Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.917
Filter
1.
Nat Commun ; 15(1): 5794, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987258

ABSTRACT

Plasmodium falciparum is the causative agent of malaria and remains a pathogen of global importance. Asexual blood stage replication, via a process called schizogony, is an important target for the development of new antimalarials. Here we use ultrastructure-expansion microscopy to probe the organisation of the chromosome-capturing kinetochores in relation to the mitotic spindle, the centriolar plaque, the centromeres and the apical organelles during schizont development. Conditional disruption of the kinetochore components, PfNDC80 and PfNuf2, is associated with aberrant mitotic spindle organisation, disruption of the centromere marker, CENH3 and impaired karyokinesis. Surprisingly, kinetochore disruption also leads to disengagement of the centrosome equivalent from the nuclear envelope. Severing the connection between the nucleus and the apical complex leads to the formation of merozoites lacking nuclei. Here, we show that correct assembly of the kinetochore/spindle complex plays a previously unrecognised role in positioning the nascent apical complex in developing P. falciparum merozoites.


Subject(s)
Centrosome , Kinetochores , Plasmodium falciparum , Protozoan Proteins , Spindle Apparatus , Kinetochores/metabolism , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Centrosome/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Spindle Apparatus/metabolism , Humans , Merozoites/metabolism , Merozoites/physiology , Mitosis , Centromere/metabolism , Nuclear Envelope/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism
2.
Biol Cell ; 116(7): e2400048, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850178

ABSTRACT

BACKGROUND INFORMATION: The control of epithelial cell polarity is key to their function. Its dysregulation is a major cause of tissue transformation. In polarized epithelial cells,the centrosome is off-centred toward the apical pole. This asymmetry determines the main orientation of the microtubule network and intra-cellular traffic. However, the mechanism regulating centrosome positioning at the apical pole of polarized epithelial cells is still poorly undertood. RESULTS: In this study we used transcriptomic data from breast cancer cells to identify molecular changes associated with the different stages of tumour transformation. We correlated these changes with variations in centrosome position or with cell progression along the epithelial-to-mesenchymal transition (EMT), a process that involves centrosome repositioning. We found that low levels of epiplakin, desmoplakin and periplakin correlated with centrosome mispositioning in cells that had progressed through EMT or tissue transformation. We further tested the causal role of these plakins in the regulation of centrosome position by knocking down their expression in a non-tumorigenic breast epithelial cell line (MCF10A). The downregulation of periplakin reduced the length of intercellular junction, which was not affected by the downregulation of epiplakin or desmoplakin. However, down-regulating any of them disrupted centrosome polarisation towards the junction without affecting microtubule stability. CONCLUSIONS: Altogether, these results demonstrated that epiplakin, desmoplakin and periplakin are involved in the maintenance of the peripheral position of the centrosome close to inter-cellular junctions. They also revealed that these plakins are downregulated during EMT and breast cancer progression, which are both associated with centrosome mispositioning. SIGNIFICANCE: These results revealed that the down-regulation of plakins and the consequential centrosome mispositioning are key signatures of disorganised cytoskeleton networks, inter-cellular junction weakening, shape deregulation and the loss of polarity in breast cancer cells. These metrics could further be used as a new readouts for early phases of tumoral development.


Subject(s)
Cell Polarity , Centrosome , Epithelial Cells , Epithelial-Mesenchymal Transition , Plakins , Humans , Centrosome/metabolism , Epithelial Cells/metabolism , Plakins/metabolism , Plakins/genetics , Female , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Cell Line, Tumor , Microtubules/metabolism
3.
Nat Commun ; 15(1): 5381, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918406

ABSTRACT

During human embryonic development, early cleavage-stage embryos are more susceptible to errors. Studies have shown that many problems occur during the first mitosis, such as direct cleavage, chromosome segregation errors, and multinucleation. However, the mechanisms whereby these errors occur during the first mitosis in human embryos remain unknown. To clarify this aspect, in the present study, we image discarded living human two-pronuclear stage zygotes using fluorescent labeling and confocal microscopy without microinjection of DNA or mRNA and investigate the association between spindle shape and nuclear abnormality during the first mitosis. We observe that the first mitotic spindles vary, and low-aspect-ratio-shaped spindles tend to lead to the formation of multiple nuclei at the 2-cell stage. Moreover, we observe defocusing poles in many of the first mitotic spindles, which are strongly associated with multinucleation. Additionally, we show that differences in the positions of the centrosomes cause spindle abnormality in the first mitosis. Furthermore, many multinuclei are modified to form mononuclei after the second mitosis because the occurrence of pole defocusing is firmly reduced. Our study will contribute markedly to research on the occurrence of mitotic errors during the early cleavage of human embryos.


Subject(s)
Cell Nucleus , Mitosis , Spindle Apparatus , Humans , Spindle Apparatus/metabolism , Cell Nucleus/metabolism , Zygote/cytology , Zygote/metabolism , Embryo, Mammalian/cytology , Microscopy, Confocal , Centrosome/metabolism , Embryonic Development/physiology , Female
4.
Cells ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920633

ABSTRACT

The primary cilium, an antenna-like sensory organelle that protrudes from the surface of most eukaryotic cell types, has become a signaling hub of growing interest given that defects in its structure and/or function are associated with human diseases and syndromes, known as ciliopathies. With the continuously expanding role of primary cilia in health and diseases, identifying new players in ciliogenesis will lead to a better understanding of the function of this organelle. It has been shown that the primary cilium shares similarities with the immune synapse, a highly organized structure at the interface between an antigen-presenting or target cell and a lymphocyte. Studies have demonstrated a role for known cilia regulators in immune synapse formation. However, whether immune synapse regulators modulate ciliogenesis remains elusive. Here, we find that programmed death ligand 1 (PD-L1), an immune checkpoint protein and regulator of immune synapse formation, plays a role in the regulation of ciliogenesis. We found that PD-L1 is enriched at the centrosome/basal body and Golgi apparatus of ciliated cells and depleting PD-L1 enhanced ciliogenesis and increased the accumulation of ciliary membrane trafficking proteins Rab8a, BBS5, and sensory receptor protein PC-2. Moreover, PD-L1 formed a complex with BBS5 and PC-2. In addition, we found that depletion of PD-L1 resulted in the ciliary accumulation of Gli3 and the downregulation of Gli1. Our results suggest that PD-L1 is a new player in ciliogenesis, contributing to PC-2-mediated sensory signaling and the Hh signaling cascade.


Subject(s)
B7-H1 Antigen , Cilia , Hedgehog Proteins , Signal Transduction , Cilia/metabolism , B7-H1 Antigen/metabolism , Hedgehog Proteins/metabolism , Humans , Animals , Mice , Centrosome/metabolism , Golgi Apparatus/metabolism
5.
Sci Adv ; 10(25): eadl6153, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896608

ABSTRACT

Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.


Subject(s)
Blood Platelets , Cell Cycle , Centrosome , Kinesins , Megakaryocytes , Centrosome/metabolism , Animals , Megakaryocytes/metabolism , Megakaryocytes/cytology , Mice , Blood Platelets/metabolism , Kinesins/metabolism , Kinesins/genetics , Mice, Knockout , Humans , Mitosis
6.
Biochim Biophys Acta Gen Subj ; 1868(8): 130648, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830559

ABSTRACT

KANK1 was found as a tumor suppressor gene based on frequent deletions in renal cell carcinoma and the inhibitory activity of tumor cell proliferation. Previously, we reported that knockdown of KANK1 induced centrosomal amplification, leading to abnormal cell division, through the hyperactivation of RhoA small GTPase. Here, we investigated the loss of KANK1 function by performing CRISPR/Cas9-based genome editing to knockout the gene. After several rounds of genome editing, however, there were no cell lines with complete loss of KANK1, and the less the wild-type KANK1 dosage, the greater the number of cells with abnormal numbers of centrosomes and rates of cell-doubling and apoptosis, suggesting the involvement of KANK1 haploinsufficiency in centrosome aberrations. The rescue of KANK1-knockdown cells with a KANK1-expressing plasmid restored the rates of cells exhibiting centrosomal amplification to the control level. RNA-sequencing analysis of the cells with reduced dosages of functional KANK1 revealed potential involvement of other cell proliferation-related genes, such as EGR1, MDGA2, and BMP3, which have been reported to show haploinsufficiency when they function. When EGR1 protein expression was reduced by siRNA technology, the number of cells exhibiting centrosomal amplification increased, along with the reduction of KANK1 protein expression, suggesting their functional relationship. Thus, KANK1 haploinsufficiency may contribute to centrosome aberrations through the network of haploinsufficiency-related genes.


Subject(s)
Adaptor Proteins, Signal Transducing , Centrosome , Cytoskeletal Proteins , Haploinsufficiency , Centrosome/metabolism , Humans , Haploinsufficiency/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Proliferation/genetics , CRISPR-Cas Systems , Gene Editing , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
7.
J R Soc Interface ; 21(215): 20230641, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835244

ABSTRACT

Cell polarity is important for controlling cell shape, motility and cell division processes. Vimentin intermediate filaments are important for cell migration and cell polarization in mesenchymal cells and assembly of vimentin and microtubule networks is dynamically coordinated, but the precise details of how vimentin mediates cell polarity remain unclear. Here, we characterize the effects of vimentin on the structure and function of the centrosome and the stability of microtubule filaments in wild-type and vimentin-null mouse embryonic fibroblasts. We find that vimentin mediates the structure of the pericentriolar material, promotes centrosome-mediated microtubule regrowth and increases the level of stable acetylated microtubules in the cell. Loss of vimentin also impairs centrosome repositioning during cell polarization and migration processes that occur during wound closure. Our results suggest that vimentin modulates centrosome structure and function as well as microtubule network stability, which has important implications for how cells establish proper cell polarization and persistent migration.


Subject(s)
Cell Movement , Cell Polarity , Centrosome , Microtubules , Vimentin , Animals , Mice , Acetylation , Centrosome/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Mice, Knockout , Microtubules/metabolism , Vimentin/metabolism
8.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892227

ABSTRACT

The primary cilium is a microtubule-based sensory organelle that plays a critical role in signaling pathways and cell cycle progression. Defects in the structure and/or function of the primary cilium result in developmental diseases collectively known as ciliopathies. However, the constituents and regulatory mechanisms of the primary cilium are not fully understood. In recent years, the activity of the epigenetic modifier SMYD3 has been shown to play a key role in the regulation of cell cycle progression. However, whether SMYD3, a histone/lysine methyltransferase, contributes to the regulation of ciliogenesis remains unknown. Here, we report that SMYD3 drives ciliogenesis via the direct and indirect regulation of cilia-associated components. We show that SMYD3 is a novel component of the distal appendage and is required for centriolar appendage assembly. The loss of SMYD3 decreased the percentage of ciliated cells and resulted in the formation of stumpy cilia. We demonstrated that SMYD3 modulated the recruitment of centrosome proteins (Cep164, Fbf1, Ninein, Ttbk2 and Cp110) and the trafficking of intraflagellar transport proteins (Ift54 and Ift140) important for cilia formation and maintenance, respectively. In addition, we showed that SMYD3 regulated the transcription of cilia genes and bound to the promoter regions of C2cd3, Cep164, Ttbk2, Dync2h1 and Cp110. This study provides insights into the role of SMYD3 in cilia biology and suggests that SMYD3-mediated cilia formation/function may be relevant for cilia-dependent signaling in ciliopathies.


Subject(s)
Centrosome , Cilia , Histone-Lysine N-Methyltransferase , Protein Transport , Cilia/metabolism , Humans , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Centrosome/metabolism , Animals , Flagella/metabolism , Mice , Centrosomal Associated Proteins
9.
J Cell Sci ; 137(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38841887

ABSTRACT

Centrosomal proteins play pivotal roles in orchestrating microtubule dynamics, and their dysregulation leads to disorders, including cancer and ciliopathies. Understanding the multifaceted roles of centrosomal proteins is vital to comprehend their involvement in disease development. Here, we report novel cellular functions of CEP41, a centrosomal and ciliary protein implicated in Joubert syndrome. We show that CEP41 is an essential microtubule-associated protein with microtubule-stabilizing activity. Purified CEP41 binds to preformed microtubules, promotes microtubule nucleation and suppresses microtubule disassembly. When overexpressed in cultured cells, CEP41 localizes to microtubules and promotes microtubule bundling. Conversely, shRNA-mediated knockdown of CEP41 disrupts the interphase microtubule network and delays microtubule reassembly, emphasizing its role in microtubule organization. Further, we demonstrate that the association of CEP41 with microtubules relies on its conserved rhodanese homology domain (RHOD) and the N-terminal region. Interestingly, a disease-causing mutation in the RHOD domain impairs CEP41-microtubule interaction. Moreover, depletion of CEP41 inhibits cell proliferation and disrupts cell cycle progression, suggesting its potential involvement in cell cycle regulation. These insights into the cellular functions of CEP41 hold promise for unraveling the impact of its mutations in ciliopathies.


Subject(s)
Cell Proliferation , Microtubules , Humans , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Centrosome/metabolism , Retina/metabolism , Retina/pathology , Retina/abnormalities , Ciliopathies/metabolism , Ciliopathies/genetics , Ciliopathies/pathology , Cerebellum/metabolism , Cerebellum/abnormalities , Cerebellum/pathology , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Cilia/metabolism , Cilia/pathology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Animals , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Eye Abnormalities/metabolism , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Protein Binding , Cell Cycle/genetics , HEK293 Cells
10.
J Cell Biol ; 223(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38935075

ABSTRACT

Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.


Subject(s)
Actin-Related Protein 2-3 Complex , Actins , Cell Membrane , Centrosome , Drosophila Proteins , Drosophila melanogaster , Animals , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Actins/metabolism , Cell Membrane/metabolism , Centrosome/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Dyneins/metabolism , Exocytosis , Microtubules/metabolism
11.
Proc Natl Acad Sci U S A ; 121(25): e2305260121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857398

ABSTRACT

Human Cep57 is a coiled-coil scaffold at the pericentriolar matrix (PCM), controlling centriole duplication and centrosome maturation for faithful cell division. Genetic truncation mutations of Cep57 are associated with the mosaic-variegated aneuploidy (MVA) syndrome. During interphase, Cep57 forms a complex with Cep63 and Cep152, serving as regulators for centrosome maturation. However, the molecular interplay of Cep57 with these essential scaffolding proteins remains unclear. Here, we demonstrate that Cep57 undergoes liquid-liquid phase separation (LLPS) driven by three critical domains (NTD, CTD, and polybasic LMN). In vitro Cep57 condensates catalyze microtubule nucleation via the LMN motif-mediated tubulin concentration. In cells, the LMN motif is required for centrosomal microtubule aster formation. Moreover, Cep63 restricts Cep57 assembly, expansion, and microtubule polymerization activity. Overexpression of competitive constructs for multivalent interactions, including an MVA mutation, leads to excessive centrosome duplication. In Cep57-depleted cells, self-assembly mutants failed to rescue centriole disengagement and PCM disorganization. Thus, Cep57's multivalent interactions are pivotal for maintaining the accurate structural and functional integrity of human centrosomes.


Subject(s)
Cell Cycle Proteins , Centrioles , Centrosome , Microtubules , Humans , Centrosome/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Microtubules/metabolism , Centrioles/metabolism , Centrioles/genetics , Tubulin/metabolism , Tubulin/genetics , Mutation , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Protein Binding , Nuclear Proteins
12.
Elife ; 132024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836552

ABSTRACT

Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.


Subject(s)
Mice, Knockout , Nuclear Proteins , Osteoclasts , Osteogenesis , Animals , Mice , Centrosome/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Osteoblasts/metabolism , Osteoclasts/metabolism
13.
Adv Exp Med Biol ; 1452: 37-64, 2024.
Article in English | MEDLINE | ID: mdl-38805124

ABSTRACT

The impact of centrosome abnormalities on cancer cell proliferation has been recognized as early as 1914 (Boveri, Zur Frage der Entstehung maligner Tumoren. Jena: G. Fisher, 1914), but vigorous research on molecular levels has only recently started when it became fully apparent that centrosomes can be targeted for new cancer therapies. While best known for their microtubule-organizing capabilities as MTOC (microtubule organizing center) in interphase and mitosis, centrosomes are now further well known for a variety of different functions, some of which are related to microtubule organization and consequential activities such as cell division, migration, maintenance of cell shape, and vesicle transport powered by motor proteins, while other functions include essential roles in cell cycle regulation, metabolic activities, signal transduction, proteolytic activity, and several others that are now heavily being investigated for their role in diseases and disorders (reviewed in Schatten and Sun, Histochem Cell Biol 150:303-325, 2018; Schatten, Adv Anat Embryol Cell Biol 235:43-50, 2022a; Schatten, Adv Anat Embryol Cell Biol 235:17-35, 2022b).Cancer cell centrosomes differ from centrosomes in noncancer cells in displaying specific abnormalities that include phosphorylation abnormalities, overexpression of specific centrosomal proteins, abnormalities in centriole and centrosome duplication, formation of multipolar spindles that play a role in aneuploidy and genomic instability, and several others that are highlighted in the present review on ovarian cancer. Ovarian cancer cell centrosomes, like those in other cancers, display complex abnormalities that in part are based on the heterogeneity of cells in the cancer tissues resulting from different etiologies of individual cancer cells that will be discussed in more detail in this chapter.Because of the critical role of centrosomes in cancer cell proliferation, several lines of research are being pursued to target centrosomes for therapeutic intervention to inhibit abnormal cancer cell proliferation and control tumor progression. Specific centrosome abnormalities observed in ovarian cancer will be addressed in this chapter with a focus on targeting such aberrations for ovarian cancer-specific therapies.


Subject(s)
Centrosome , Ovarian Neoplasms , Humans , Centrosome/metabolism , Centrosome/pathology , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Female , Disease Progression , Animals , Molecular Targeted Therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
14.
Proc Natl Acad Sci U S A ; 121(19): e2401341121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38696466

ABSTRACT

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.


Subject(s)
Herpesvirus 1, Human , Kinesins , Viral Structural Proteins , Kinesins/metabolism , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/metabolism , Humans , Animals , Axonal Transport/physiology , Chlorocebus aethiops , Centrosome/metabolism , Neurons/metabolism , Neurons/virology , Vero Cells , Cell Nucleus/metabolism , Cell Nucleus/virology
15.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38661008

ABSTRACT

DPF3, along with other subunits, is a well-known component of the BAF chromatin remodeling complex, which plays a key role in regulating chromatin remodeling activity and gene expression. Here, we elucidated a non-canonical localization and role for DPF3. We showed that DPF3 dynamically localizes to the centriolar satellites in interphase and to the centrosome, spindle midzone and bridging fiber area, and midbodies during mitosis. Loss of DPF3 causes kinetochore fiber instability, unstable kinetochore-microtubule attachment and defects in chromosome alignment, resulting in altered mitotic progression, cell death and genomic instability. In addition, we also demonstrated that DPF3 localizes to centriolar satellites at the base of primary cilia and is required for ciliogenesis by regulating axoneme extension. Taken together, these findings uncover a moonlighting dual function for DPF3 during mitosis and ciliogenesis.


Subject(s)
Cilia , Mitosis , Transcription Factors , Animals , Humans , Mice , Axoneme/metabolism , Centrioles/metabolism , Centrosome/metabolism , Cilia/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Genomic Instability , HeLa Cells , Kinetochores/metabolism , Spindle Apparatus/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
16.
Trends Cell Biol ; 34(6): 437-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670849

ABSTRACT

Cyclins and cyclin-dependent kinases (CDKs) localize to the centrosome, but their significance in the cell cycle is unclear. Recently, Roberts et al. revealed that centrosomal cyclin B-CDK is required for mitotic entry and phosphorylation of substrates. This suggests that the centrosome acts as a signaling hub controlling the cell cycle.


Subject(s)
Cell Cycle , Centrosome , Cyclin-Dependent Kinases , Centrosome/metabolism , Humans , Animals , Cyclin-Dependent Kinases/metabolism , Mitosis , Signal Transduction , Phosphorylation , Cyclins/metabolism
17.
EMBO J ; 43(11): 2094-2126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38600241

ABSTRACT

A versatile division of apicomplexan parasites and a dearth of conserved regulators have hindered the progress of apicomplexan cell cycle studies. While most apicomplexans divide in a multinuclear fashion, Toxoplasma gondii tachyzoites divide in the traditional binary mode. We previously identified five Toxoplasma CDK-related kinases (Crk). Here, we investigated TgCrk4 and its cyclin partner TgCyc4. We demonstrated that TgCrk4 regulates conventional G2 phase processes, such as repression of chromosome rereplication and centrosome reduplication, and acts upstream of the spindle assembly checkpoint. The spatial TgCyc4 dynamics supported the TgCrk4-TgCyc4 complex role in the coordination of chromosome and centrosome cycles. We also identified a dominant TgCrk4-TgCyc4 complex interactor, TgiRD1 protein, related to DNA replication licensing factor CDT1 but played no role in licensing DNA replication in the G1 phase. Our results showed that TgiRD1 also plays a role in controlling chromosome and centrosome reduplication. Global phosphoproteome analyses identified TgCrk4 substrates, including TgORC4, TgCdc20, TgGCP2, and TgPP2ACA. Importantly, the phylogenetic and structural studies suggest the Crk4-Cyc4 complex is limited to a minor group of the binary dividing apicomplexans.


Subject(s)
Protozoan Proteins , Toxoplasma , Toxoplasma/metabolism , Toxoplasma/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , G2 Phase/genetics , Centrosome/metabolism , Cell Division , Cyclins/metabolism , Cyclins/genetics
18.
EBioMedicine ; 103: 105129, 2024 May.
Article in English | MEDLINE | ID: mdl-38640836

ABSTRACT

BACKGROUND: Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS: A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS: In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION: Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING: Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).


Subject(s)
BRCA1 Protein , Cellular Senescence , Centrosome , DNA Damage , Poly(ADP-ribose) Polymerase Inhibitors , Xenograft Model Antitumor Assays , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Humans , Animals , Centrosome/metabolism , Centrosome/drug effects , DNA Damage/drug effects , Cellular Senescence/drug effects , Mice , BRCA1 Protein/genetics , Cell Line, Tumor , Female , Mutation , DNA Repair/drug effects , Disease Models, Animal , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerases/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/genetics
19.
Cell Rep ; 43(4): 114066, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38578823

ABSTRACT

In human cells and yeast, an intact "hydrophobic patch" substrate docking site is needed for mitotic cyclin centrosomal localization. A hydrophobic patch mutant (HPM) of the fission yeast mitotic cyclin Cdc13 cannot enter mitosis, but whether this is due to defective centrosomal localization or defective cyclin-substrate docking more widely is unknown. Here, we show that artificially restoring Cdc13-HPM centrosomal localization promotes mitotic entry and increases CDK (cyclin-dependent kinase) substrate phosphorylation at the centrosome and in the cytoplasm. We also show that the S-phase B-cyclin hydrophobic patch is required for centrosomal localization but not for S phase. We propose that the hydrophobic patch is essential for mitosis due to its requirement for the local concentration of cyclin-CDK with CDK substrates and regulators at the centrosome. Our findings emphasize the central importance of the centrosome as a hub coordinating cell-cycle control and explain why the cyclin hydrophobic patch is essential for mitosis.


Subject(s)
Cell Cycle , Centrosome , Cyclin B , Cyclin-Dependent Kinases , Mitosis , Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Centrosome/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Cyclin-Dependent Kinases/metabolism , Phosphorylation , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Hydrophobic and Hydrophilic Interactions , Humans
20.
Nature ; 628(8006): 145-153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538785

ABSTRACT

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3-5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits.


Subject(s)
CA1 Region, Hippocampal , DNA Breaks, Double-Stranded , DNA Repair , Inflammation , Memory , Toll-Like Receptor 9 , Animals , Female , Male , Mice , Aging/genetics , Aging/pathology , CA1 Region, Hippocampal/physiology , Centrosome/metabolism , Cognitive Dysfunction/genetics , Conditioning, Classical , Extracellular Matrix/metabolism , Fear , Genomic Instability/genetics , Histones/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Memory/physiology , Mental Disorders/genetics , Neurodegenerative Diseases/genetics , Neuroinflammatory Diseases/genetics , Neurons/metabolism , Neurons/pathology , Nuclear Envelope/pathology , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL