotinoid insecticide thiamethoxam. We assessed the impact of exposure to these two pesticides individually and in combination, at a range of field-realistic doses. In laboratory assays, mortality of larvae treated with captan was 80-90% greater than controls, dose-independent, and similar to mortality from the lowest dose of thiamethoxam. There was evidence of synergism (i.e., a non-additive response) from captan-thiamethoxam co-exposure at the highest dose of thiamethoxam, but not at lower doses. In the field, we exposed whole colonies to the lowest doses used in the laboratory. Exposure to captan and thiamethoxam individually and in combination resulted in minimal impacts on population growth or colony mortality, and there was no evidence of synergism or antagonism. These results suggest captan and thiamethoxam are each acutely toxic to immature honey bees, but whole colonies can potentially compensate for detrimental effects, at least at the low doses used in our field trial, or that methodological differences of the field experiment impacted results (e.g., dilution of treatments with natural pollen). If compensation occurred, further work is needed to assess how it occurred, potentially via increased queen egg laying, and whether short-term compensation leads to long-term costs. Further work is also needed for other crop pollinators that lack the social detoxification capabilities of honey bee colonies and may be less resilient to pesticides.


Subject(s)
Captan , Drug Synergism , Fungicides, Industrial , Insecticides , Thiamethoxam , Animals , Thiamethoxam/toxicity , Bees/drug effects , Bees/physiology , Insecticides/toxicity , Fungicides, Industrial/toxicity , Captan/toxicity , Larva/drug effects , Neonicotinoids/toxicity , Thiazoles/toxicity , Nitro Compounds/toxicity
3.
Regul Toxicol Pharmacol ; 143: 105467, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549825

ABSTRACT

In order to assess the regulatory value of New Approach Methodologies (NAMs), authors should provide their opinion on the physiological and exposure relevance of observed in vitro effects for correlation with predicted in vivo effects. Further, peer-reviewers should be encouraged to request such information during review. This is critical to scientifically transition to animal-free, reliable, robust and -- most importantly -- relevant regulatory toxicology and risk assessment approaches. Recently published studies using NAMs for the fungicides Captan and Folpet illustrate the difficulties and limitations of applying NAMs to adequately assess the toxicological relevance of these substances.


Subject(s)
Captan , Fungicides, Industrial , Humans , Captan/toxicity , Irritants/toxicity , Phthalimides , Fungicides, Industrial/toxicity
4.
J Hazard Mater ; 458: 131948, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37392645

ABSTRACT

Nanoformulation should minimise the usage of pesticides and limit their environmental footprint. The risk assessment of two nanopesticides with fungicide captan as an active organic substance and ZnO35-45 nm or SiO220-30 nm as nanocarriers was evaluated using the non-target soil microorganisms as biomarkers. The first time for that kind of nanopesticides next-generation sequencing (NGS) of bacterial 16 S rRNA and fungal ITS region and metagenomics functional predictions (PICRUST2) was made to study structural and functional biodiversity. During a 100-day microcosm study in soil with pesticide application history, the effect of nanopesticides was compared to pure captan and both nanocarriers. Nanoagrochemicals affected microbial composition, especially Acidobacteria-6 class, and alpha diversity, but the observed effect was generally more substantial for pure captan. As for beta diversity, the negative impact was detected only in response to captan and still observed on day 100. Fungal community in the orchard soil showed only a decrease in phylogenetic diversity in captan set-up since day 30. PICRUST2 analysis confirmed several times lower impact of nanopesticides considering the abundance of functional pathways and genes encoding enzymes. Furthermore, the overall data indicated that using SiO220-30 nm as a nanocarrier speeds up a recovery process compared to ZnO35-45 nm.


Subject(s)
Captan , Pesticides , Soil Microbiology , Microbiota/drug effects , Nanostructures , Pesticides/toxicity , Risk Assessment , Captan/toxicity , Biomarkers , Soil/chemistry
5.
Arch Toxicol ; 96(9): 2465-2486, 2022 09.
Article in English | MEDLINE | ID: mdl-35567602

ABSTRACT

There are limited literature data on the impact of coexposure on the toxicokinetics of pesticides in agricultural workers. Using the largely employed pyrethroid lambda-cyhalothrin (LCT) and fungicide captan as sentinel pesticides, we compared individual temporal profiles of biomarkers of exposure to LCT in strawberry field workers following an application episode of LCT alone or in coexposure with captan. Participants provided all urine voided over a 3-day period after an application of a pesticide formulation containing LCT alone (E1) or LCT mixed with captan (E2), and in some cases following re-entry in treated field (E3). Pyrethroid metabolites were measured in all urine samples, in particular 3-(2-chloro-3,3,3-trifluoroprop-1-en-1-yl)-2,2-dimethyl-cyclopropanecarboxylic acid (CFMP), 3-phenoxybenzoic acid (3-PBA), and 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There were no obvious differences in individual concentration-time profiles and cumulative excretion of metabolites (CFMP, 3-PBA, 4-OH3BPA) after exposure to LCT alone or in combination with captan. For most workers and exposure scenarios, CFMP was the main metabolite excreted, but time courses of CFMP in urine did not always follow that of 3-PBA and 4-OH3BPA. Given that the latter metabolites are common to other pyrethroids, this suggests that some workers were coexposed to pyrethroids other than LCT. For several workers and exposure scenarios E1 and E2, values of CFMP increased in the hours following spraying. However, for many pesticide operators, other peaks of CFMP were observed at later times, indicating that tasks other than spraying of LCT-containing formulations contributed to this increased exposure. These tasks were mainly handling/cleaning of equipment used for spraying (tractor or sprayer) or work/inspection in LCT-treated field according to questionnaire responses. Overall, this study provided novel excretion time course data for LCT metabolites valuable for interpretation of biomonitoring data in workers, but also showed that coexposure was not a major determinant of variability in exposure biomarker levels. Our analysis also pointed out the importance of measuring specific metabolites.


Subject(s)
Fragaria , Insecticides , Pesticides , Pyrethrins , Biomarkers/urine , Captan/toxicity , Environmental Monitoring , Farmers , Humans , Insecticides/pharmacokinetics , Insecticides/toxicity , Nitriles , Pesticides/toxicity , Pyrethrins/toxicity
6.
Environ Toxicol Pharmacol ; 90: 103815, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35065295

ABSTRACT

The sub-lethal toxicity of Captan® on selected haematological (Hemoglobin, Haematocrit, Mean Corpuscular Hemoglobin) growth (Condition factor, Hepatosomatic Index, Specific Growth Rate), biochemical (serum glucose, protein), and endocrine parameters (growth hormone, T3 and T4) in Clarias batrachus was examined under chronic exposures. Captan® was administered at predetermined exposure concentrations (0.53 and 1.06 mg/L) and monitored on days 15, 30, and 45 of the experimental periods. The experimental groups showed significantly lower values (p < 0.05) of haemoglobin content, hematocrit, MCH in Captan® exposed fish compared to control. Serum protein, k-factor and SGR were significantly lower in exposed fish. Endocrine responses (T3 and T4) emerged as the most sensitive biomarker category, depicting modulated responses between sub-chronic exposure at day-15 and chronic responses at day-45. In general, biomarker depictions indicate that Captan® exposures are capable of inducing stress-specific effects at the biochemical and physiological levels negatively impacting the overall health and longevity of such animals.


Subject(s)
Biomarkers/blood , Captan/toxicity , Catfishes/blood , Animals , Catfishes/growth & development , Fungicides, Industrial/toxicity , Hematocrit , Hemoglobins/analysis , Thyroxine/blood , Triiodothyronine/blood , Water Pollutants, Chemical/toxicity
7.
Crit Rev Toxicol ; 50(8): 685-706, 2020 09.
Article in English | MEDLINE | ID: mdl-33146058

ABSTRACT

Small intestinal (SI) tumors are relatively uncommon outcomes in rodent cancer bioassays, and limited information regarding chemical-induced SI tumorigenesis has been reported in the published literature. Herein, we propose a cytotoxicity-mediated adverse outcome pathway (AOP) for SI tumors by leveraging extensive target species- and site-specific molecular, cellular, and histological mode of action (MOA) research for three reference chemicals, the fungicides captan and folpet and the transition metal hexavalent chromium (Cr(VI)). The gut barrier functions through highly efficient homeostatic regulation of SI epithelial cell sloughing, regenerative proliferation, and repair, which involves the replacement of up to 1011 cells per day. This dynamic turnover in the SI provides a unique local environment for a cytotoxicity mediated AOP/MOA. Upon entering the duodenum, cytotoxicity to the villous epithelium is the molecular initiating event, as indicated by crypt elongation, villous atrophy/blunting, and other morphologic changes. Over time, the regenerative capacity of the gut epithelium to compensate declines as epithelial loss accelerates, especially at higher exposures. The first key event (KE), sustained regenerative crypt proliferation/hyperplasia, requires sufficient durations, likely exceeding 6 or 12 months, due to extensive repair capacity, to create more opportunities for the second KE, spontaneous mutation/transformation, ultimately leading to proximal SI tumors. Per OECD guidance, biological plausibility, essentiality, and empirical support were assessed using modified Bradford Hill considerations. The weight-of-evidence also included a lack of induced mutations in the duodenum after up to 90 days of Cr(VI) or captan exposure. The extensive evidence for this AOP, along with the knowledge that human exposures are orders of magnitude below those associated with KEs in this AOP, supports its use for regulatory applications, including hazard identification and risk assessment.


Subject(s)
Captan/toxicity , Chromium/toxicity , Fungicides, Industrial/toxicity , Hyperplasia , Intestinal Neoplasms/chemically induced , Phthalimides/toxicity , Adverse Outcome Pathways , Animals , Duodenum , Humans , Mice , Risk Assessment
8.
Arch Toxicol ; 94(9): 3045-3058, 2020 09.
Article in English | MEDLINE | ID: mdl-32577784

ABSTRACT

This study aimed at gaining more insights into the impact of pesticide coexposure on the toxicokinetics of biomarkers of exposure. This was done by conducting an in vivo experimental case-study with binary mixtures of lambda-cyhalothrin (LCT) and captan and by assessing its impact on the kinetic profiles of LCT biomarkers of exposure. Groups of male Sprague-Dawley rats were exposed orally by gavage to LCT alone (2.5 or 12.5 mg/kg bw) or to a binary mixture of LCT and captan (2.5/2.5 or 2.5/12.5 or 12.5/12.5 mg/kg bw). In order to establish the temporal profiles of the main metabolites of LCT, serial blood samples were taken, and excreta (urine and feces) were collected at predetermined intervals up to 48 h post-dosing. Major LCT metabolites were quantified in these matrices: 3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic (CFMP), 3-phenoxybenzoic acid (3-PBA), 4-hydroxy-3-phenoxybenzoic acid (4-OH3PBA). There was no clear effect of coexposure at the low LCT dose on the kinetics of CFMP and 3-PBA metabolites, based on the combined assessment of temporal profiles of these metabolites in plasma, urine and feces; however, plasma levels of 3-PBA were diminished in the coexposed high-dose groups. A significant effect of coexposure on the urinary excretion of 4-OH3PBA was also observed while fecal excretion was not affected. The temporal profiles of metabolites in plasma and in excreta were further influenced by the LCT dose. In addition, the study revealed kinetic differences between metabolites with a faster elimination of 3-PBA and 4-OH3BPA compared to CFMP. These results suggest that the pyrethroid metabolites CFMP and 3-PBA, mostly measured in biomonitoring studies, remain useful as biomarkers of exposure in mixtures, when pesticide exposure levels are below the reference values. However, the trend of coexposure effect observed in the benzyl metabolite pathway (in particular 4-OH3BPA) prompts further investigation.


Subject(s)
Captan/toxicity , Nitriles/toxicity , Pesticides/toxicity , Pyrethrins/toxicity , Animals , Benzoates , Biomarkers , Insecticides , Male , Rats , Rats, Sprague-Dawley , Toxicokinetics
9.
J Agric Food Chem ; 68(12): 3729-3741, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32125836

ABSTRACT

To seek new protoporphyrinogen oxidase (PPO) inhibitors with better biological activity, a series of novel diphenyl ether derivatives containing tetrahydrophthalimide were designed based on the principle of substructure splicing and bioisomerization. PPO inhibition experiments exhibited that 6c is the most potential compound, with the half-maximal inhibitory concentration (IC50) value of 0.00667 mg/L, showing 7 times higher activity than Oxyfluorfen (IC50 = 0.0426 mg/L) against maize PPO and similar herbicidal activities to Oxyfluorfen in weeding experiments in greenhouses and field weeding experiments. In view of the inspected bioactivities, the structure-activity relationship (SAR) of this series of compounds was also discussed. Crop selection experiments demonstrate that compound 6c is safe for soybeans, maize, rice, peanuts, and cotton at a dose of 300 g ai/ha. Accumulation analysis experiments showed that the accumulation of 6c in some crops (soybeans, peanuts, and cotton) was significantly lower than Oxyfluorfen. Current work suggests that compound 6c may be developed as a new herbicide candidate in fields.


Subject(s)
Herbicides/chemistry , Herbicides/toxicity , Phenyl Ethers/chemistry , Phenyl Ethers/toxicity , Plant Weeds/drug effects , Captan/chemical synthesis , Captan/chemistry , Captan/toxicity , Crops, Agricultural/drug effects , Crops, Agricultural/physiology , Halogenated Diphenyl Ethers/toxicity , Herbicides/chemical synthesis , Molecular Docking Simulation , Phenyl Ethers/chemical synthesis , Phthalimides/chemical synthesis , Phthalimides/chemistry , Phthalimides/toxicity , Plant Weeds/enzymology , Plant Weeds/physiology , Protoporphyrinogen Oxidase/antagonists & inhibitors
10.
Toxicol Pathol ; 47(7): 851-864, 2019 10.
Article in English | MEDLINE | ID: mdl-31558096

ABSTRACT

Carcinogenesis of the small intestine is rare in humans and rodents. Oral exposure to hexavalent chromium (Cr(VI)) and the fungicides captan and folpet induce intestinal carcinogenesis in mice. Previously (Toxicol Pathol. 330:48-52), we showed that B6C3F1 mice exposed to carcinogenic concentrations of Cr(VI), captan, or folpet for 28 days exhibited similar histopathological responses including villus enterocyte cytotoxicity and regenerative crypt epithelial hyperplasia. Herein, we analyze transcriptomic responses from formalin-fixed, paraffin-embedded duodenal sections from the aforementioned study. TempO-Seq technology and the S1500+ gene set were used to analyze transcription responses. Transcriptional responses were similar between all 3 agents; gene-level comparison identified 126/546 (23%) differentially expressed genes altered in the same direction, with a total of 25 upregulated pathways. These changes were related to cellular metabolism, stress, inflammatory/immune cell response, and cell proliferation, including upregulation in hypoxia inducible factor 1 (HIF-1) and activator protein 1 (AP1) signaling pathways, which have also been shown to be related to intestinal injury and angiogenesis/carcinogenesis. The similar molecular-, cellular-, and tissue-level changes induced by these 3 carcinogens can be informative for the development of an adverse outcome pathway for intestinal cancer.


Subject(s)
Captan/toxicity , Carcinogens/toxicity , Chromium/toxicity , Intestine, Small/drug effects , Phthalimides/toxicity , Animals , Gene Expression Profiling , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Intestine, Small/metabolism , Intestine, Small/pathology , Mice
11.
Environ Toxicol Pharmacol ; 69: 80-85, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30965279

ABSTRACT

The objective of this study was to evaluate the toxicity and developmental effects of captan on different life stages (embryo and adult) of zebrafish (Danio rerio). The results showed that the 96-h lethal concentration 50 (LC50) values of embryo and adult zebrafish (exposed to captan) were 0.81(0.75-0.87) mg/L and 0.65(0.62-0.68) mg/L, respectively. The results of developmental effect experiment showed that captan can significantly decrease the heartbeats and inhibit the hatching rate and growth of zebrafish embryos. Moreover, captan exposure can induce a series of deformities, including pericardial edema, yolk sac edema, spine curvature, and tail bending, in zebrafish embryos during the developmental period. Among these, the most significant were tail bending and spine curvature.


Subject(s)
Captan/toxicity , Fungicides, Industrial/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish , Animals , Embryo, Nonmammalian/abnormalities , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/physiology , Embryonic Development/drug effects , Heart Rate/drug effects , Lethal Dose 50 , Yolk Sac/drug effects , Zebrafish/abnormalities , Zebrafish/physiology
12.
Environ Mol Mutagen ; 60(3): 286-297, 2019 04.
Article in English | MEDLINE | ID: mdl-30471166

ABSTRACT

The classification of the fungicide captan (CAS Number: 133-06-2) as a carcinogen agent is presently under discussion. Despite the mutagenic effect detected by the Ames test and carcinogenic properties observed in mice, the genotoxicity of this pesticide in humans is still unclear. New information is needed about its mechanism of action in mammalian cells. Here, we show that Chinese Hamster Ovary (CHO) cells exposed to captan accumulate Fpg-sensitive DNA base alterations. In CHO and HeLa cells, such DNA lesions require the XRCC1-dependent pathway to be repaired. Captan also induces a replicative stress that activated the ATR signaling response and resulted in double-strand breaks and micronuclei. The replicative stress is characterized by a dramatic decrease in DNA synthesis due to a reduced replication fork progression. However, impairment of the XRCC1-related repair process did not amplify the replicative stress, suggesting that the fork progression defect is independent from the presence of base modifications. These results support the involvement of at least two independent pathways in the genotoxic effect of captan that might play a key role in carcinogenesis. Environ. Mol. Mutagen. 60:286-297, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Captan/toxicity , DNA Damage/drug effects , DNA Replication/drug effects , Fungicides, Industrial/toxicity , Mutagens/toxicity , Animals , CHO Cells , Carcinogenesis/chemically induced , Cricetulus , DNA/biosynthesis , DNA Repair/genetics , HeLa Cells , Humans , Mutagenicity Tests , X-ray Repair Cross Complementing Protein 1/metabolism
13.
Environ Toxicol Pharmacol ; 63: 78-83, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30172959

ABSTRACT

Captan, a phthalimide fungicide, is considered to be relatively nontoxic to mammals. There is a possibility that captan affects membrane and cellular parameters of mammalian cells, resulting in adverse effects, because of high residue levels. To test the possibility, we examined the effects of captan on rat thymic lymphocytes using flow-cytometry with appropriate fluorescent probes. Treatment with 10 and 30 µM captan induced apoptotic and necrotic cell death. Before cell death occurred, captan elevated the intracellular concentrations of Ca2+ and Zn2+ and decreased the concentration of cellular thiol compounds. These captan-induced phenomena are shown to cause cell death and are similar to those caused by oxidative stress. Captan also elevated the cytotoxicity of hydrogen peroxide. Results indicate that 10 and 30 µM captan cause cytotoxic effects on mammalian cells. Despite no report on the significant environmental toxicity hazard of captan in humans, it may exhibit adverse effects, described above, on wild organisms.


Subject(s)
Calcium/metabolism , Captan/toxicity , Fungicides, Industrial/toxicity , Oxidative Stress , Thymocytes/cytology , Zinc/metabolism , Animals , Apoptosis , Cell Survival/drug effects , Flow Cytometry , Fluorescent Dyes/metabolism , Hydrogen Peroxide/metabolism , Rats , Thymocytes/drug effects , Thymocytes/metabolism , Toxicity Tests
14.
Environ Toxicol Pharmacol ; 59: 53-60, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29529450

ABSTRACT

Most Thai orchid farmers heavily used pesticide mixtures, and were shown to have various hematologic/immunologic alterations. The present study investigated the effect of exposure of male Wistar rats to a mixture of three pesticides (chlorpyrifos, cypermethrin and captan) that are most often used by the farmers. Three groups of 10 rats were dermally exposed to three different doses (high, middle and low) for 28 consecutive days. The rats showed significant changes in body, liver, kidneys and adrenals weights. Significant changes were observed in various biological parameters including hematotoxicity (increased leukocyte and platelet counts, percent neutrophil, decreased RBC count, percent lymphocyte and eosinophil), hepatotoxicity (increased serum AST, decreased serum ALP, cholesterol, triglyceride, serum protein and albumin), and immunotoxicity (decrease in numbers of NK cells, decrease splenic proliferative response to LPS, and increase in serum IgG). These results confirm the potential health danger of exposure to these pesticide mixtures in orchid farmers.


Subject(s)
Captan/toxicity , Chlorpyrifos/toxicity , Fungicides, Industrial/toxicity , Insecticides/toxicity , Pyrethrins/toxicity , Administration, Topical , Adrenal Glands/drug effects , Adrenal Glands/pathology , Animals , Blood Cell Count , Body Weight/drug effects , Drug Interactions , Hemolytic Plaque Technique , Immunoglobulins/blood , Kidney/drug effects , Kidney/pathology , Killer Cells, Natural/drug effects , Liver/drug effects , Liver/pathology , Male , Organ Size/drug effects , Rats, Wistar , Spleen/cytology , Spleen/drug effects
15.
Toxicol Pathol ; 45(8): 1091-1101, 2017 12.
Article in English | MEDLINE | ID: mdl-29161989

ABSTRACT

High concentrations of hexavalent chromium (Cr(VI)), captan, and folpet induce duodenal tumors in mice. Using standardized tissue collection procedures and diagnostic criteria, we compared the duodenal histopathology in B6C3F1 mice following exposure to these 3 carcinogens to determine whether they share similar histopathological characteristics. B6C3F1 mice ( n = 20 per group) were exposed to 180 ppm Cr(VI) in drinking water, 12,000 ppm captan in feed, or 16,000 ppm folpet in feed for 28 days. After 28 days of exposure, villous enterocyte hypertrophy and mild crypt epithelial hyperplasia were observed in all exposed mice. In a subset of mice allowed to recover for 28 days, duodenal samples were generally indistinguishable from those of unexposed mice. Changes in the villi and lack of observable damage to the crypt compartment suggest that toxicity was mediated in the villi, which is consistent with earlier studies on each chemical. These findings indicate that structurally diverse agents can induce similar (and reversible) phenotypic changes in the duodenum. These intestinal carcinogens likely converge on common pathways involving irritation and wounding of the villi leading to crypt regenerative hyperplasia that, under protracted high-dose exposure scenarios, increases the risk of spontaneous mutation and tumorigenesis.


Subject(s)
Captan/toxicity , Carcinogens/toxicity , Chromium/toxicity , Duodenum/drug effects , Duodenum/pathology , Phthalimides/toxicity , Administration, Oral , Animals , Dose-Response Relationship, Drug , Female , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Mice, Inbred Strains
16.
Environ Toxicol Pharmacol ; 39(2): 635-42, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25682009

ABSTRACT

The repeated use of pesticides, and their subsequent residues, has contributed to severe adverse effects on the environment, including risks to human health. Therefore, it is important to assess the quality of the environment to ensure it remains free from pesticide residues. The six pesticides tested in this study showed high mortality on Eisenia fetida with LC50 values ranging from 7.7 to 37.9 g L(-1). The strongest lethal effect resulted from the organochlorine insecticide endosulfan (LC50=7.7 g L(-1)). Following exposure to the carbamate pesticides, acetylcholinesterase activity in E. fetida decreased dramatically in comparison to the control. Carboxylesterase activity was only lowered in E. fetida exposed to propoxur, when compared to the control. The remaining five pesticides had no significant effect on carboxylesterase activity in E. fetida. In order to discover pesticide-specific biomarkers with differentially expressed proteins after exposure to pesticides, protein patterns of pesticide-treated E. fetida were analyzed using SELDI-TOF MS with Q10 ProteinChips. Protein patterns were compared with their intensities at the same mass-to-charge ratios (m/z). All 42 peaks had intensities with associated p-values less than 0.089, and 40 of these peaks had associated p-values of 0.05. Using SELDI-TOF MS technology, selective biomarkers for the six pesticides tested were found in E. fetida; four proteins with 5425, 5697, 9523, and 9868 m/z were consistently observed in the earthworms following exposure to the carbamates.


Subject(s)
Oligochaeta/drug effects , Pesticides/toxicity , Acetylcholinesterase/metabolism , Animals , Biomarkers/metabolism , Captan/toxicity , Carbaryl/toxicity , Carbofuran/toxicity , Carboxylesterase/metabolism , Chlorpyrifos/toxicity , Endosulfan/toxicity , Oligochaeta/metabolism , Propoxur/toxicity , Protein Array Analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
17.
Ann Occup Hyg ; 56(7): 815-28, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22425654

ABSTRACT

Captan and folpet are two fungicides largely used in agriculture, but biomonitoring data are mostly limited to measurements of captan metabolite concentrations in spot urine samples of workers, which complicate interpretation of results in terms of internal dose estimation, daily variations according to tasks performed, and most plausible routes of exposure. This study aimed at performing repeated biological measurements of exposure to captan and folpet in field workers (i) to better assess internal dose along with main routes-of-entry according to tasks and (ii) to establish most appropriate sampling and analysis strategies. The detailed urinary excretion time courses of specific and non-specific biomarkers of exposure to captan and folpet were established in tree farmers (n = 2) and grape growers (n = 3) over a typical workweek (seven consecutive days), including spraying and harvest activities. The impact of the expression of urinary measurements [excretion rate values adjusted or not for creatinine or cumulative amounts over given time periods (8, 12, and 24 h)] was evaluated. Absorbed doses and main routes-of-entry were then estimated from the 24-h cumulative urinary amounts through the use of a kinetic model. The time courses showed that exposure levels were higher during spraying than harvest activities. Model simulations also suggest a limited absorption in the studied workers and an exposure mostly through the dermal route. It further pointed out the advantage of expressing biomarker values in terms of body weight-adjusted amounts in repeated 24-h urine collections as compared to concentrations or excretion rates in spot samples, without the necessity for creatinine corrections.


Subject(s)
Agriculture , Captan/urine , Environmental Monitoring/methods , Fungicides, Industrial/urine , Occupational Exposure/analysis , Phthalimides/urine , Adult , Biomarkers/urine , Captan/toxicity , Dose-Response Relationship, Drug , Female , Fungicides, Industrial/toxicity , Humans , Male , Middle Aged , Phthalimides/toxicity , Switzerland
18.
Bull Environ Contam Toxicol ; 88(4): 617-22, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22278405

ABSTRACT

The aim of the study was to compare the effects of stress (contamination trials) on the microorganisms in zinc-polluted soil (5,018 mg Zn kg(-1) soil dry weight) and unpolluted soil (141 mg Zn kg(-1) soil dw), measured as soil respiration rate. In the laboratory, soils were subjected to copper contamination (0, 500, 1,500 and 4,500 mg kg(-1) soil dw), and then a bactericide (oxytetracycline) combined with a fungicide (captan) along with glucose (10 mg g(-1) soil dw each) were added. There was a highly significant effect of soil type, copper treatment and oxytetracycline/captan treatment. The initial respiration rate of chronically zinc-polluted soil was higher than that of unpolluted soil, but in the copper treatment it showed a greater decline. Microorganisms in copper-treated soil were more susceptible to oxytetracycline/captan contamination. After the successive soil contamination trials the decline of soil respiration was greater in zinc-polluted soil than in unpolluted soil.


Subject(s)
Soil Microbiology , Soil Pollutants/toxicity , Zinc/toxicity , Adaptation, Physiological , Anti-Bacterial Agents/toxicity , Captan/toxicity , Copper/toxicity , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/physiology , Fungicides, Industrial/toxicity , Oxytetracycline/toxicity , Soil/chemistry , Soil Pollutants/analysis , Stress, Physiological , Zinc/analysis
19.
Exp Toxicol Pathol ; 64(3): 175-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-20817491

ABSTRACT

Acute toxicity of the fungicide, captan, to juvenile rainbow trout was evaluated under static-renewal test condition. Actual concentrations of captan ranged from 0.05 to 1.00 mg/L. The concentrations of captan that killed 50% of the rainbow trout (3.11±0.8 g) within 24 (24 h; LC(50)), 48, 72 and 96 h were 0.57±0.09, 0.49±0.10, 0.44±0.11 and 0.38±0.13 mg/L (95% confidence limits), respectively. None of the unexposed control fish died and the first fish died 6 h after exposure to captan (≥0.65 mg/L). Hypertrophy, separation of epithelium from lamellae, lamellar fusion, and epithelial cell necrosis were observed on captan exposed fish. Gills also had scattered areas of focal lamellar hyperplasia. Fish exposed to fungicide had inflammation and necrosis in liver, trunk kidney and spleen. In order, the most affected organs were gill, trunk kidney and liver.


Subject(s)
Captan/toxicity , Fungicides, Industrial/toxicity , Oncorhynchus mykiss , Animals
20.
J Appl Toxicol ; 32(3): 194-201, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21381057

ABSTRACT

The time courses of key biomarkers of exposure to captan and folpet was assessed in accessible biological matrices of orally exposed volunteers. Ten volunteers ingested 1 mg kg(-1) body weight of captan or folpet. Blood samples were withdrawn at fixed time periods over the 72 h following ingestion and complete urine voids were collected over 96 h post-dosing. The tetrahydrophthalimide (THPI) metabolite of captan along with the phthalimide (PI) and phthalic acid metabolites of folpet were then quantified in these samples. Plasma levels of THPI and PI increased progressively after ingestion, reaching peak values ~10 and 6 h post-dosing, respectively; subsequent elimination phase appeared monophasic with a mean elimination half-life (t(½) ) of 15.7 and 31.5 h, respectively. In urine, elimination rate time courses of PI and phthalic acid evolved in parallel, with respective t(½) of 27.3 and 27.6 h; relatively faster elimination was found for THPI, with mean t(½) of 11.7 h. However, phthalic acid was present in urine in 1000-fold higher amounts than PI. In the 96 h period post-treatment, on average 25% of folpet dose was excreted in urine as phthalic acid as compared with only 0.02% as PI. The corresponding value for THPI was 3.5%. Overall, THPI and PI appear as interesting biomarkers of recent exposure, with relatively short half-lives; their sensitivity to assess exposure in field studies should be further verified. Although not a metabolite specific to folpet, the concomitant use of phthalic acid as a major biomarker of exposure to folpet should also be considered.


Subject(s)
Captan/pharmacokinetics , Fungicides, Industrial/pharmacokinetics , Phthalimides/pharmacokinetics , Administration, Oral , Adult , Biomarkers , Captan/administration & dosage , Captan/blood , Captan/toxicity , Captan/urine , Environmental Monitoring , Fungicides, Industrial/administration & dosage , Humans , Male , Phthalimides/administration & dosage , Phthalimides/blood , Phthalimides/toxicity , Phthalimides/urine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL