Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.615
Filter
1.
Food Res Int ; 188: 114531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823850

ABSTRACT

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Subject(s)
Carboxymethylcellulose Sodium , Curcumin , Digestion , Emulsions , Gels , Hydrophobic and Hydrophilic Interactions , Rheology , Curcumin/chemistry , Emulsions/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Muscle Proteins , Soybean Oil/chemistry , Viscosity , Particle Size , Myofibrils/chemistry , Myofibrils/metabolism , Ultrasonic Waves
2.
Food Res Int ; 188: 114474, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823865

ABSTRACT

Limited proteolysis, CaCl2 and carboxymethyl cellulose (CMC) have individually demonstrated ability to increase the gel strength of laboratory-extracted plant proteins. However, the syneresis effects of their combination on the gelling capacity of commercial plant protein remains unclear. This was investigated by measuring the rheological property, microstructure and protein-protein interactions of gels formed from Alcalase hydrolyzed or intact pea proteins in the presence of 0.1 % CMC and 0-25 mM CaCl2. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed the molecular weight of pea protein in the mixture were < 15 kDa after hydrolysis. The hydrolysates showed higher intrinsic fluorescence intensity and lower surface hydrophobicity than the intact proteins. Rheology showed that the storage modulus (G') of hydrolyzed pea protein (PPH)-based gels sightly decreased compared to those of native proteins. 5-15 mM CaCl2 increased the G' for both PP and PPH-based gels and decreased the strain in the creep-recovery test. Scanning electron microscopy (SEM) showed the presence of smaller protein aggregates in the PPH-based gels compared to PP gels and the gel network became denser, and more compact and heterogenous in the presence of 15 and 25 mM CaCl2. The gel dissociation assay revealed that hydrophobic interactions and hydrogen bonds were the dominant forces to maintain the gel structure. In vitro digestion showed that the soluble protein content in PPH-based gels was 10 âˆ¼ 30 % higher compared to those of the PP counterpart. CaCl2 addition reduced protein digestibility with a concentration dependent behavior. The results obtained show contrasting effects of limited proteolysis and CaCl2 on the gelling capacity and digestibility of commercial pea proteins. These findings offer practical guidelines for developing pea protein-based food products with a balanced texture and protein nutrition through formulation and enzymatic pre-treatment.


Subject(s)
Calcium Chloride , Carboxymethylcellulose Sodium , Gels , Pea Proteins , Proteolysis , Rheology , Calcium Chloride/chemistry , Pea Proteins/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Hydrophobic and Hydrophilic Interactions , Digestion , Pisum sativum/chemistry , Microscopy, Electron, Scanning , Hydrolysis , Electrophoresis, Polyacrylamide Gel
3.
Int J Nanomedicine ; 19: 5059-5070, 2024.
Article in English | MEDLINE | ID: mdl-38836007

ABSTRACT

Purpose: The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods: We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results: The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion: Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.


Subject(s)
Delayed-Action Preparations , Doxorubicin , Drug Carriers , Drug Liberation , Ferric Compounds , Microgels , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Humans , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , MCF-7 Cells , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Microgels/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Alginates/chemistry , Amines/chemistry , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Zinc/chemistry , Zinc Compounds/chemistry , Cell Survival/drug effects
4.
Int J Biol Macromol ; 269(Pt 2): 131935, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723542

ABSTRACT

Nanocomposites, blending the unique properties of inorganic nanoparticles with polymers, are gaining momentum in various industries. This study delves into the synthesis and characterization of barium oxide (BaO)-doped carboxymethyl cellulose (CMC) nanocomposites, focusing on their structural, optical, electrical, and dielectric properties. Using an in-situ polymerization method, CMC films were doped with 5 % and 10 % BaO nanoparticles. X-ray diffraction analysis revealed that the doped samples exhibited enhanced crystallinity compared to pure CMC, with crystallinity percentages measured at 37.95 % and 28.86 % for 5 % and 10 % BaO, respectively, indicating the successful incorporation of BaO. Scanning electron microscopy illustrated the distribution of BaO nanoparticles, showing spherical agglomerations on the film surface. SEM analysis reveals emergence of spherical agglomerations and bright spots on nanocomposite film surface upon BaO introduction, indicating BaO nanoparticles presence. Further, the BaO nanoparticles act as catalytic and nucleating agents, influencing crystalline structure nucleation and growth, potentially enhancing film homogeneity and structural integrity. In addition, UV-visible spectroscopy elucidated the optical properties, indicating a shift in the bandgap from indirect to direct with BaO addition. The bandgap values decrease upon the addition of BaO, indicating a transition from an amorphous to a nanocrystalline structure, with respective reduction percentages of 22.73 % and 10.71 % for the 5%BaO/CMC and 10 %BaO/CMC samples compared to CMC. Electrical conductivity measurements showed enhanced conductivity in 10 % BaO/CMC due to improved charge carrier mobility, supported by dielectric studies demonstrating increased dielectric. The introduction of 5 % and 10 % BaO resulted in reductions of approximately 62.06 % and 65.77 %, respectively, compared to the pure CMC sample. This decrease in dielectric loss indicates an enhancement in the electrical properties of the nanocomposites. This comprehensive investigation could give further insights into the different properties of BaO-doped CMC nanocomposites, offering insights into their potential applications in various fields such as electronics, energy storage, and optoelectronics.


Subject(s)
Carboxymethylcellulose Sodium , Nanocomposites , Nanocomposites/chemistry , Carboxymethylcellulose Sodium/chemistry , Barium Compounds/chemistry , X-Ray Diffraction , Electric Conductivity
5.
J Appl Biomater Funct Mater ; 22: 22808000241257124, 2024.
Article in English | MEDLINE | ID: mdl-38819121

ABSTRACT

Adhesions are fibrous tissue connections which are a common complication of surgical procedures and may be prevented by protecting tissue surfaces and reducing inflammation. The combination of biodegradable polymers and nanocrystalline silver can be used to create an anti-inflammatory gel to be applied during surgery. In this study, sodium hyaluronate and sodium carboxymethyl cellulose were added in concentrations from 0.25% to 1% w/v to aqueous nanocrystalline silver solutions to create viscous gels. Gels were loaded into dialysis cassettes and placed in PBS for 3 days. pH was adjusted using potassium phosphate monobasic and sodium hydroxide. Release of silver into the PBS was measured at several time points. Polymer degradation was compared by measuring the viscosity of the gels before and after the experiment. Gels lost up to 84% of initial viscosity over 3 days and released between 24% and 41% of the added silver. Gels with higher initial viscosity did not have a greater degree of degradation, as measured by percent viscosity reduction, but still resulted in a higher final viscosity. Silver release was not significantly impacted by pH or composition, but still varied between experimental groups.


Subject(s)
Carboxymethylcellulose Sodium , Gels , Hyaluronic Acid , Silver , Hyaluronic Acid/chemistry , Carboxymethylcellulose Sodium/chemistry , Hydrogen-Ion Concentration , Silver/chemistry , Viscosity , Gels/chemistry , Metal Nanoparticles/chemistry
6.
Food Res Int ; 187: 114432, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763680

ABSTRACT

Probiotics are subjected to various edible coatings, especially proteins and polysaccharides, which serve as the predominant wall materials, with ultrasound, a sustainable green technology. Herein, sodium caseinate, inulin, and soy protein isolate composites were produced using multi-frequency ultrasound and utilized to encapsulateLactiplantibacillus plantarumto enhance its storage, thermal, and gastrointestinal viability. The physicochemical analyses revealed that the composites with 5 % soy protein isolate treated with ultrasound at 50 kHz exhibited enough repulsion forces to maintain stability, pH resistance, and the ability to encapsulate larger particles and possessed the highest encapsulation efficiency (95.95 %). The structural analyses showed changes in the composite structure at CC, CH, CO, and amino acid residual levels. Rheology, texture, and water-holding capacity demonstrated the production of soft hydrogels with mild chewing and gummy properties, carried the microcapsules without coagulation or sedimentation. Moreover, the viability attributes ofL. plantarumevinced superior encapsulation, protecting them for at least eight weeks and against heat (63 °C), reactive oxidative species (H2O2), and GI conditions.


Subject(s)
Carboxymethylcellulose Sodium , Caseins , Hydrogels , Inulin , Probiotics , Soybean Proteins , Soybean Proteins/chemistry , Hydrogels/chemistry , Caseins/chemistry , Carboxymethylcellulose Sodium/chemistry , Inulin/chemistry , Inulin/pharmacology , Lactobacillus plantarum/metabolism , Rheology , Hydrogen-Ion Concentration , Microbial Viability , Capsules
7.
Carbohydr Polym ; 338: 122197, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763711

ABSTRACT

Transdermal rotigotine (RTG) therapy is prescribed to manage Parkinson's disease (Neupro® patch). However, its use is suffered from application site reactions. Herein, drug nanocrystalline suspension (NS)-loaded hydrogel (NS-HG) employing polysaccharides simultaneously as suspending agent and hydrogel matrix was constructed for transdermal delivery, with alleviated skin irritation. RTG-loaded NS-HG was prepared using a bead-milling technique, employing sodium carboxylmethyl cellulose (Na.CMC) as nano-suspending agent (molecular weight 90,000 g/mol) and hydrogel matrix (700,000 g/mol), respectively. NS-HG was embodied as follows: drug loading: ≤100 mg/mL; shape: rectangular crystalline; crystal size: <286.7 nm; zeta potential: -61 mV; viscosity: <2.16 Pa·s; and dissolution rate: >90 % within 15 min. Nuclear magnetic resonance analysis revealed that the anionic polymers bind to RTG nanocrystals via charge interaction, affording uniform dispersion in the matrix. Rodent transdermal absorption of RTG from NS-HG was comparable to that from microemulsions, and proportional to drug loading. Moreover, NS-HG was skin-friendly; erythema and epidermal swelling were absent after repeated application. Further, NS-HG was chemically stable; >95 % of the drug was preserved up to 4 weeks under long term (25 °C/RH60%), accelerated (40 °C/RH75%), and stress (50 °C) storage conditions. Therefore, this novel cellulose derivative-based nanoformulation presents a promising approach for effective transdermal RTG delivery with improved tolerability.


Subject(s)
Administration, Cutaneous , Carboxymethylcellulose Sodium , Hydrogels , Nanoparticles , Skin , Tetrahydronaphthalenes , Thiophenes , Thiophenes/chemistry , Thiophenes/administration & dosage , Animals , Hydrogels/chemistry , Nanoparticles/chemistry , Carboxymethylcellulose Sodium/chemistry , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/administration & dosage , Skin/drug effects , Skin/metabolism , Male , Skin Absorption/drug effects , Rats , Mice , Drug Carriers/chemistry , Rats, Sprague-Dawley , Drug Liberation
8.
Int J Biol Macromol ; 268(Pt 2): 131998, 2024 May.
Article in English | MEDLINE | ID: mdl-38697415

ABSTRACT

The potential application of fish oil microcapsules as salt reduction strategies in low-salt myofibrillar protein (MP) gel was investigated by employing soy protein isolates/carboxymethyl cellulose sodium (SPI-CMC) coacervates enriched with 25 mM sodium chloride and exploring their rheological characteristics, taste perception, and microstructure. The results revealed that the SPI-CMC coacervate phase exhibited the highest sodium content under 25 mM sodium level, albeit with uneven distribution. Notably, the hydrophilic and adhesive properties of CMC to sodium facilitated the in vitro release of sodium during oral digestion, as evidenced by the excellent wettability and mucopenetration ability of CMC. Remarkably, the fish oil microcapsules incorporating SPI-CMC as the wall material, prepared at pH 3.5 with a core-to-wall ratio of 1:1, demonstrated the highest encapsulation efficiency, which was supported by the strong hydrogen bonding. Interestingly, the presence of SPI-CMC coacervates and fish oil microcapsules enhanced the interaction between MPs and strengthened the low-salt MP gel network. Coupled with electronic tongue analysis, the incorporation of fish oil microcapsules slightly exacerbated the non-uniformity of sodium distribution. This ultimately contributed to an enhanced perception of saltiness, richness, and aftertaste in low-salt protein gels. Overall, the incorporation of fish oil microcapsules emerged as an effective salt reduction strategy in low-salt MP gel.


Subject(s)
Carboxymethylcellulose Sodium , Fish Oils , Gels , Fish Oils/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Soybean Proteins/chemistry , Rheology , Capsules , Sodium Chloride/chemistry , Muscle Proteins/chemistry , Myofibrils/chemistry , Myofibrils/metabolism
9.
Int J Pharm ; 658: 124204, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38710297

ABSTRACT

Pulsatile drug delivery is hardly achieved by conventional gastro-retentive dosage forms. Artesunate as a typical anti-malaria medicine needs oral pulsatile release. Here, artesunate-loaded pulsatile-release multi-unit gastro-retentive tablets (APGTs) were prepared with a semi-solid extrusion three-dimensional (3D) printing method. An APGT was composed of three units: artesunate-loaded immediate and delayed release units and a block unit. The matrix of the immediate/delayed release units consisted of polyvinylpyrrolidone (PVP) K30 and croscarmellose sodium, which improved the rapid release of artesunate when contacting water. The block unit consisted of octadecanol, hydroxypropyl methyl cellulose K15M, PVP K30, and poloxamer F68. APGTs showed multi-phase release in simulated gastric liquids (SGLs). The first immediate release phase continued for 1 h followed by a long block phase for 7 h. The second rapid release phase was initiated when the eroded holes in the block unit extended to the inner delayed release unit, and this phase continued for about 14 h. Low-density APGTs could ensure their long-term floating in the stomach. Oral APGTs remained in the rabbit stomach for about 20 h. 3D printing provides a new strategy for the preparation of oral pulsatile-release tablets.


Subject(s)
Antimalarials , Artesunate , Delayed-Action Preparations , Drug Liberation , Povidone , Printing, Three-Dimensional , Tablets , Artesunate/administration & dosage , Artesunate/chemistry , Artesunate/pharmacokinetics , Animals , Rabbits , Antimalarials/administration & dosage , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Povidone/chemistry , Hypromellose Derivatives/chemistry , Excipients/chemistry , Drug Delivery Systems , Administration, Oral , Carboxymethylcellulose Sodium/chemistry , Poloxamer/chemistry , Gastric Mucosa/metabolism
10.
ACS Appl Mater Interfaces ; 16(19): 25181-25193, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698676

ABSTRACT

Supermolecular hydrogel ionic skin (i-skin) linked with smartphones has attracted widespread attention in physiological activity detection due to its good stability in complex scenarios. However, the low ionic conductivity, inferior mechanical properties, poor contact adhesion, and insufficient freeze resistance of most used hydrogels limit their practical application in flexible electronics. Herein, a novel multifunctional poly(vinyl alcohol)-based conductive organohydrogel (PCEL5.0%) with a supermolecular structure was constructed by innovatively employing sodium carboxymethyl cellulose (CMC-Na) as reinforcement material, ethylene glycol as antifreeze, and lithium chloride as a water retaining agent. Thanks to the synergistic effect of these components, the PCEL5.0% organohydrogel shows excellent performance in terms of ionic conductivity (1.61 S m-1), mechanical properties (tensile strength of 70.38 kPa and elongation at break of 537.84%), interfacial adhesion (1.06 kPa to pig skin), frost resistance (-50.4 °C), water retention (67.1% at 22% relative humidity), and remoldability. The resultant PCEL5.0%-based i-skin delivers satisfactory sensitivity (GF = 1.38) with fast response (348 ms) and high precision under different deformations and low temperature (-25 °C). Significantly, the wireless sensor system based on the PCEL5.0% organohydrogel i-skin can transmit signals from physiological activities and sign language to a smartphone by Bluetooth technology and dynamically displays the status of these movements. The organohydrogel i-skin shows great potential in diverse fields of physiological activity detection, human-computer interaction, and rehabilitation medicine.


Subject(s)
Hydrogels , Hydrogels/chemistry , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Animals , Wireless Technology , Wearable Electronic Devices , Electric Conductivity , Humans , Polyvinyl Alcohol/chemistry , Swine , Smartphone , Skin/chemistry , Carboxymethylcellulose Sodium/chemistry
11.
Int J Biol Macromol ; 269(Pt 2): 131967, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692528

ABSTRACT

The development of food-grade high internal phase emulsions (HIPEs) for 3D printing and the replacement of animal fats have attracted considerable attention. In this study, in order to improve the rheological properties and stability of pea protein to prepare HIPE, pea protein/carboxymethyl cellulose (pH-PP/CMC) was prepared and subjected to pH cycle treatment to produce HIPEs. The results showed that pH cycle treatment and CMC significantly reduced the droplet size of HIPEs (from 143.33 to 12.10 µm). At higher CMC concentrations, the interfacial tension of the PP solution decreased from 12.84 to 11.71 mN/m without pH cycle treatment and to 10.79 mN/m with pH cycle treatment. The HIPEs with higher CMC concentrations subjected to pH cycle treatment showed shear thinning behavior and higher viscoelasticity and recovered their solid-like properties after being subjected to 50 % strain, indicating that they could be used for 3D printing. The 3D printing results showed that the pH-PP/CMC HIPE with 0.3 % CMC had the finest structure. Our work provides new insights into developing food-grade HIPEs and facilitating their use in 3D printing inks as nutrient delivery systems and animal fat substitutes.


Subject(s)
Carboxymethylcellulose Sodium , Emulsions , Pea Proteins , Printing, Three-Dimensional , Rheology , Carboxymethylcellulose Sodium/chemistry , Hydrogen-Ion Concentration , Emulsions/chemistry , Pea Proteins/chemistry , Viscosity
12.
Int J Biol Macromol ; 269(Pt 2): 132031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705325

ABSTRACT

Bacterially infected wounds are a serious threat to patients' lives and health, and multifunctional dressings with antimicrobial properties and healing promotion are urgently needed. Thus, we used the cationic and anionic properties of chitosan (CS)-nerol (N) derivative (CSN) and carboxymethylcellulose (CMC) to prepare asymmetric layer-by-layer self-assembled (LBL) composite films (CSN-CMC LBL films) with antibacterial and healing properties using a spin-coating method. SEM images showed that the CSN-CMC LBL films had completely different degrees of roughness at the bottom (hydrophilic layer) and at the top (hydrophobic layer), with the roughness at the top increasing as the number of layers increased. The CSN and CMC were used to prepare asymmetric LBL films via the electrostatic attraction of -COO- and NH3+. In addition, adhesion and water contact angle tests showed that the CSN-CMC LBL films had enhanced tissue adhesion and good hydrophobicity. These materials had excellent antimicrobial activity and good biocompatibility. Importantly, the animal infection model results showed that CSN-CMC-8 LBL films effectively eliminated the infection in vivo, inhibited inflammation, promoted vascular regeneration, accelerated the epithelialization process, and achieved high quality healing. Overall, the CSN-CMC LBL films in this study showed considerable potential for application in infected wound healing.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Animals , Wound Healing/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bandages , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Wound Infection/drug therapy , Hydrophobic and Hydrophilic Interactions , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Humans , Male
13.
Carbohydr Polym ; 338: 122194, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38763709

ABSTRACT

The rising demand for food packaging has led to a growing interest in sustainable and eco-friendly food coatings. Carboxymethyl cellulose (CMC), being a versatile cellulose derivative produced from various lignocellulosic sources, has emerged in edible food coatings. This review evaluates the research trends on CMC production from empty fruit bunch (EFB) as a potential edible food coating material by systematic review approach. It explores sustainable pre-treatment for green cellulose and different CMC synthesis methods. The review compares CMC-based coatings to other materials, focusing on formulation processes, coating quality, safety, and commercial feasibility. The bibliometric analysis is performed to correlate food coating and CMC. As a result, the study discovered the rapid growth in research on edible food coatings made from CMC for various food industry applications. The green approach such as ozone pre-treatment appear as promising method for cellulose isolation from EFB to be used as raw material for CMC. The synthesis conditions of the treatment would affect the CMC characteristics and usage. Herein, utilizing CMC from cellulose EFB in coating formulation and on coated food shows different benefits. This review provides a road map for future research with potential to make important contributions to the food industry's long-term evolution.


Subject(s)
Food Packaging , Fruit , Fruit/chemistry , Carboxymethylcellulose Sodium/chemistry , Cellulose/chemistry
14.
Int J Biol Macromol ; 270(Pt 2): 132541, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777012

ABSTRACT

Bio-based polymers are materials of high interest given the harmful environmental impact that involves the use of non-biodegradable fossil products for industrial applications. These materials are also particularly interesting as bio-based ligands for the preparation of metal nanoparticles (MNPs), employed as catalysts for the synthesis of high value chemicals. In the present study, Ru (0) and Rh(0) Metal Nanoparticles supported on Sodium Carboxymethyl cellulose (MNP(0)s-CMCNa) were prepared by simply mixing RhCl3x3H2O or RuCl3 with an aqueous solution of CMCNa, followed by NaBH4 reduction. The formation of MNP(0)s-CMCNa was confirmed by FT-IR and XRD, and their size estimated to be around 1.5 and 2.2 nm by TEM analysis. MNP(0)s-CMCNa were employed for the hydrogenation of (E)-cinnamic aldehyde, furfural and levulinic acid. Hydrogenation experiments revealed that CMCNa is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles allowing to obtain high conversions (>90 %) and selectivities (>98 %) with all substrates tested. Easy recovery by liquid/liquid extraction allowed to separate the catalyst from the reaction products, and recycling experiments demonstrated that MNPs-CS were highly efficiency up to three times in best hydrogenation conditions.


Subject(s)
Carboxymethylcellulose Sodium , Metal Nanoparticles , Solubility , Water , Carboxymethylcellulose Sodium/chemistry , Catalysis , Water/chemistry , Metal Nanoparticles/chemistry , Hydrogenation , Ruthenium/chemistry , Rhodium/chemistry
15.
Int J Biol Macromol ; 270(Pt 1): 132127, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718991

ABSTRACT

Femoral head necrosis is a debilitating disorder that typically caused by impaired blood supply to the hip joint. In this study, a novel injectable hydrogel based on Oxidized Carboxymethyl Cellulose (OCMC)-Carboxymethyl Chitosan (CMCS) polymers containing an angiogenesis stimulator peptide (QK) with a non-toxic crosslinking interaction (Schiff based reaction) was synthesized to enhance angiogenesis following femoral head necrosis in an animal model. The physicochemical features of fabricated injectable hydrogel were analyzed by FTIR, swelling and degradation rate, rheometry, and peptide release. Also, the safety and efficacy were evaluated following an in vitro hydrogel injection study and an avascular necrosis (AVN) animal model. According to the results, the hydrogel exhibited an appropriate swelling ratio and water uptake (>90 %, 24 h) as well as a suitable degradation rate over 21 days accompanied by a continuous peptide release. Also, data showed that hydrogels containing QK peptide boosted the proliferation, differentiation, angiogenesis, and osteogenic potential of both Bone Marrow mesenchymal Stem Cells (BM-MSCs) and human umbilical vein endothelial cells (HUVECs) (****p < 0.0001 and ***p < 0.001, respectively). Furthermore, molecular and histological evaluations significantly demonstrated the overexpression of Runx2, Osteocalcin, Collagen I, VEGF and CD34 genes (**p < 0.01 and ***p < 0.001, respectively), and also femoral head necrosis was effectively prohibited, and more blood vessels were detected in defect area by OCMC-CMCS hydrogel containing QK peptide (bone trabeculae >9000, ***p < 0.001). In conclusion, the findings demonstrate that OCMC-CMCS-QK injectable hydrogel could be considered as an impressive therapeutic construct for femoral head AVN healing.


Subject(s)
Carboxymethylcellulose Sodium , Chitosan , Femur Head Necrosis , Human Umbilical Vein Endothelial Cells , Hydrogels , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Animals , Humans , Femur Head Necrosis/drug therapy , Femur Head Necrosis/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Osteogenesis/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Cell Proliferation/drug effects , Wound Healing/drug effects , Injections , Neovascularization, Physiologic/drug effects , Cell Differentiation/drug effects , Male , Rabbits , Disease Models, Animal
16.
Int J Biol Macromol ; 270(Pt 1): 132233, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735617

ABSTRACT

To reduce food-borne bacterial infection caused by food spoilage, developing highly efficient food packing film is still an urgent need for food preservation. Herein, microwave-assisted antibacterial nanocomposite films CaO2@PVP/EA/CMC-Na (CP/EC) were synthesized using waste eggshell as precursor, egg albumen (EA) and sodium carboxymethylcellulose (CMCNa) as matrix by casting method. The size of CaO2@PVP (CP) nanoparticles with monodisperse spherical structures was 100-240 nm. When microwave and CP nanoparticles (0.05 mg/mL) were treated for 5 min, the mortality of E. coli and S. aureus could reach >97 %. Under microwave irradiation (6 min), the bactericidal rate of 2.5 % CP/EC film against E. coli and S. aureus reached 98.6 % and 97.2 %, respectively. After adding CP nanoparticles, the highest tensile strength (TS) and elongation at break (EB) of CP/EC film reached 19.59 MPa and 583.43 %, respectively. At 18 °C, the proliferation of bacterial colonies on meat can be significantly inhibited by 2.5 % CP/EC film. Detailed characterization showed that the excellent meat preservation activity was due to the synergistic effect of dynamic effect generated by ROS and thermal effect of microwave. This study provides a promising approach for the packaging application of polysaccharide- and protein-based biomass nanocomposite antibacterial edible films.


Subject(s)
Anti-Bacterial Agents , Edible Films , Escherichia coli , Food Preservation , Meat , Microwaves , Polysaccharides , Staphylococcus aureus , Polysaccharides/chemistry , Escherichia coli/drug effects , Escherichia coli/growth & development , Food Preservation/methods , Meat/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/drug effects , Food Packaging/methods , Animals , Nanocomposites/chemistry , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Proteins/chemistry , Tensile Strength
17.
Int J Biol Macromol ; 270(Pt 1): 131913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749889

ABSTRACT

In this study, we aimed to determine the effect of carboxymethyl chitosan (CMCh) and carboxymethyl cellulose sodium (CMCNa) on the quality of frozen rice dough. We used a variety of methods to conduct a thorough investigation of frozen rice dough, including nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, size exclusion high-performance liquid chromatography (SE-HPLC), X-ray diffraction (X-RD), differential scanning calorimetry (DSC), and rapid visco analyzer (RVA). Our findings showed that frozen storage caused significant damage to the texture of rice dough, and this damage was reduced by the inclusion of CMCh, which led to a gradual change in the orderly structure of proteins. The degree of cross-linking between CMCh-B (DS:1; 0.5 %, 1 %, and 1.5 %) and the large protein polymer was significantly higher than that between CMCh-A (DS:0.8; 0.5 %, 1 %, and 1.5 %) and CMCNa (DS:1; 1 %), which decreased the ability of bound water to become free water. This resulted in the increase of tan δ, which effectively delayed the structural transformation of frozen rice dough. Furthermore, the introduction of CMCh delayed the immediate order of starch and crystal structure modifications, altering the thermal properties and pasting qualities of the frozen rice dough. Therefore, 1.5 % CMCh-B showed the best protective effect on frozen rice dough.


Subject(s)
Chitosan , Freezing , Oryza , Oryza/chemistry , Chitosan/chemistry , Chitosan/analogs & derivatives , Food Storage , X-Ray Diffraction , Flour/analysis , Carboxymethylcellulose Sodium/chemistry
18.
Bioresour Technol ; 401: 130711, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641302

ABSTRACT

Lithium carboxymethyl cellulose (CMC-Li) is a promising novel water-based binder for lithium-ion batteries. The direct synthesis of CMC-Li was innovatively developed using abundant wood dissolving pulp materials from hardwood (HW) and softwood (SW). The resulting CMC-Li-HW and CMC-Li-SW binders possessed a suitable degree of substitutions and excellent molecular weight distributions with an appropriate quantity of long- and short-chain celluloses, which facilitated the construction of a reinforced concrete-like bonding system. When used as cathode binders in LiFePO4 batteries, they uniformly coated and dispersed the electrode materials, formed a compact and stable conductive network with high mechanical strength and showed sufficient lithium replenishment. The prepared LiFePO4 batteries exhibited good mechanical stability, low charge transfer impedance, high initial discharge capacity (∼180 mAh/g), high initial Coulombic efficiency (99 %), excellent cycling performance (<3% loss over 200 cycles) and good rate capability, thereby outperforming CMC-Na and the widely used cathode binder polyvinylidene fluoride.


Subject(s)
Carboxymethylcellulose Sodium , Electric Power Supplies , Electrodes , Lithium , Wood , Lithium/chemistry , Wood/chemistry , Carboxymethylcellulose Sodium/chemistry , Phosphates/chemistry , Ions , Iron
19.
ACS Appl Bio Mater ; 7(5): 3469-3482, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38651365

ABSTRACT

Bacterial invasion hinders the healing process of wound, leading to the formation of chronic infected wound; meanwhile, the misuse of antibiotics has resulted in the emergence of numerous drug-resistant bacteria. The application of conventional antimicrobial methods and wound treatment techniques is not appropriate for wound dressings. In this paper, quaternized poly(vinyl alcohol) (QPVA) and pomegranate-like copper uniformly doped polydopamine nanoparticles (PDA@Cu) were introduced into a gelatin-oxidized carboxymethyl cellulose system to form a multicomponent synergistic antibacterial hydrogel (GOQ3P3). Polydopamine improves the biocompatibility and prevents the detachment of Cu nanoparticles. It can achieve synergistic antibacterial effects through quaternary ammonium salt-inorganic nanoparticle photothermal treatment under 808 nm near-infrared (NIR) irradiation. It exhibits highly efficient and rapid bactericidal properties against Escherichia coli, Staphylococcus aureus, and MRSA (methicillin-resistant Staphylococcus aureus) with an antibacterial rate close to 100%. The gel scaffold composed of macromolecules gives the hydrogel excellent mechanical properties, adhesive capabilities, self-healing characteristics, biocompatibility, and pH degradation and promotes cell adhesion and migration. In a full-thickness wound healing model infected with MRSA, GOQ3P3 controls inflammatory responses, accelerates collagen deposition, promotes angiogenesis, and enhances wound closure in the wound healing cascade reaction. This study provides a feasible strategy for constructing dressings targeting chronic infection wounds caused by drug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Biocompatible Materials , Carboxymethylcellulose Sodium , Escherichia coli , Gelatin , Hydrogels , Materials Testing , Microbial Sensitivity Tests , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Gelatin/chemistry , Wound Healing/drug effects , Carboxymethylcellulose Sodium/chemistry , Carboxymethylcellulose Sodium/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Escherichia coli/drug effects , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mice , Staphylococcus aureus/drug effects , Particle Size , Methicillin-Resistant Staphylococcus aureus/drug effects , Polymers/chemistry , Polymers/pharmacology , Indoles/chemistry , Indoles/pharmacology , Copper/chemistry , Copper/pharmacology , Humans
20.
Int J Biol Macromol ; 267(Pt 2): 131626, 2024 May.
Article in English | MEDLINE | ID: mdl-38631590

ABSTRACT

Self-healing hydrogel is a promising soft material for applications in wound dressings, drug delivery, tissue engineering, biomimetic electronic skin, and wearable electronic devices. However, it is a challenge to fabricate the self-healing hydrogels without external stimuli. Inspired by mussel, the metal-catechol complexes were introduced into the hydrogel systems to prepare the mussel-inspired hydrogels by regulating the gelation kinetics of Fe3+ crosslinkers with gallic acid (GA) in this research. The amine-functionalized carboxymethyl cellulose (CMC) was grafted with GA and then chelated with Fe3+ to form a multi-response system. The crosslinking of carboxymethyl cellulose-ethylenediamine-gallic acid (CEG) hydrogel was controlled by adjusting the pH to affect the iron coordination chemistry, which could enhance the self-healing properties and mechanical strength of hydrogels. In addition, the CEG hydrogel exhibited great antibacterial and antioxidant properties. And the CEG hydrogel could strongly adhere to the skin tissue. The adhesion strength of CEG hydrogel on pigskin was 11.44 kPa, which is higher than that of commercial wound dressings (∼5 kPa). Moreover, the thixotropy of the CEG hydrogel was confirmed with rheological test. In summary, it has great potential in the application field of wound dressing.


Subject(s)
Carboxymethylcellulose Sodium , Gallic Acid , Hydrogels , Gallic Acid/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Carboxymethylcellulose Sodium/chemistry , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Iron/chemistry , Swine , Cross-Linking Reagents/chemistry , Rheology , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL