Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.652
Filter
1.
BMC Neurol ; 24(1): 356, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342186

ABSTRACT

BACKGROUND: Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS), a relatively common cause of late-onset progressive ataxia, is a genetic disease characterised by biallelic pentanucleotide AAGGG repeat expansion in intron 2 of the replication factor complex subunit 1 gene. Herein, we describe the first molecularly confirmed CANVAS family with five affected siblings from Turkey. CASE PRESENTATION: The family comprised seven siblings born from healthy non-consanguineous parents. CANVAS phenotype was present in five of them; two were healthy and asymptomatic. Chronic cough was the first symptom reported in all five siblings, followed by the development of sensory symptoms, oscillopsia and imbalance. Clinical head impulse test (HIT) was positive in all cases and video HIT performed on three patients revealed very low vestibulo-ocular reflex gains bilaterally. Magnetic resonance imaging and nerve conduction studies revealed cerebellar atrophy and sensory neuronopathy, respectively. RP-PCR confirmed the homozygous presence of the AAGGG repeat expansion in all five cases. CONCLUSION: Genetic screening for CANVAS should be considered in all patients with late-onset ataxia, sensory disturbances and vestibular involvement, especially in the presence of chronic cough.


Subject(s)
Cerebellar Ataxia , Siblings , Humans , Turkey , Male , Female , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Middle Aged , Pedigree , Aged , Adult
2.
Muscle Nerve ; 70(5): 1046-1052, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39286915

ABSTRACT

INTRODUCTION/AIMS: Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) is caused by RFC1 expansions. Sensory neuronopathy, polyneuropathy, and involvement of motor, autonomic, and cranial nerves have all been described with RFC1 expansions. We aimed to describe the electrodiagnostic features of patients with RFC1 expansions through multimodal electrophysiological investigations. METHODS: Thirty-five patients, with a median age of 70 years, and pathologic biallelic repeat expansions in the RFC1 gene, were tested for motor and sensory nerve conduction, flexor carpi radialis (FCR) and soleus H-reflexes, blink reflex, electrochemical skin conductance, sympathetic skin response (SSR), and heart rate variability with deep breathing (HRV). RESULTS: Only 16 patients (46%) exhibited the full clinical CANVAS spectrum. Distal motor amplitudes were normal in 30 patients and reduced in the legs of five patients. Distal sensory amplitudes were bilaterally reduced in a non-length dependent manner in 30 patients. Conduction velocities were normal. Soleus H-reflexes were abnormal in 19/20 patients of whom seven had preserved Achilles reflexes. FCR H-reflexes were absent or decreased in amplitude in 13/14 patients. Blink reflex was abnormal in 4/19 patients: R1 latencies for two patients and R2 latencies for two others. Fourteen out of 31 patients (45%) had abnormal results in at least one autonomic nervous system test, either for ESC (12/31), SSR (5/14), or HRV (6/19). DISCUSSION: Less than half of the patients with RFC1 expansions exhibited the full clinical CANVAS spectrum, but nearly all exhibited typical sensory neuronopathy and abnormal H-reflexes. Involvement of small nerve fibers and brainstem neurons was less common.


Subject(s)
Neural Conduction , Peripheral Nervous System Diseases , Replication Protein C , Humans , Female , Male , Aged , Middle Aged , Neural Conduction/physiology , Replication Protein C/genetics , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/physiopathology , Peripheral Nervous System Diseases/diagnosis , Aged, 80 and over , Adult , DNA Repeat Expansion/genetics , H-Reflex/genetics , H-Reflex/physiology , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/physiopathology , Blinking/physiology , Cerebellar Ataxia/genetics , Cerebellar Ataxia/physiopathology , Electrodiagnosis , Heart Rate/genetics , Heart Rate/physiology
3.
BMC Neurol ; 24(1): 354, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304850

ABSTRACT

BACKGROUND: Hereditary Spastic Paraplegias (HSPs) and Hereditary Cerebellar Ataxias (HCAs) are progressive neurodegenerative disorders encompassing a spectrum of neurogenetic conditions with significant overlaps of clinical features. Spastic ataxias are a group of conditions that have features of both cerebellar ataxia and spasticity, and these conditions are frequently clinically challenging to distinguish. Accurate genetic diagnosis is crucial but challenging, particularly in resource-limited settings. This study aims to investigate the genetic basis of HSPs and HCAs in Pakistani families. METHODS: Families from Khyber Pakhtunkhwa with at least two members showing HSP or HCA phenotypes, and who had not previously been analyzed genetically, were included. Families were referred for genetic analysis by local neurologists based on the proband's clinical features and signs of a potential genetic neurodegenerative disorder. Whole Exome Sequencing (WES) and Sanger sequencing were then used to identify and validate genetic variants, and to analyze variant segregation within families to determine inheritance patterns. The mean age of onset and standard deviation were calculated to assess variability among affected individuals, and the success rate was compared with literature reports using differences in proportions and Cohen's h. RESULTS: Pathogenic variants associated with these conditions were identified in five of eight families, segregating according to autosomal recessive inheritance. These variants included previously reported SACS c.2182 C > T, p.(Arg728*), FA2H c.159_176del, p.(Arg53_Ile58del) and SPG11 c.2146 C > T, p.(Gln716*) variants, and two previously unreported variants in SACS c.2229del, p.(Phe743Leufs*8) and ZFYVE26 c.1926_1941del, p.(Tyr643Metfs*2). Additionally, FA2H and SPG11 variants were found to have recurrent occurrences, suggesting a potential founder effect within the Pakistani population. Onset age among affected individuals ranged from 1 to 14 years (M = 6.23, SD = 3.96). The diagnostic success rate was 62.5%, with moderate effect sizes compared to previous studies. CONCLUSIONS: The findings of this study expand the genotypic and phenotypic spectrum of HSPs and HCAs in Pakistan and emphasize the importance of utilizing exome/genome sequencing for accurate diagnosis or support accurate differential diagnosis. This approach can improve genetic counseling and clinical management, addressing the challenges of diagnosing neurodegenerative disorders in resource-limited settings.


Subject(s)
Cerebellar Ataxia , Pedigree , Spastic Paraplegia, Hereditary , Humans , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/diagnosis , Pakistan , Male , Female , Adult , Child , Adolescent , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Young Adult , Middle Aged , Child, Preschool , Exome Sequencing/methods , Mutation , Phenotype
4.
Nat Commun ; 15(1): 7665, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227614

ABSTRACT

Repeat expansions in FGF14 cause autosomal dominant late-onset cerebellar ataxia (SCA27B) with estimated pathogenic thresholds of 250 (incomplete penetrance) and 300 AAG repeats (full penetrance), but the sequence of pathogenic and non-pathogenic expansions remains unexplored. Here, we demonstrate that STRling and ExpansionHunter accurately detect FGF14 expansions from short-read genome data using outlier approaches. By combining long-range PCR and nanopore sequencing in 169 patients with cerebellar ataxia and 802 controls, we compare FGF14 expansion alleles, including interruptions and flanking regions. Uninterrupted AAG expansions are significantly enriched in patients with ataxia from a lower threshold (180-200 repeats) than previously reported based on expansion size alone. Conversely, AAGGAG hexameric expansions are equally frequent in patients and controls. Distinct 5' flanking regions, interruptions and pre-repeat sequences correlate with repeat size. Furthermore, pure AAG (pathogenic) and AAGGAG (non-pathogenic) repeats form different secondary structures. Regardless of expansion size, SCA27B is a recognizable clinical entity characterized by frequent episodic ataxia and downbeat nystagmus, similar to the presentation observed in a family with a previously unreported nonsense variant (SCA27A). Overall, this study suggests that SCA27B is a major overlooked cause of adult-onset ataxia, accounting for 23-31% of unsolved patients. We strongly recommend re-evaluating pathogenic thresholds and integrating expansion sequencing into the molecular diagnostic process.


Subject(s)
Fibroblast Growth Factors , Humans , Male , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Middle Aged , Cerebellar Ataxia/genetics , Aged , Alleles , Adult , DNA Repeat Expansion/genetics , Trinucleotide Repeat Expansion/genetics
5.
Sci Adv ; 10(36): eadn2321, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39231235

ABSTRACT

Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS) is a recessively inherited neurodegenerative disorder caused by intronic biallelic, nonreference CCCTT/AAGGG repeat expansions within RFC1. To investigate how these repeats cause disease, we generated patient induced pluripotent stem cell-derived neurons (iNeurons). CCCTT/AAGGG repeat expansions do not alter neuronal RFC1 splicing, expression, or DNA repair pathway function. In reporter assays, AAGGG repeats are translated into pentapeptide repeat proteins. However, these proteins and repeat RNA foci were not detected in iNeurons, and overexpression of these repeats failed to induce neuronal toxicity. CANVAS iNeurons exhibit defects in neuronal development and diminished synaptic connectivity that is rescued by CRISPR deletion of a single expanded AAGGG allele. These deficits were neither replicated by RFC1 knockdown in control iNeurons nor rescued by RFC1 reprovision in CANVAS iNeurons. These findings support a repeat-dependent but RFC1 protein-independent cause of neuronal dysfunction in CANVAS, with implications for therapeutic development in this currently untreatable condition.


Subject(s)
Cerebellar Ataxia , DNA Repeat Expansion , Induced Pluripotent Stem Cells , Neurons , Replication Protein C , Synapses , Humans , Replication Protein C/genetics , Replication Protein C/metabolism , Neurons/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , DNA Repeat Expansion/genetics , Cerebellar Ataxia/genetics , Cerebellar Ataxia/pathology , Cerebellar Ataxia/metabolism , Synapses/metabolism , Synapses/genetics , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/metabolism , Vestibular Diseases/genetics , Alleles
6.
Cell Death Dis ; 15(8): 594, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147737

ABSTRACT

Toll-like receptor (TLR) 4 contributes to be the induction of neuroinflammation by recognizing pathology-associated ligands and activating microglia. In addition, numerous physiological signaling factors act as agonists or antagonists of TLR4 expressed by non-immune cells. Recently, TLR4 was found to be highly expressed in cerebellar Purkinje neurons (PNs) and involved in the maintenance of motor coordination through non-immune pathways, but the precise mechanisms remain unclear. Here we report that mice with PN specific TLR4 deletion (TLR4PKO mice) exhibited motor impairments consistent with cerebellar ataxia, reduced PN dendritic arborization and spine density, fewer parallel fiber (PF) - PN and climbing fiber (CF) - PN synapses, reduced BK channel expression, and impaired BK-mediated after-hyperpolarization, collectively leading to abnormal PN firing. Moreover, the impaired PN firing in TLR4PKO mice could be rescued with BK channel opener. The PNs of TLR4PKO mice also exhibited abnormal mitochondrial structure, disrupted mitochondrial endoplasmic reticulum tethering, and reduced cytosolic calcium, changes that may underly abnormal PN firing and ultimately drive ataxia. These results identify a previously unknown role for TLR4 in regulating PN firing and maintaining cerebellar function.


Subject(s)
Calcium , Cerebellar Ataxia , Large-Conductance Calcium-Activated Potassium Channels , Purkinje Cells , Toll-Like Receptor 4 , Animals , Mice , Calcium/metabolism , Cerebellar Ataxia/metabolism , Cerebellar Ataxia/pathology , Cerebellar Ataxia/genetics , Cytosol/metabolism , Homeostasis , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Large-Conductance Calcium-Activated Potassium Channels/genetics , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Purkinje Cells/metabolism , Purkinje Cells/pathology , Toll-Like Receptor 4/metabolism
7.
Arq Neuropsiquiatr ; 82(8): 1-8, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964341

ABSTRACT

BACKGROUND: Cerebellar ataxias comprise sporadic and genetic etiologies. Ataxia may also be a presenting feature in hereditary spastic paraplegias (HSPs). OBJECTIVE: To report a descriptive analysis of the frequency of different forms of cerebellar ataxia evaluated over 17 years in the Ataxia Unit of Universidade Federal de São Paulo, Brazil. METHODS: Charts of patients who were being followed from January 2007 to December 2023 were reviewed. We used descriptive statistics to present our results as frequencies and percentages of the overall analysis. Diagnosed patients were classified according to the following 9 groups: sporadic ataxia, spinocerebellar ataxias (SCAs), other autosomal dominant cerebellar ataxias, autosomal recessive cerebellar ataxias (ARCAs), mitochondrial ataxias, congenital ataxias, X-linked ataxias, HSPs, and others. RESULTS: There were 1,332 patients with ataxias or spastic paraplegias. Overall, 744 (55.85%) of all cases were successfully diagnosed: 101 sporadic ataxia, 326 SCAs, 20 of other autosomal dominant cerebellar ataxias, 186 ARCAs, 6 X-linked ataxias, 2 mitochondrial ataxias, 4 congenital ataxias, and 51 HSPs. CONCLUSION: This study describes the frequency of cerebellar ataxias in a large group of patients followed for the past 17 years, of whom 55% obtained a definitive clinical or molecular diagnosis. Future demographic surveys in Brazil or Latin American remain necessary.


ANTECEDENTES: Ataxias cerebelares compreendem as etiologias esporádicas e genéticas. Ataxia também pode ser uma característica das paraplegias espásticas hereditárias (HSPs). OBJETIVO: Relatar uma análise descritiva da frequência das diferentes formas de ataxias cerebelares avaliadas ao longo de 17 anos no Setor da Ataxias da Universidade Federal de São Paulo, Brasil. MéTODOS: Prontuários de pacientes acompanhados de janeiro de 2007 a dezembro de 2023 foram revisados. Usamos análise descritiva para apresentar nossos resultados como frequências e percentuais. Os pacientes foram classificados de acordo com os 9 grupos seguintes: ataxias esporádicas, ataxias espinocerebelares (SCA), outras ataxias cerebelares autossômicas dominantes, ataxias cerebelares autossômicas recessivas (ARCA), ataxias mitocondriais, ataxias congênitas, ataxias ligadas ao X, PEH e outros. RESULTADOS: Foram avaliados 1.332 pacientes. Desse total, 744 tiveram um diagnóstico definitivo: 101 ataxias esporádicas, 326 SCA, 20 outras ataxias cerebelares autossômicas dominantes, 186 (ARCA), 6 ataxias ligadas ao X, 2 ataxias mitocondriais, 4 ataxias congênitas e 51 HSP. CONCLUSãO: Esse estudo descreve a frequência e a etiologia das ataxias em um grande grupo de pacientes acompanhados nos últimos 17 anos, dos quais 55% obtiveram diagnóstico clínico ou molecular definitivos. Estudos demográficos futuros do Brasil ou da América Latina continuam sendo necessários.


Subject(s)
Cerebellar Ataxia , Humans , Brazil/epidemiology , Female , Male , Adult , Cerebellar Ataxia/epidemiology , Cerebellar Ataxia/genetics , Middle Aged , Adolescent , Child , Young Adult , Retrospective Studies , Child, Preschool , Aged , Spinocerebellar Ataxias/epidemiology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/congenital
8.
Clin Genet ; 106(5): 632-637, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38984515

ABSTRACT

Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is caused by biallelic pathogenic expansions, or compound heterozygosity with other pathogenic variants in the RFC1 gene. CANVAS is estimated to be underdiagnosed, both because of the lack of formal diagnostic criteria and molecular challenges that translate to lesser access and high cost of routine testing. Our aim was to address the need for making CANVAS genetic testing routine, by designing a streamlined two-step PCR consisting of a short-allele screening PCR and a confirmatory PCR with fragment capillary electrophoresis detection. Exome sequencing of RFC1 was additionally foreseen to resolve potential compound heterozygosity cases. Specificity of our approach was evaluated using ataxia patients with known non-CANVAS diagnoses, and optimized using Southern blot confirmed CANVAS patients. We evaluated our approach by testing patients consecutively referred for clinically suspected CANVAS using first the two-step PCR, followed by exome sequencing. Our approach was able to accurately identify negative and confirm positive cases in prospectively collected suspected CANVAS patients presenting with at least three typical clinical signs. The proposed testing approach provides an alternative method able to clearly distinguish between CANVAS negative and positive cases and can be easily incorporated into the genetic diagnostic laboratory workflow.


Subject(s)
Cerebellar Ataxia , Exome Sequencing , Genetic Testing , Polymerase Chain Reaction , Replication Protein C , Humans , Exome Sequencing/methods , Polymerase Chain Reaction/methods , Replication Protein C/genetics , Genetic Testing/methods , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Female , Male , Alleles , Vestibular Diseases/genetics , Vestibular Diseases/diagnosis
10.
Expert Rev Neurother ; 24(9): 897-912, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38980086

ABSTRACT

INTRODUCTION: The last decade has witnessed major breakthroughs in identifying novel genetic causes of hereditary ataxias, deepening our understanding of disease mechanisms, and developing therapies for these debilitating disorders. AREAS COVERED: This article reviews the currently approved and most promising candidate pharmacotherapies in relation to the known disease mechanisms of the most prevalent autosomal recessive ataxias. Omaveloxolone is an Nrf2 activator that increases antioxidant defense and was recently approved for treatment of Friedreich ataxia. Its therapeutic effect is modest, and further research is needed to find synergistic treatments that would halt or reverse disease progression. Promising approaches include upregulation of frataxin expression by epigenetic mechanisms, direct protein replacement, and gene replacement therapy. For ataxia-telangiectasia, promising approaches include splice-switching antisense oligonucleotides and small molecules targeting oxidative stress, inflammation, and mitochondrial function. Rare recessive ataxias for which disease-modifying therapies exist are also reviewed, emphasizing recently approved therapies. Evidence supporting the use of riluzole and acetyl-leucine in recessive ataxias is discussed. EXPERT OPINION: Advances in genetic therapies for other neurogenetic conditions have paved the way to implement feasible approaches with potential dramatic benefits. Particularly, as we develop effective treatments for these conditions, we may need to combine therapies, consider newborn testing for pre-symptomatic treatment, and optimize non-pharmacological approaches.


Subject(s)
Cerebellar Ataxia , Humans , Cerebellar Ataxia/drug therapy , Cerebellar Ataxia/genetics , Genetic Therapy/methods , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , Friedreich Ataxia/therapy
11.
Medicina (B Aires) ; 84(3): 555-559, 2024.
Article in Spanish | MEDLINE | ID: mdl-38907973

ABSTRACT

Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is a late onset neurodegenerative disorder. Its genetic basis has recently been identified in the gene encoding a subunit of the Replication Factor C (RFC1). We present the case of a 62-year-old woman who experienced a history of a biphasic presentation of imbalance and gait disorders, with rapid onset of symptoms followed by slow and progressive neurological deterioration. The diagnostic process was challenging, and numerous tests were conducted to rule out acquired and genetic causes of ataxia, leading to a diagnosis of late-onset idiopathic cerebellar ataxia. Subsequently, vestibular function tests identified severe bilateral vestibulopathy. This led to considering CANVAS among the diagnoses, which was ultimately confirmed through genetic testing (biallelic expansion of the pentanucleotide AAGGG in the RFC1 gene). This case highlights the importance of this new described genetic disease and its subacute presentation variant, emphasizing the relevance of objective vestibular function tests in idiopathic ataxias to achieve proper diagnosis and eventual genetic counseling for offspring.


El síndrome de ataxia cerebelosa, neuropatía y arreflexia vestibular (CANVAS) es un trastorno neurodegenerativo progresivo que se manifiesta en etapas tardías de la vida. Su base genética ha sido recientemente identificada en el gen que codifica la subunidad 1 del factor C de replicación (RFC1). Presentamos el caso de una mujer de 62 años con una historial de desequilibrio y deterioro de la marcha de presentación bifásica, con un inicio rápido de los síntomas seguido de un deterioro neurológico lento y progresivo. El proceso diagnóstico fue complejo y se realizaron numerosas pruebas para descartar causas adquiridas y genéticas de la ataxia, arribando al diagnóstico de ataxia cerebelosa de inicio tardío idiopática. Ulteriormente, las pruebas de función vestibular identificaron una grave vestibulopatía bilateral. Esto llevó a considerar el CANVAS entre los diagnósticos, que finalmente fue confirmado mediante pruebas genéticas (expansión bialélica del penta-nucleótido AAGGG en el gen RFC1). Este caso subraya la importancia de esta nueva enfermedad genética y su variante de presentación subaguda y enfatiza la relevancia de las pruebas objetivas de función vestibular en las ataxias consideradas idiopáticas para lograr un diagnóstico adecuado y un eventual asesoramiento genético a la descendencia.


Subject(s)
Cerebellar Ataxia , Humans , Female , Middle Aged , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Bilateral Vestibulopathy/diagnosis , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/complications , Syndrome , Replication Protein C/genetics , Vestibular Function Tests
12.
Sensors (Basel) ; 24(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38894404

ABSTRACT

The interpretability of gait analysis studies in people with rare diseases, such as those with primary hereditary cerebellar ataxia (pwCA), is frequently limited by the small sample sizes and unbalanced datasets. The purpose of this study was to assess the effectiveness of data balancing and generative artificial intelligence (AI) algorithms in generating synthetic data reflecting the actual gait abnormalities of pwCA. Gait data of 30 pwCA (age: 51.6 ± 12.2 years; 13 females, 17 males) and 100 healthy subjects (age: 57.1 ± 10.4; 60 females, 40 males) were collected at the lumbar level with an inertial measurement unit. Subsampling, oversampling, synthetic minority oversampling, generative adversarial networks, and conditional tabular generative adversarial networks (ctGAN) were applied to generate datasets to be input to a random forest classifier. Consistency and explainability metrics were also calculated to assess the coherence of the generated dataset with known gait abnormalities of pwCA. ctGAN significantly improved the classification performance compared with the original dataset and traditional data augmentation methods. ctGAN are effective methods for balancing tabular datasets from populations with rare diseases, owing to their ability to improve diagnostic models with consistent explainability.


Subject(s)
Algorithms , Artificial Intelligence , Cerebellar Ataxia , Gait , Rare Diseases , Humans , Female , Male , Middle Aged , Gait/physiology , Cerebellar Ataxia/genetics , Cerebellar Ataxia/physiopathology , Cerebellar Ataxia/diagnosis , Adult , Gait Analysis/methods , Aged
13.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891946

ABSTRACT

Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photoreceptors and retinal pigment epithelial atrophy, leading to severe visual impairment or blindness. RP can be classified as nonsyndromic or syndromic with complex clinical phenotypes. Three unrelated Polish probands affected with retinitis pigmentosa coexisting with cerebellar ataxia were recruited for this study. Clinical heterogeneity and delayed appearance of typical disease symptoms significantly prolonged the patients' diagnostic process. Therefore, many clinical and genetic tests have been performed in the past. Here, we provide detailed clinical and genetic analysis results of the patients. Whole-exome sequencing (WES) and targeted NGS analysis allow the identification of four novel and two previously reported variants in the following genes: ABHD12, FLVCR1, and PNPLA6. The use of next-generation sequencing (NGS) methods finally allowed for confirmation of the clinical diagnosis. Ultra-rare diseases such as PHARC, PCARP, and Oliver-McFarlane syndromes were diagnosed in patients, respectively. Our findings confirmed the importance of the application of next-generation sequencing methods, especially in ultra-rare genetic disorders with overlapping features.


Subject(s)
Exome Sequencing , Retinitis Pigmentosa , Humans , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Male , Female , Pedigree , High-Throughput Nucleotide Sequencing , Adult , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Membrane Transport Proteins/genetics , Monoacylglycerol Lipases/genetics , Mutation , Ataxia/genetics , Ataxia/diagnosis , Phenotype , Acyltransferases , Cataract , Phospholipases , Polyneuropathies
14.
Int J Mol Sci ; 25(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38928084

ABSTRACT

Mutations in the SACS gene are associated with autosomal recessive spastic ataxia of Charlevoix-Saguenay disease (ARSACS) or complex clinical phenotypes of Charcot-Marie-Tooth disease (CMT). This study aimed to identify SACS mutations in a Korean CMT cohort with cerebellar ataxia and spasticity by whole exome sequencing (WES). As a result, eight pathogenic SACS mutations in four families were identified as the underlying causes of these complex phenotypes. The prevalence of CMT families with SACS mutations was determined to be 0.3%. All the patients showed sensory, motor, and gait disturbances with increased deep tendon reflexes. Lower limb magnetic resonance imaging (MRI) was performed in four patients and all had fatty replacements. Of note, they all had similar fatty infiltrations between the proximal and distal lower limb muscles, different from the neuromuscular imaging feature in most CMT patients without SACS mutations who had distal dominant fatty involvement. Therefore, these findings were considered a characteristic feature in CMT patients with SACS mutations. Although further studies with more cases are needed, our results highlight lower extremity MRI findings in CMT patients with SACS mutations and broaden the clinical spectrum. We suggest screening for SACS in recessive CMT patients with complex phenotypes of ataxia and spasticity.


Subject(s)
Charcot-Marie-Tooth Disease , Heterozygote , Muscle Spasticity , Mutation , Humans , Male , Charcot-Marie-Tooth Disease/genetics , Female , Adult , Republic of Korea/epidemiology , Muscle Spasticity/genetics , Muscle Spasticity/diagnostic imaging , Cohort Studies , Middle Aged , Magnetic Resonance Imaging , Heat-Shock Proteins/genetics , Pedigree , Exome Sequencing , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnostic imaging , Phenotype , Adolescent , Young Adult
15.
Mol Genet Genomic Med ; 12(6): e2466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860480

ABSTRACT

BACKGROUND: Spinocerebellar ataxia 29 (SCA29) is a rare genetic disorder characterized by early-onset ataxia, gross motor delay, and infantile hypotonia, and is primarily associated with variants in the ITPR1 gene. Cases of SCA29 in Asia are rarely reported, limiting our understanding of this disease. METHODS: A female Korean infant, demonstrating clinical features of SCA29, underwent evaluation and rehabilitation at our outpatient clinic from the age of 3 months to the current age of 4 years. Trio-based genome sequencing tests were performed on the patient and her biological parents. RESULTS: The infant initially presented with macrocephaly, hypotonia, and nystagmus, with nonspecific findings on initial neuroimaging. Subsequent follow-up revealed gross motor delay, early onset ataxia, strabismus, and cognitive impairment. Further neuroimaging revealed atrophy of the cerebellum and vermis, and genetic analysis revealed a de novo pathogenic heterozygous c.800C>T, p.Thr267Met missense mutation in the ITPR1 gene (NM_001378452.1). CONCLUSION: This is the first reported case of SCA29 in a Korean patient, expanding the genetic and phenotypic spectrum of ITPR1-related ataxias. Our case highlights the importance of recognizing early-onset ataxic symptoms, central hypotonia, and gross motor delays with poor ocular fixation, cognitive deficits, and isolated cerebellar atrophy as crucial clinical indicators of SCA29.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors , Mutation, Missense , Spinocerebellar Degenerations , Humans , Female , Inositol 1,4,5-Trisphosphate Receptors/genetics , Spinocerebellar Degenerations/genetics , Spinocerebellar Degenerations/pathology , Child, Preschool , Cerebellar Ataxia/genetics , Cerebellar Ataxia/pathology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology , Infant
16.
J Neurol ; 271(8): 5478-5488, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886208

ABSTRACT

BACKGROUND: Autosomal-dominant spinocerebellar ataxia (ADCA) due to intronic GAA repeat expansion in FGF14 (SCA27B) is a recent, relatively common form of late-onset ataxia. OBJECTIVE: Here, we aimed to: (1) investigate the relative frequency of SCA27B in different clinically defined disease subgroups with late-onset ataxia collected among 16 tertiary Italian centers; (2) characterize phenotype and diagnostic findings of patients with SCA27B; (3) compare the Italian cohort with other cohorts reported in recent studies. METHODS: We screened 396 clinically diagnosed late-onset cerebellar ataxias of unknown cause, subdivided in sporadic cerebellar ataxia, ADCA, and multisystem atrophy cerebellar type. We identified 72 new genetically defined subjects with SCA27B. Then, we analyzed the clinical, neurophysiological, and imaging features of 64 symptomatic cases. RESULTS: In our cohort, the prevalence of SCA27B was 13.4% (53/396) with as high as 38.5% (22/57) in ADCA. The median age of onset of SCA27B patients was 62 years. All symptomatic individuals showed evidence of impaired balance and gait; cerebellar ocular motor signs were also frequent. Episodic manifestations at onset occurred in 31% of patients. Extrapyramidal features (17%) and cognitive impairment (25%) were also reported. Brain magnetic resonance imaging showed cerebellar atrophy in most cases (78%). Pseudo-longitudinal assessments indicated slow progression of ataxia and minimal functional impairment. CONCLUSION: Patients with SCA27B in Italy present as an adult-onset, slowly progressive cerebellar ataxia with predominant axial involvement and frequent cerebellar ocular motor signs. The high consistency of clinical features in SCA27B cohorts in multiple populations paves the way toward large-scale, multicenter studies.


Subject(s)
Disease Progression , Humans , Middle Aged , Italy/epidemiology , Male , Female , Aged , Cohort Studies , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/epidemiology , Adult , Cerebellar Ataxia/genetics , Cerebellar Ataxia/epidemiology , Cerebellar Ataxia/diagnostic imaging , Cerebellar Ataxia/physiopathology , Age of Onset , Fibroblast Growth Factors , Spinocerebellar Degenerations
18.
Auris Nasus Larynx ; 51(4): 724-727, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821025

ABSTRACT

CAPOS (cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss) syndrome is a rare genetic disorder caused by the heterozygous mutation, c.2452G > A, in the ATP1A3 gene. CAPOS syndrome involves a characteristic episode in which neuropathy develops after a fever in childhood, and here, we describe the case of a patient with CAPOS syndrome. The patient had repeated episodes of a fever around 74 months of age. Although he could speak at 23 months of age, he presented with hearing difficulty after the fever. Pure-tone audiometry revealed moderate-to-severe bilateral sensorineural hearing loss, and auditory brainstem response (ABR) showed poor response in the both ears. Auditory stead-state response (ASSR) produced relatively consistent results compared to pure-tone audiometry. A mutation in the ATP1A3 gene was detected through genetic testing. In CAPOS syndrome, a genetic mutation leads to desynchronization during neural firing. We believe that this desynchronization in neural firing is responsible for the lack of response in the ABR and the presence of a response in the ASSR. In this patient, we attribute the response detection in ASSR to its greater tolerance for errors in the timing of neural firing compared to ABR.


Subject(s)
Audiometry, Pure-Tone , Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Sensorineural , Sodium-Potassium-Exchanging ATPase , Humans , Male , Hearing Loss, Sensorineural/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Fever , Optic Atrophy/genetics , Reflex, Abnormal , Cerebellar Ataxia/genetics , Cerebellar Ataxia/physiopathology , Foot Deformities, Congenital/genetics , Mutation
19.
Acta Neurol Belg ; 124(4): 1233-1236, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703293

ABSTRACT

L-2-Hydroxyglutaric aciduria (L2HGA) is a rare, autosomal recessive neurometabolic disease, which presents with elevated L-2-hydroxyglutarate acid. Generally, L2HGA appear as slowly progressing central nervous system function deterioration during infancy, and a rapid progression in adulthood is uncommon for the syndrome's classic phenotype.


Subject(s)
Alcohol Oxidoreductases , Brain Diseases, Metabolic, Inborn , Cerebellar Ataxia , Adult , Humans , Alcohol Oxidoreductases/genetics , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/diagnosis , Cerebellar Ataxia/genetics , East Asian People , Frameshift Mutation/genetics
20.
Arch Bronconeumol ; 60(8): 468-474, 2024 Aug.
Article in English, Spanish | MEDLINE | ID: mdl-38755058

ABSTRACT

INTRODUCTION: A common complaint in patients is chronic cough (CC), which may be refractory (RCC) or unexplained (UCC). Recent studies point, as a possible cause of CC, to the hereditary cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS), with an estimated carrier prevalence of 1 in 20000. AIM: In patients with CC, determine the prevalence of the biallelic (AAGGG)exp mutation in replication factor C subunit 1 (RFC1) responsible for CANVAS, test the usefulness of the Rydel-Seiffer fork test, and evaluate patient quality of life (QoL). METHODS: Clinical and functional data were collected for the 33 included patients undergoing CC studies in our specialized unit. Performed were an etiological study of CC following European Respiratory Society recommendations, a genetic study of RFC1 mutations, and Rydel-Seiffer fork testing to detect possible peripheral vibratory sensitivity impairment. Administered to evaluate QoL were 4 questionnaires. RESULTS: Prevalence of biallelic (AAGGG)exp in RFC1 was 6.1% (n=2) overall, increasing to 7.1% in the RCC subgroup, and to 33.3% in the Rydel-Seiffer fork altered results subgroup. Prevalence of monoallelic (AAGGG)exp in RFC1 was 18.2% (n=6) overall, rising to 50.0% (n=2) in the UCC subgroup. CONCLUSION: Genetic screening for (AAGGG)exp in RFC1, and also use of the Rydel-Seiffer fork test, should be considered in specialized CC consultations for patients with RCC and UCC. Detecting possible CANVAS symptoms in CC studies would identify candidates for early genetic screening, of interest in reducing the disease burden for patients and health systems alike.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Chronic Cough , Mutation , Quality of Life , Replication Protein C , Adult , Aged , Female , Humans , Male , Middle Aged , Bilateral Vestibulopathy/genetics , Cerebellar Ataxia/genetics , Chronic Cough/genetics , Replication Protein C/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL