Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.978
Filter
1.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 148-154, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097882

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and aggressive tumor that affects the digestive tract, leading to high mortality and poor survival rates. The purpose of the present study was to evaluate the expression levels of DNA damage-inducible transcript 3 (DDIT3) in pancreatic cancer and to investigate its effects in in vitro and in vivo experiments. Bioinformatics analysis indicated that DDIT3 expression was higher in pancreatic cancer tumor tissues and associated with a poor prognosis. Positive or strong positive DDIT3 expression was observed in PDAC, and no or weak expression was observed in normal pancreatic tissues. It was also highly expressed in PDAC cells, while being expressed at lower levels in normal pancreatic ductal epithelial cells. Transfection of short hairpin RNA targeting the DDIT3 gene reduced the proliferation, migration and invasion of PANC-1 cells. In vivo, in an in situ implantation tumor model with Pan02 cells, the size and weight of the tumors were reduced in the DDIT3 knockdown Pan02 cell-implanted group. These data suggested that DDIT3 represents a novel predictive biomarker for the potential treatment of patients presenting with PDAC.


Subject(s)
Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , Transcription Factor CHOP , Humans , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Cell Line, Tumor , Animals , Cell Proliferation/genetics , Cell Movement/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Male , Female , Mice , Prognosis , Mice, Nude , Middle Aged
2.
BMC Cancer ; 24(1): 809, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973003

ABSTRACT

BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive cancer characterized by an immunosuppressive microenvironment. Patients from specific ethnicities and population groups have poorer prognoses than others. Therefore, a better understanding of the immune landscape in such groups is necessary for disease elucidation, predicting patient outcomes and therapeutic targeting. This study investigated the expression of circulating key immune cell markers in South African PDAC patients of African ancestry. METHODS: Blood samples were obtained from a total of 6 healthy volunteers (HC), 6 Chronic Pancreatitis (CP) and 34 PDAC patients consisting of 22 resectable (RPC), 8 locally advanced (LAPC) and 4 metastatic (MPC). Real-time Quantitative Polymerase Chain reactions (RT-qPCR), Metabolomics, Enzyme-Linked Immunosorbent Assay (ELISA), Reactive Oxygen Species (ROS), and Immunophenotyping assays were conducted. Statistical analysis was conducted in R (v 4.3.2). Additional analysis of single-cell RNA data from 20 patients (16 PDAC and 4 controls) was conducted to interrogate the distribution of T-cell and Natural Killer cell populations. RESULTS: Granulocyte and neutrophil levels were significantly elevated while lymphocytes decreased with PDAC severity. The total percentages of CD3 T-cell subpopulations (helper and double negative T-cells) decreased when compared to HC. Although both NK (p = 0.014) and NKT (p < 0.001) cell levels increased as the disease progressed, their subsets: NK CD56dimCD16- (p = 0.024) and NKTs CD56+ (p = 0.008) cell levels reduced significantly. Of note is the negative association of NK CD56dimCD16- (p < 0.001) cell levels with survival time. The gene expression analyses showed no statistically significant correlation when comparing the PDAC groups with the controls. The inflammatory status of PDAC was assessed by ROS levels of serum which were elevated in CP (p = 0.025), (RPC (p = 0.003) and LAPC (p = 0.008)) while no significant change was observed in MPC, compared to the HC group. ROS was shown to be positively correlated with GlycA (R = 0.45, p = 0.0096). Single-cell analyses showed a significant difference in the ratio of NKT cells per total cell counts in LAPC (p < 0.001) and MPC (p < 0.001) groups compared with HC, confirming observations in our sample group. CONCLUSION: The expression of these immune cell markers observed in this pilot study provides insight into their potential roles in tumour progression in the patient group and suggests their potential utility in the development of immunotherapeutic strategies.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Progression , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Male , Female , Middle Aged , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , South Africa , Aged , Adult , Biomarkers, Tumor/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Pancreatitis, Chronic/immunology , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/pathology , Reactive Oxygen Species/metabolism , Immunophenotyping
3.
Nat Commun ; 15(1): 5763, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982051

ABSTRACT

While high circulating tumor DNA (ctDNA) levels are associated with poor survival for multiple cancers, variant-specific differences in the association of ctDNA levels and survival have not been examined. Here we investigate KRAS ctDNA (ctKRAS) variant-specific associations with overall and progression-free survival (OS/PFS) in first-line metastatic pancreatic ductal adenocarcinoma (mPDAC) for patients receiving chemoimmunotherapy ("PRINCE", NCT03214250), and an independent cohort receiving standard of care (SOC) chemotherapy. For PRINCE, higher baseline plasma levels are associated with worse OS for ctKRAS G12D (log-rank p = 0.0010) but not G12V (p = 0.7101), even with adjustment for clinical covariates. Early, on-therapy clearance of G12D (p = 0.0002), but not G12V (p = 0.4058), strongly associates with OS for PRINCE. Similar results are obtained for the SOC cohort, and for PFS in both cohorts. These results suggest ctKRAS G12D but not G12V as a promising prognostic biomarker for mPDAC and that G12D clearance could also serve as an early biomarker of response.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Circulating Tumor DNA , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Female , Male , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Middle Aged , Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Prognosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Mutation , Progression-Free Survival , Neoplasm Metastasis
4.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000545

ABSTRACT

Chemotherapy treatment against pancreatic ductal adenocarcinoma (PDAC) is thwarted by tumoral activation of multiple therapy resistance pathways. The growth hormone (GH)-GH receptor (GHR) pair is a covert driver of multimodal therapy resistance in cancer and is overexpressed in PDAC tumors, yet the therapeutic potential of targeting the same has not been explored. Here, we report that GHR expression is a negative prognostic factor in patients with PDAC. Combinations of gemcitabine with different GHR antagonists (GHRAs) markedly improve therapeutic outcomes in nude mice xenografts. Employing cultured cells, mouse xenografts, and analyses of the human PDAC transcriptome, we identified that attenuation of the multidrug transporter and epithelial-to-mesenchymal transition programs in the tumors underlie the observed augmentation of chemotherapy efficacy by GHRAs. Moreover, in human PDAC patients, GHR expression strongly correlates with a gene signature of tumor promotion and immune evasion, which corroborate with that in syngeneic tumors in wild-type vs. GH transgenic mice. Overall, we found that GH action in PDAC promoted a therapy-refractory gene signature in vivo, which can be effectively attenuated by GHR antagonism. Our results collectively present a proof of concept toward considering GHR antagonists to improve chemotherapeutic outcomes in the highly chemoresistant PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Deoxycytidine , Gemcitabine , Pancreatic Neoplasms , Receptors, Somatotropin , Xenograft Model Antitumor Assays , Animals , Humans , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Mice , Receptors, Somatotropin/metabolism , Receptors, Somatotropin/antagonists & inhibitors , Receptors, Somatotropin/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Mice, Nude , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Female
5.
Mol Cancer ; 23(1): 140, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982491

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis and limited therapeutic options. Research on the tumor microenvironment (TME) of PDAC has propelled the development of immunotherapeutic and targeted therapeutic strategies with a promising future. The emergence of single-cell sequencing and mass spectrometry technologies, coupled with spatial omics, has collectively revealed the heterogeneity of the TME from a multiomics perspective, outlined the development trajectories of cell lineages, and revealed important functions of previously underrated myeloid cells and tumor stroma cells. Concurrently, these findings necessitated more refined annotations of biological functions at the cell cluster or single-cell level. Precise identification of all cell clusters is urgently needed to determine whether they have been investigated adequately and to identify target cell clusters with antitumor potential, design compatible treatment strategies, and determine treatment resistance. Here, we summarize recent research on the PDAC TME at the single-cell multiomics level, with an unbiased focus on the functions and potential classification bases of every cellular component within the TME, and look forward to the prospects of integrating single-cell multiomics data and retrospectively reusing bulk sequencing data, hoping to provide new insights into the PDAC TME.


Subject(s)
Pancreatic Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Single-Cell Analysis/methods , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Animals , Biomarkers, Tumor , Genomics/methods , Gene Expression Regulation, Neoplastic , Multiomics
6.
J Exp Clin Cancer Res ; 43(1): 189, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978141

ABSTRACT

BACKGROUND: Distinguishing benign from malignant pancreaticobiliary disease is challenging because of the absence of reliable biomarkers. Circulating extracellular vesicles (EVs) have emerged as functional mediators between cells. Their cargos, including microRNAs (miRNAs), are increasingly acknowledged as an important source of potential biomarkers. This multicentric, prospective study aimed to establish a diagnostic plasma EV-derived miRNA signature to discriminate pancreatic ductal adenocarcinoma (PDAC) from benign pancreaticobiliary disease. METHODS: Plasma EVs were isolated using size exclusion chromatography (SEC) and characterised using nanoparticle tracking analysis, electron microscopy and Western blotting. EV-RNAs underwent small RNA sequencing to discover differentially expressed markers for PDAC (n = 10 benign vs. 10 PDAC). Candidate EV-miRNAs were then validated in a cohort of 61 patients (n = 31 benign vs. 30 PDAC) by RT-qPCR. Logistic regression and optimal thresholds (Youden Index) were used to develop an EV-miR-200 family model to detect cancer. This model was tested in an independent cohort of 95 patients (n = 30 benign, 33 PDAC, and 32 cholangiocarcinoma). RESULTS: Small RNA sequencing and RT-qPCR showed that EV-miR-200 family members were significantly overexpressed in PDAC vs. benign disease. Combined expression of the EV-miR-200 family showed an AUC of 0.823. In an independent validation cohort, application of this model showed a sensitivity, specificity and AUC of 100%, 88%, and 0.97, respectively, for diagnosing PDAC. CONCLUSIONS: This is the first study to validate plasma EV-miR-200 members as a clinically-useful diagnostic biomarker for PDAC. Further validation in larger cohorts and clinical trials is essential. These findings also suggest the potential utility in monitoring response and/or recurrence.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Vesicles , MicroRNAs , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , MicroRNAs/blood , MicroRNAs/genetics , Female , Male , Middle Aged , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Aged , Biomarkers, Tumor/blood , Prospective Studies
7.
Nat Commun ; 15(1): 6043, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025845

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer with dismal prognosis due to distant metastasis, even in the early stage. Using RNA sequencing and multiplex immunofluorescence, here we find elevated expression of mixed lineage kinase domain-like pseudo-kinase (MLKL) and enhanced necroptosis pathway in PDAC from early liver metastasis T-stage (T1M1) patients comparing with non-metastatic (T1M0) patients. Mechanistically, MLKL-driven necroptosis recruits macrophages, enhances the tumor CD47 'don't eat me' signal, and induces macrophage extracellular traps (MET) formation for CXCL8 activation. CXCL8 further initiates epithelial-mesenchymal transition (EMT) and upregulates ICAM-1 expression to promote endothelial adhesion. METs also degrades extracellular matrix, that eventually supports PDAC liver metastasis. Meanwhile, targeting necroptosis and CD47 reduces liver metastasis in vivo. Our study thus reveals that necroptosis facilitates PDAC metastasis by evading immune surveillance, and also suggest that CD47 blockade, combined with MLKL inhibitor GW806742X, may be a promising neoadjuvant immunotherapy for overcoming the T1M1 dilemma and reviving the opportunity for radical surgery.


Subject(s)
CD47 Antigen , Carcinoma, Pancreatic Ductal , Epithelial-Mesenchymal Transition , Extracellular Traps , Liver Neoplasms , Macrophages , Necroptosis , Pancreatic Neoplasms , Protein Kinases , Humans , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Mice , Macrophages/metabolism , Macrophages/immunology , Cell Line, Tumor , CD47 Antigen/metabolism , CD47 Antigen/genetics , Protein Kinases/metabolism , Extracellular Traps/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Male , Signal Transduction , Female , Acrylamides , Sulfonamides
8.
Cell Death Dis ; 15(7): 492, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987572

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with limited treatment methods. Long non-coding RNAs (lncRNAs) have been found involved in tumorigenic and progression. The present study revealed that LINC01133, a fewly reported lncRNA, was one of 16 hub genes that could predict PDAC patients' prognosis. LINC01133 was over-expressed in PDAC tumors compared to adjacent pancreas and could promote PDAC proliferation and metastasis in vitro and in vivo, as well as inhibit PDAC apoptosis. LINC01133 expression positively correlated to secreted phosphoprotein 1 (SPP1) expression, leading to an enhanced epithelial-mesenchymal transition (EMT) process. LINC01133 bound with actin-related protein 3 (Arp3), the complex reduced SPP1 mRNA degradation which increased SPP1 mRNA level, ultimately leading to PDAC proliferation. This research revealed a novel mechanism of PDAC development and provided a potential prognosis indicator that may benefit PDAC patients.


Subject(s)
Actin-Related Protein 3 , Carcinoma, Pancreatic Ductal , Cell Proliferation , Epithelial-Mesenchymal Transition , Osteopontin , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , Epithelial-Mesenchymal Transition/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Animals , Cell Line, Tumor , Osteopontin/metabolism , Osteopontin/genetics , Actin-Related Protein 3/metabolism , Actin-Related Protein 3/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Apoptosis , Male , Female , Cell Movement , Prognosis , Mice, Inbred BALB C
9.
Sci Rep ; 14(1): 15037, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951569

ABSTRACT

The NK cell is an important component of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC), also plays a significant role in PDAC development. This study aimed to explore the relationship between NK cell marker genes and prognosis, immune response of PDAC patients. By scRNA-seq data, we found the proportion of NK cells were significantly downregulated in PDAC and 373 NK cell marker genes were screened out. By TCGA database, we enrolled 7 NK cell marker genes to construct the signature for predicting prognosis in PDAC patients. Cox analysis identified the signature as an independent factor for pancreatic cancer. Subsequently, the predictive power of signature was validated by 6 GEO datasets and had an excellent evaluation. Our analysis of relationship between the signature and patients' immune status revealed that the signature has a strong correlation with immunocyte infiltration, inflammatory reaction, immune checkpoint inhibitors (ICIs) response. The NK cell marker genes are closely related to the prognosis and immune capacity of PDAC patients, and they have potential value as a therapeutic target.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Killer Cells, Natural , Pancreatic Neoplasms , Single-Cell Analysis , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/mortality , Killer Cells, Natural/immunology , Prognosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Biomarkers, Tumor/genetics , Single-Cell Analysis/methods , Female , Male , Gene Expression Regulation, Neoplastic , Sequence Analysis, RNA , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Middle Aged , Aged , Gene Expression Profiling
10.
BMC Cancer ; 24(1): 800, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965506

ABSTRACT

Drug resistance remains a significant challenge in the treatment of pancreatic cancer. The development of drug-resistant cell lines is crucial to understanding the underlying mechanisms of resistance and developing novel drugs to improve clinical outcomes. Here, a novel pancreatic cancer cell line, PDAC-X1, derived from Chinese patients has been established. PDAC-X1 was characterized by the immune phenotype, biology, genetics, molecular characteristics, and tumorigenicity. In vitro analysis revealed that PDAC-X1 cells exhibited epithelial morphology and cell markers (CK7 and CK19), expressed cancer-associated markers (E-cadherin, Vimentin, Ki-67, CEA, CA19-9), and produced pancreatic cancer-like organs in suspension culture. In vivo analysis showed that PDAC-X1 cells maintained tumorigenicity with a 100% tumor formation rate. This cell line exhibited a complex karyotype, dominated by subtriploid karyotypes. In addition, PDAC-X1 cells exhibited intrinsic multidrug resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil, and oxaliplatin. In conclusion, the PDAC-X1 cell line has been established and characterized, representing a useful and valuable preclinical model to study the underlying mechanisms of drug resistance and develop novel drug therapeutics to improve patient outcomes.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Animals , Mice , Drug Resistance, Multiple/genetics , Xenograft Model Antitumor Assays , Male , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use
11.
Nat Commun ; 15(1): 6162, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039076

ABSTRACT

Senescent cells within tumors and their stroma exert complex pro- and anti-tumorigenic functions. However, the identities and traits of these cells, and the potential for improving cancer therapy through their targeting, remain poorly characterized. Here, we identify a senescent subset within previously-defined cancer-associated fibroblasts (CAFs) in pancreatic ductal adenocarcinomas (PDAC) and in premalignant lesions in mice and humans. Senescent CAFs isolated from mouse and humans expressed elevated levels of immune-regulatory genes. Depletion of senescent CAFs, either genetically or using the Bcl-2 inhibitor ABT-199 (venetoclax), increased the proportion of activated CD8+ T cells in mouse pancreatic carcinomas, whereas induction of CAF senescence had the opposite effect. Combining ABT-199 with an immune checkpoint therapy regimen significantly reduced mouse tumor burden. These results indicate that senescent CAFs in PDAC stroma limit the numbers of activated cytotoxic CD8+ T cells, and suggest that their targeted elimination through senolytic treatment may enhance immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Cellular Senescence , Immunotherapy , Pancreatic Neoplasms , Sulfonamides , Animals , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , CD8-Positive T-Lymphocytes/immunology , Mice , Humans , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cellular Senescence/immunology , Immunotherapy/methods , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Mice, Inbred C57BL , Cell Line, Tumor , Lymphocyte Activation/immunology , Female , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Adenocarcinoma/immunology , Adenocarcinoma/therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Male , Bridged Bicyclo Compounds, Heterocyclic
12.
J Extracell Vesicles ; 13(7): e12484, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39041344

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterised by immune evasion that contribute to poor prognosis. Cancer-associated fibroblasts (CAFs) play a pivotal role in orchestrating the PDAC tumour microenvironment. We investigated the role of CAF-derived extracellular vesicle (EV)-packaged long non-coding RNAs (lncRNAs) in immune evasion and explored gene therapy using engineered EVs loading small interfering RNAs (siRNAs) as a potential therapeutic strategy. Our findings highlight the significance of EV-packaged lncRNA RP11-161H23.5 from CAF in promoting PDAC immune evasion by downregulating HLA-A expression, a key component of antigen presentation. Mechanistically, RP11-161H23.5 forms a complex with CNOT4, a subunit of the mRNA deadenylase CCR4-NOT complex, enhancing the degradation of HLA-A mRNA by shortening its poly(A) tail. This immune evasion mechanism compromises the anti-tumour immune response. To combat this, we propose an innovative approach utilising engineered EVs as natural and biocompatible nanocarriers for siRNA-based gene therapy and this strategy holds promise for enhancing the effectiveness of immunotherapy in PDAC. Overall, our study sheds light on the critical role of CAF-derived EV-packaged lncRNA RP11-161H23.5/CNOT4/HLA-A axis in PDAC immune evasion and presents a novel avenue for therapeutic intervention.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Extracellular Vesicles , HLA-A Antigens , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , HLA-A Antigens/genetics , HLA-A Antigens/immunology , HLA-A Antigens/metabolism , Immune Evasion , Gene Expression Regulation, Neoplastic , Down-Regulation , RNA, Small Interfering , Tumor Microenvironment/immunology , Animals , Tumor Escape , Mice
13.
Sci Rep ; 14(1): 15598, 2024 07 06.
Article in English | MEDLINE | ID: mdl-38971768

ABSTRACT

Although sequence-based studies show that basal-like features lead to worse prognosis and chemotherapy-resistance compared to the classical subtype in advanced pancreatic ductal adenocarcinoma (PDAC), a surrogate biomarker distinguishing between these subtypes in routine diagnostic practice remains to be identified. We aimed to evaluate the utility of immunohistochemistry (IHC) expression subtypes generated by unsupervised hierarchical clustering based on staining scores of four markers (CK5/6, p63, GATA6, HNF4a) applied to endoscopic ultrasound-guided fine needle aspiration biopsy (EUS-FNAB) materials. EUS-FNAB materials taken from 190 treatment-naïve advanced PDAC patients were analyzed, and three IHC patterns were established (Classical, Transitional, and Basal-like pattern). Basal-like pattern (high co-expression of CK5/6 and p63 with low expression of GATA6 and HNF4a) was significantly associated with squamous differentiation histology (p < 0.001) and demonstrated the worst overall survival among our cohort (p = 0.004). IHC expression subtype (Transitional, Basal vs Classical) was an independent poor prognosticator in multivariate analysis [HR 1.58 (95% CI 1.01-2.38), p = 0.047]. Furthermore, CK5/6 expression was an independent poor prognostic factor in histological glandular type PDAC [HR 2.82 (95% CI 1.31-6.08), p = 0.008]. Our results suggest that IHC expression patterns successfully predict molecular features indicative of the Basal-like subgroup in advanced PDAC. These results provide the basis for appropriate stratification for therapeutic selection and prognostic estimation of advanced PDAC in a simplified manner.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , GATA6 Transcription Factor , Hepatocyte Nuclear Factor 4 , Immunohistochemistry , Pancreatic Neoplasms , Humans , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Male , Female , Hepatocyte Nuclear Factor 4/metabolism , Hepatocyte Nuclear Factor 4/genetics , Aged , Biomarkers, Tumor/metabolism , Middle Aged , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/genetics , Prognosis , Keratin-5/metabolism , Keratin-6/metabolism , Aged, 80 and over , Adult , Endoscopic Ultrasound-Guided Fine Needle Aspiration , Transcription Factors , Tumor Suppressor Proteins
14.
Sci Adv ; 10(27): eadl1197, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959305

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (Pdx1-Cre, LSL-KrasG12D/+, LSL-Trp53R172H/+) and poorly metastatic KPflC (Pdx1-Cre, LSL-KrasG12D/+, Trp53fl/+) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPflC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs). Using biomechanical assessments, second harmonic generation imaging, and birefringence analysis, we show that NID2 reduction by CRISPR interference (CRISPRi) in CAFs reduces stiffness and matrix remodeling in three-dimensional models, leading to impaired cancer cell invasion. Intravital imaging revealed improved vascular patency in live NID2-depleted tumors, with enhanced response to gemcitabine/Abraxane. In orthotopic models, NID2 CRISPRi tumors had less liver metastasis and increased survival, highlighting NID2 as a potential PDAC cotarget.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Proteomics , Animals , Humans , Mice , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Cell Adhesion Molecules , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Disease Models, Animal , Fibrosis , Gemcitabine , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Proteomics/methods
15.
Sci Rep ; 14(1): 17071, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048609

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate; therefore, the development of effective treatments is a priority. The stimulator of interferon genes (STING) pathway enhances tumor immunity by inducing the production of type 1 interferon (IFN) and proinflammatory cytokines and chemokines and promoting the infiltration of cytotoxic T cells. To assess the function of STING on pancreatic tumorigenesis, Ptf1aER-Cre/+ LSL-KrasG12D/+ p53loxP/loxP mice (KPC mice) and Ptf1aER-Cre/+ LSL-KrasG12D/+ p53loxP/loxP/STING-/- mice (KPCS mice) were generated. However, STING deletion did not affect pancreatic tumorigenesis in mice. Because STING is expressed not only in immune cells but also in cancer-associated fibroblasts (CAFs), we evaluated the STING function in PDAC CAFs. A mouse STING agonist 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA) was administered to KPC mice and CAFs from KPC mice and the resulting immune response was evaluated. DMXAA activated STING in PDAC CAFs in KPC mice, promoting cytotoxic T cell infiltration by secreting proinflammatory cytokines and enhancing tumor immunity. We next generated STING-deficient PDAC cells and subcutaneous tumors in which STING was expressed only in CAFs by performing bone marrow transplantation and assessed the antitumor effect of STING-activated CAFs. The administration of DMXAA to subcutaneous tumors expressing STING only in CAFs sustained the antitumor effect of DMXAA. About half of human PDACs lacked STING expression in the cancer stroma, suggesting that STING activation in PDAC CAFs exerts an antitumor effect, and STING agonists can be more effective in tumors with high than in those with low STING expression in the stroma.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Membrane Proteins , Pancreatic Neoplasms , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Mice , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Humans , Xanthones/pharmacology , Cell Line, Tumor , T-Lymphocytes, Cytotoxic/immunology
16.
Sci Rep ; 14(1): 15200, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956290

ABSTRACT

Anoikis, a distinct form of programmed cell death, is crucial for both organismal development and maintaining tissue equilibrium. Its role extends to the proliferation and progression of cancer cells. This study aimed to establish an anoikis-related prognostic model to predict the prognosis of pancreatic cancer (PC) patients. Gene expression data and patient clinical profiles were sourced from The Cancer Genome Atlas (TCGA-PAAD: Pancreatic Adenocarcinoma) and the International Cancer Genome Consortium (ICGC-PACA: Pancreatic Ductal Adenocarcinoma). Non-cancerous pancreatic tissue gene expression data were obtained from the Genotype-Tissue Expression (GTEx) project. The R package was used to construct anoikis-related PC prognostic models, which were later validated with the ICGC-PACA database. Survival analyses demonstrated a poorer prognosis for patients in the high-risk group, consistent across both TCGA-PAAD and ICGC-PACA datasets. A nomogram was designed as a predictive tool to estimate patient mortality. The study also analyzed tumor mutations and immune infiltration across various risk groups, uncovering notable differences in tumor mutation patterns and immune landscapes between high- and low-risk groups. In conclusion, this research successfully developed a prognostic model centered on anoikis-related genes, offering a novel tool for predicting the clinical trajectory of PC patients.


Subject(s)
Anoikis , Pancreatic Neoplasms , Anoikis/genetics , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Gene Expression Regulation, Neoplastic , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/pathology , Nomograms , Biomarkers, Tumor/genetics , Mutation , Female , Male , Survival Analysis , Gene Expression Profiling
17.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(3): 354-360, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38953259

ABSTRACT

Objective To construct a risk prediction model by integrating the molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) and immune-related genes.Methods With GSE71729 data set (n=145) as the training set,the differentially expressed genes and differential immune-related genes between the squamous and non-squamous subtypes of PDAC were integrated to construct a regulatory network,on the basis of which five immune marker genes regulating the squamous subtype were screened out.An integrated immune score (IIS) model was constructed based on patient survival information and immune marker genes to predict the clinical prognosis of PDAC patients,and its predictive performance was tested with 5 validation sets (n=758).Results PDAC patients were assigned into high risk and low risk groups according to the IIS.In both training and validation sets,the overall survival of patients in the high risk group was shorter than that in the low risk group (both P<0.001).The multivariable Cox regression showed that IIS was an independent prognostic factor for PDAC (HR=2.16,95%CI=1.50-3.10,P<0.001).Conclusion IIS can be used for risk stratification of PDAC patients and may become a potential prognostic marker for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/mortality , Prognosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Female , Male , Middle Aged , Biomarkers, Tumor/genetics , Risk Assessment/methods
18.
Nat Mater ; 23(8): 1138-1149, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38965405

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its fibrotic and stiff extracellular matrix. However, how the altered cell/extracellular-matrix signalling contributes to the PDAC tumour phenotype has been difficult to dissect. Here we design and engineer matrices that recapitulate the key hallmarks of the PDAC tumour extracellular matrix to address this knowledge gap. We show that patient-derived PDAC organoids from three patients develop resistance to several clinically relevant chemotherapies when cultured within high-stiffness matrices mechanically matched to in vivo tumours. Using genetic barcoding, we find that while matrix-specific clonal selection occurs, cellular heterogeneity is not the main driver of chemoresistance. Instead, matrix-induced chemoresistance occurs within a stiff environment due to the increased expression of drug efflux transporters mediated by CD44 receptor interactions with hyaluronan. Moreover, PDAC chemoresistance is reversible following transfer from high- to low-stiffness matrices, suggesting that targeting the fibrotic extracellular matrix may sensitize chemoresistant tumours. Overall, our findings support the potential of engineered matrices and patient-derived organoids for elucidating extracellular matrix contributions to human disease pathophysiology.


Subject(s)
Carcinoma, Pancreatic Ductal , Drug Resistance, Neoplasm , Extracellular Matrix , Organoids , Pancreatic Neoplasms , Humans , Organoids/metabolism , Organoids/pathology , Organoids/drug effects , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Extracellular Matrix/metabolism , Hyaluronic Acid/metabolism , Hyaluronic Acid/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
19.
Sci Rep ; 14(1): 16203, 2024 07 13.
Article in English | MEDLINE | ID: mdl-39003322

ABSTRACT

Pancreatic ductal adenocarcinoma represents one of the solid tumors showing the worst prognosis worldwide, with a high recurrence rate after adjuvant or neoadjuvant therapy. Circulating tumor DNA analysis raised as a promising non-invasive tool to characterize tumor genomics and to assess treatment response. In this study, surgical tumor tissue and sequential blood samples were analyzed by next-generation sequencing and were correlated with clinical and pathological characteristics. Thirty resectable/borderline pancreatic ductal adenocarcinoma patients treated at the Hospital Universitario de Navarra were included. Circulating tumoral DNA sequencing identified pathogenic variants in KRAS and TP53, and in other cancer-associated genes. Pathogenic variants at diagnosis were detected in patients with a poorer outcome, and were correlated with response to neoadjuvant therapy in borderline pancreatic ductal adneocarcinoma patients. Higher variant allele frequency at diagnosis was associated with worse prognosis, and thesum of variant allele frequency was greater in samples at progression. Our results build on the potential value of circulating tumor DNA for non-metastatic pancreatic ductal adenocarcinoma patients, by complementing tissue genetic information and as a non-invasive tool for treatment decision. Confirmatory studies are needed to corroborate these findings.


Subject(s)
Carcinoma, Pancreatic Ductal , Circulating Tumor DNA , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/blood , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Male , Female , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/blood , Aged , Middle Aged , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , High-Throughput Nucleotide Sequencing/methods , Gene Frequency , Proto-Oncogene Proteins p21(ras)/genetics , Aged, 80 and over , Tumor Suppressor Protein p53/genetics , Mutation
20.
Sci Adv ; 10(30): eado5103, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058773

ABSTRACT

Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence suggests that pancreatic intraepithelial neoplasia (PanIN), a microscopic precursor lesion that gives rise to pancreatic cancer, is larger and more prevalent than previously believed. Better understanding of the growth-law dynamics of PanINs may improve our ability to understand how a miniscule fraction makes the transition to invasive cancer. Here, using three-dimensional tissue mapping, we analyzed >1000 PanINs and found that lesion size is distributed according to a power law. Our data suggest that in bulk, PanIN size can be predicted by general growth behavior without consideration for the heterogeneity of the pancreatic microenvironment or an individual's age, history, or lifestyle. Our models suggest that intraductal spread and fusing of lesions drive our observed size distribution. This analysis lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, and molecular features to understand tumorigenesis and demonstrates the utility of combining experimental measurement with dynamic modeling in understanding tumorigenesis.


Subject(s)
Pancreatic Neoplasms , Precancerous Conditions , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/epidemiology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Incidence , Genomics/methods , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , Carcinoma in Situ/epidemiology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL