Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
1.
Fluids Barriers CNS ; 21(1): 82, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39407250

ABSTRACT

BACKGROUND: Infusion testing is an established method for assessing CSF resistance in patients with idiopathic normal pressure hydrocephalus (iNPH). To what extent the increased resistance is related to the glymphatic system is an open question. Here we introduce a computational model that includes the glymphatic system and enables us to determine the importance of (1) brain geometry, (2) intracranial pressure, and (3) physiological parameters on the outcome of and response to an infusion test. METHODS: We implemented a seven-compartment multiple network porous medium model with subject specific geometries from MR images using the finite element library FEniCS. The model consists of the arterial, capillary and venous blood vessels, their corresponding perivascular spaces, and the extracellular space (ECS). Both subject specific brain geometries and subject specific infusion tests were used in the modeling of both healthy adults and iNPH patients. Furthermore, we performed a systematic study of the effect of variations in model parameters. RESULTS: Both the iNPH group and the control group reached a similar steady state solution when subject specific geometries under identical boundary conditions was used in simulation. The difference in terms of average fluid pressure and velocity between the iNPH and control groups, was found to be less than 6% during all stages of infusion in all compartments. With subject specific boundary conditions, the largest computed difference was a 75% greater fluid speed in the arterial perivascular space (PVS) in the iNPH group compared to the control group. Changes to material parameters changed fluid speeds by several orders of magnitude in some scenarios. A considerable amount of the CSF pass through the glymphatic pathway in our models during infusion, i.e., 28% and 38% in the healthy and iNPH patients, respectively. CONCLUSIONS: Using computational models, we have found the relative importance of subject specific geometries to be less important than individual differences in resistance as measured with infusion tests and model parameters such as permeability, in determining the computed pressure and flow during infusion. Model parameters are uncertain, but certain variations have large impact on the simulation results. The computations resulted in a considerable amount of the infused volume passing through the brain either through the perivascular spaces or the extracellular space.


Subject(s)
Brain , Glymphatic System , Hydrocephalus, Normal Pressure , Intracranial Pressure , Humans , Glymphatic System/diagnostic imaging , Glymphatic System/physiology , Hydrocephalus, Normal Pressure/diagnostic imaging , Hydrocephalus, Normal Pressure/physiopathology , Hydrocephalus, Normal Pressure/cerebrospinal fluid , Intracranial Pressure/physiology , Brain/blood supply , Brain/diagnostic imaging , Cerebrospinal Fluid/physiology , Cerebrospinal Fluid/diagnostic imaging , Computer Simulation , Models, Biological , Aged , Magnetic Resonance Imaging , Male , Adult , Female
2.
Fluids Barriers CNS ; 21(1): 71, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261910

ABSTRACT

BACKGROUND: Cardiac pulsation propels blood through the cerebrovascular network to maintain cerebral homeostasis. The cerebrovascular network is uniquely surrounded by paravascular cerebrospinal fluid (pCSF), which plays a crucial role in waste removal, and its flow is suspected to be driven by arterial pulsations. Despite its importance, the relationship between vascular and paravascular fluid dynamics throughout the cardiac cycle remains poorly understood in humans. METHODS: In this study, we developed a non-invasive neuroimaging approach to investigate the coupling between pulsatile vascular and pCSF dynamics within the subarachnoid space of the human brain. Resting-state functional MRI (fMRI) and dynamic diffusion-weighted imaging (dynDWI) were retrospectively cardiac-aligned to represent cerebral hemodynamics and pCSF motion, respectively. We measured the time between peaks (∆TTP) in d d ϕ f M R I and dynDWI waveforms and measured their coupling by calculating the waveforms correlation after peak alignment (correlation at aligned peaks). We compared the ∆TTP and correlation at aligned peaks between younger [mean age: 27.9 (3.3) years, n = 9] and older adults [mean age: 70.5 (6.6) years, n = 20], and assessed their reproducibility within subjects and across different imaging protocols. RESULTS: Hemodynamic changes consistently precede pCSF motion. ∆TTP was significantly shorter in younger adults compared to older adults (-0.015 vs. -0.069, p < 0.05). The correlation at aligned peaks were high and did not differ between younger and older adults (0.833 vs. 0.776, p = 0.153). The ∆TTP and correlation at aligned peaks were robust across fMRI protocols (∆TTP: -0.15 vs. -0.053, p = 0.239; correlation at aligned peaks: 0.813 vs. 0.812, p = 0.985) and demonstrated good to excellent within-subject reproducibility (∆TTP: intraclass correlation coefficient = 0.36; correlation at aligned peaks: intraclass correlation coefficient = 0.89). CONCLUSION: This study proposes a non-invasive technique to evaluate vascular and paravascular fluid dynamics. Our findings reveal a consistent and robust cardiac pulsation-driven coupling between cerebral hemodynamics and pCSF dynamics in both younger and older adults.


Subject(s)
Brain , Cerebrospinal Fluid , Hydrodynamics , Magnetic Resonance Imaging , Pulsatile Flow , Humans , Adult , Aged , Male , Female , Magnetic Resonance Imaging/methods , Cerebrospinal Fluid/physiology , Cerebrospinal Fluid/diagnostic imaging , Brain/blood supply , Brain/physiology , Brain/diagnostic imaging , Pulsatile Flow/physiology , Cerebrovascular Circulation/physiology , Hemodynamics/physiology , Young Adult , Middle Aged , Retrospective Studies , Diffusion Magnetic Resonance Imaging/methods
3.
Fluids Barriers CNS ; 21(1): 68, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215377

ABSTRACT

BACKGROUND: Cerebrospinal fluid (CSF) dynamics are increasingly studied in aging and neurological disorders. Models of CSF-mediated waste clearance suggest that altered CSF dynamics could play a role in the accumulation of toxic waste in the CNS, with implications for Alzheimer's disease and other proteinopathies. Therefore, approaches that enable quantitative and volumetric assessment of CSF flow velocities could be of value. In this study we demonstrate the feasibility of 4D flow MRI for simultaneous assessment of CSF dynamics throughout the ventricular system, and evaluate associations to arterial pulsatility, ventricular volumes, and age. METHODS: In a cognitively unimpaired cohort (N = 43; age 41-83 years), cardiac-resolved 4D flow MRI CSF velocities were obtained in the lateral ventricles (LV), foramens of Monro, third and fourth ventricles (V3 and V4), the cerebral aqueduct (CA) and the spinal canal (SC), using a velocity encoding (venc) of 5 cm/s. Cerebral blood flow pulsatility was also assessed with 4D flow (venc = 80 cm/s), and CSF volumes were obtained from T1- and T2-weighted MRI. Multiple linear regression was used to assess effects of age, ventricular volumes, and arterial pulsatility on CSF velocities. RESULTS: Cardiac-driven CSF dynamics were observed in all CSF spaces, with region-averaged velocity range and root-mean-square (RMS) velocity encompassing from very low in the LVs (RMS 0.25 ± 0.08; range 0.85 ± 0.28 mm/s) to relatively high in the CA (RMS 6.29 ± 2.87; range 18.6 ± 15.2 mm/s). In the regression models, CSF velocity was significantly related to age in 5/6 regions, to CSF space volume in 2/3 regions, and to arterial pulsatility in 3/6 regions. Group-averaged waveforms indicated distinct CSF flow propagation delays throughout CSF spaces, particularly between the SC and LVs. CONCLUSIONS: Our findings show that 4D flow MRI enables assessment of CSF dynamics throughout the ventricular system, and captures independent effects of age, CSF space morphology, and arterial pulsatility on CSF motion.


Subject(s)
Cerebral Ventricles , Cerebrospinal Fluid , Magnetic Resonance Imaging , Pulsatile Flow , Humans , Aged , Middle Aged , Male , Female , Cerebrospinal Fluid/physiology , Cerebrospinal Fluid/diagnostic imaging , Aged, 80 and over , Magnetic Resonance Imaging/methods , Adult , Pulsatile Flow/physiology , Cerebral Ventricles/diagnostic imaging , Cerebral Ventricles/physiology , Aging/physiology , Cerebrovascular Circulation/physiology
4.
Curr Med Sci ; 44(4): 827-832, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39096474

ABSTRACT

OBJECTIVE: This study aimed to develop and test a model for predicting dysthyroid optic neuropathy (DON) based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid (CSF) in the optic nerve sheath. METHODS: This retrospective study included patients with thyroid-associated ophthalmopathy (TAO) without DON and patients with TAO accompanied by DON at our hospital. The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and, together with clinical factors, were screened by Least absolute shrinkage and selection operator. Subsequently, we constructed a prediction model using multivariate logistic regression. The accuracy of the model was verified using receiver operating characteristic curve analysis. RESULTS: In total, 80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study. Two variables (optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath) were found to be independent predictive factors and were included in the prediction model. In the development cohort, the mean area under the curve (AUC) was 0.994, with a sensitivity of 0.944, specificity of 0.967, and accuracy of 0.901. Moreover, in the validation cohort, the AUC was 0.960, the sensitivity was 0.889, the specificity was 0.893, and the accuracy was 0.890. CONCLUSIONS: A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath, serving as a noninvasive potential tool to predict DON.


Subject(s)
Graves Ophthalmopathy , Optic Nerve Diseases , Optic Nerve , Humans , Male , Female , Middle Aged , Optic Nerve/diagnostic imaging , Optic Nerve/pathology , Graves Ophthalmopathy/cerebrospinal fluid , Graves Ophthalmopathy/diagnostic imaging , Optic Nerve Diseases/diagnostic imaging , Optic Nerve Diseases/cerebrospinal fluid , Optic Nerve Diseases/diagnosis , Adult , Retrospective Studies , ROC Curve , Biomarkers/cerebrospinal fluid , Cerebrospinal Fluid/diagnostic imaging , Aged
5.
Radiol Phys Technol ; 17(3): 782-792, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39028437

ABSTRACT

In normal-pressure hydrocephalus, disturbances in cerebrospinal fluid (CSF) circulation occur; therefore, understanding CSF dynamics is crucial. The two-dimensional phase-contrast (2D-PC) method, a common approach for visualizing CSF flow on MRI, often presents challenges owing to prominent vein signals and excessively high contrast, hindering the interpretation of morphological information. Therefore, we devised a new imaging method that utilizes T2-weighted high-signal intensification of the CSF and saturation pulses, without requiring specialized imaging sequences. This sequence utilized a T2-weighted single-shot fast spin-echo combined with multi-phase imaging synchronized with a pulse wave. Optimal imaging conditions (repetition time, presence/absence of fast recovery, and echo time) were determined using self-made contrast and single-plate phantoms to evaluate signal-to-noise ratio, contrast ratio, and spatial resolution. In certain clinical cases of hydrocephalus, confirming CSF flow using 2D-PC was challenging. However, our method enabled the visualization of CSF flow, proving to be useful in understanding the pathophysiology of hydrocephalus.


Subject(s)
Cerebrospinal Fluid , Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Cerebrospinal Fluid/diagnostic imaging , Magnetic Resonance Imaging/methods , Hydrocephalus/diagnostic imaging , Hydrocephalus/physiopathology , Male , Signal-To-Noise Ratio , Female , Image Processing, Computer-Assisted/methods , Aged
6.
NMR Biomed ; 37(10): e5200, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38881247

ABSTRACT

In vivo estimation of cerebrospinal fluid (CSF) velocity is crucial for understanding the glymphatic system and its potential role in neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Current cardiac or respiratory-gated approaches, such as 4D flow magnetic resonance imaging (MRI), cannot capture CSF movement in real time because of limited temporal resolution and, in addition, deteriorate in accuracy at low fluid velocities. Other techniques like real-time phase-contrast-MRI or time-spatial labeling inversion pulse are not limited by temporal averaging but have limited availability, even in research settings. This study aims to quantify the inflow effect of dynamic CSF motion on functional MRI (fMRI) for in vivo, real-time measurement of CSF flow velocity. We considered linear and nonlinear models of velocity waveforms and empirically fit them to fMRI data from a controlled flow experiment. To assess the utility of this methodology in human data, CSF flow velocities were computed from fMRI data acquired in eight healthy volunteers. Breath-holding regimens were used to amplify CSF flow oscillations. Our experimental flow study revealed that CSF velocity is nonlinearly related to inflow effect-mediated signal increase and well estimated using an extension of a previous nonlinear framework. Using this relationship, we recovered velocity from in vivo fMRI signal, demonstrating the potential of our approach for estimating CSF flow velocity in the human brain. This novel method could serve as an alternative approach to quantifying slow flow velocities in real time, such as CSF flow in the ventricular system, thereby providing valuable insights into the glymphatic system's function and its implications for neurological disorders.


Subject(s)
Cerebrospinal Fluid , Magnetic Resonance Imaging , Humans , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Male , Adult , Female
7.
MAGMA ; 37(4): 737-748, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38822992

ABSTRACT

OBJECTIVES: To assess the feasibility of sodium-23 MRI for performing quantitative and non-invasive measurements of total sodium concentration (TSC) and relaxation in a variety of abdominal organs. MATERIALS AND METHODS: Proton and sodium imaging of the abdomen was performed in 19 healthy volunteers using a 3D cones sequence and a sodium-tuned 4-rung transmit/receive body coil on a clinical 3 T system. The effects of B1 non-uniformity on TSC measurements were corrected using the double-angle method. The long-component of 23Na T2* relaxation time was measured using a series of variable echo-times. RESULTS: The mean and standard deviation of TSC and long-component 23Na T2* values were calculated across the healthy volunteer group in the kidneys, cerebrospinal fluid (CSF), liver, gallbladder, spleen, aorta, and inferior vena cava. DISCUSSION: Mean TSC values in the kidneys, liver, and spleen were similar to those reported using 23Na-MRI previously in the literature. Measurements in the CSF and gallbladder were lower, potentially due to the reduced spatial resolution achievable in a clinically acceptable scan time. Mean long-component 23Na T2* values were consistent with previous reports from the kidneys and CSF. Intra-population standard error was larger in smaller, fluid-filled structures due to fluid motion and partial volume effects.


Subject(s)
Abdomen , Healthy Volunteers , Kidney , Magnetic Resonance Imaging , Sodium Isotopes , Sodium , Humans , Magnetic Resonance Imaging/methods , Adult , Male , Female , Abdomen/diagnostic imaging , Kidney/diagnostic imaging , Liver/diagnostic imaging , Spleen/diagnostic imaging , Feasibility Studies , Middle Aged , Gallbladder/diagnostic imaging , Young Adult , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods , Cerebrospinal Fluid/diagnostic imaging , Protons
8.
NMR Biomed ; 37(9): e5162, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38715420

ABSTRACT

Cerebrospinal fluid (CSF) plays a critical role in metabolic waste clearance from the brain, requiring its circulation throughout various brain pathways, including the ventricular system, subarachnoid spaces, para-arterial spaces, interstitial spaces, and para-venous spaces. The complexity of CSF circulation has posed a challenge in obtaining noninvasive measurements of CSF dynamics. The assessment of CSF dynamics throughout its various circulatory pathways is possible using diffusion magnetic resonance imaging (MRI) with optimized sensitivity to incoherent water movement across the brain. This review presents an overview of both established and emerging diffusion MRI techniques designed to measure CSF dynamics and their potential clinical applications. The discussion offers insights into the optimization of diffusion MRI acquisition parameters to enhance the sensitivity and specificity of diffusion metrics on underlying CSF dynamics. Lastly, we emphasize the importance of cautious interpretations of diffusion-based imaging, especially when differentiating between tissue- and fluid-related changes or elucidating structural versus functional alterations.


Subject(s)
Cerebrospinal Fluid , Diffusion Magnetic Resonance Imaging , Humans , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Animals , Hydrodynamics , Brain/diagnostic imaging
9.
Neuroimage ; 297: 120653, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38795798

ABSTRACT

Perivascular cerebrospinal fluid (pCSF) flow is a key component of the glymphatic system. Arterial pulsation has been proposed as the main driving force of pCSF influx along the superficial and penetrating arteries; however, evidence of this mechanism in humans is limited. We proposed an experimental framework of dynamic diffusion tensor imaging with low b-values and ultra-long echo time (dynDTIlow-b) to capture pCSF flow properties during the cardiac cycle in human brains. Healthy adult volunteers (aged 17-28 years; seven men, one woman) underwent dynDTIlow-b using a 3T scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) with simultaneously recorded cardiac output. The results showed that diffusion tensors reconstructed from pCSF were mainly oriented in the direction of the neighboring arterial flow. When switching from vasoconstriction to vasodilation, the axial and radial diffusivities of the pCSF increased by 5.7 % and 4.94 %, respectively, suggesting that arterial pulsation alters the pCSF flow both parallel and perpendicular to the arterial wall. DynDTIlow-b signal intensity at b=0 s/mm2 (i.e., T2-weighted, [S(b=0 s/mm2)]) decreased in systole, but this change was ∼7.5 % of a cardiac cycle slower than the changes in apparent diffusivity, suggesting that changes in S(b=0 s/mm2) and apparent diffusivity arise from distinct physiological processes and potential biomarkers associated with perivascular space volume and pCSF flow, respectively. Additionally, the mean diffusivities of white matter showed cardiac-cycle dependencies similar to pCSF, although a delay relative to the peak time of apparent diffusivity in pCSF was present, suggesting that dynDTIlow-b could potentially reveal the dynamics of magnetic resonance imaging-invisible pCSF surrounding small arteries and arterioles in white matter; this delay may result from pulse wave propagation along penetrating arteries. In conclusion, the vasodilation-induced increases in axial and radial diffusivities of pCSF and mean diffusivities of white matter are consistent with the notion that arterial pulsation can accelerate pCSF flow in human brain. Furthermore, the proposed dynDTIlow-b technique can capture various pCSF dynamics in artery pulsation.


Subject(s)
Cerebrospinal Fluid , Diffusion Tensor Imaging , Glymphatic System , Humans , Adult , Female , Male , Young Adult , Diffusion Tensor Imaging/methods , Adolescent , Cerebrospinal Fluid/physiology , Cerebrospinal Fluid/diagnostic imaging , Glymphatic System/diagnostic imaging , Glymphatic System/physiology , Brain/physiology , Brain/diagnostic imaging , Brain/blood supply , Pulsatile Flow/physiology , Cerebral Arteries/diagnostic imaging , Cerebral Arteries/physiology
10.
Fluids Barriers CNS ; 21(1): 40, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725029

ABSTRACT

BACKGROUND: Parkinson's disease is characterized by dopamine-responsive symptoms as well as aggregation of α-synuclein protofibrils. New diagnostic methods assess α-synuclein aggregation characteristics from cerebrospinal fluid (CSF) and recent pathophysiologic mechanisms suggest that CSF circulation disruptions may precipitate α-synuclein retention. Here, diffusion-weighted MRI with low-to-intermediate diffusion-weightings was applied to test the hypothesis that CSF motion is reduced in Parkinson's disease relative to healthy participants. METHODS: Multi-shell diffusion weighted MRI (spatial resolution = 1.8 × 1.8 × 4.0 mm) with low-to-intermediate diffusion weightings (b-values = 0, 50, 100, 200, 300, 700, and 1000 s/mm2) was applied over the approximate kinetic range of suprasellar cistern fluid motion at 3 Tesla in Parkinson's disease (n = 27; age = 66 ± 6.7 years) and non-Parkinson's control (n = 32; age = 68 ± 8.9 years) participants. Wilcoxon rank-sum tests were applied to test the primary hypothesis that the noise floor-corrected decay rate of CSF signal as a function of b-value, which reflects increasing fluid motion, is reduced within the suprasellar cistern of persons with versus without Parkinson's disease and inversely relates to choroid plexus activity assessed from perfusion-weighted MRI (significance-criteria: p < 0.05). RESULTS: Consistent with the primary hypothesis, CSF decay rates were higher in healthy (D = 0.00673 ± 0.00213 mm2/s) relative to Parkinson's disease (D = 0.00517 ± 0.00110 mm2/s) participants. This finding was preserved after controlling for age and sex and was observed in the posterior region of the suprasellar cistern (p < 0.001). An inverse correlation between choroid plexus perfusion and decay rate in the voxels within the suprasellar cistern (Spearman's-r=-0.312; p = 0.019) was observed. CONCLUSIONS: Multi-shell diffusion MRI was applied to identify reduced CSF motion at the level of the suprasellar cistern in adults with versus without Parkinson's disease; the strengths and limitations of this methodology are discussed in the context of the growing literature on CSF flow.


Subject(s)
Cerebrospinal Fluid , Diffusion Magnetic Resonance Imaging , Parkinson Disease , Humans , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/diagnostic imaging , Parkinson Disease/physiopathology , Aged , Diffusion Magnetic Resonance Imaging/methods , Male , Female , Middle Aged , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Motion
11.
BMC Pediatr ; 24(1): 315, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714956

ABSTRACT

BACKGROUND: Ultrasound (US) is often the first method used to look for brain or cerebrospinal fluid (CSF) space pathologies. Knowledge of normal CSF width values is essential. Most of the available US normative values were established over 20 years ago, were obtained with older equipment, and cover only part of the age spectrum that can be examined by cranial US. This prospective study aimed to determine the normative values of the widths of the subarachnoid and internal CSF spaces (craniocortical, minimal and maximal interhemispheric, interventricular, and frontal horn) for high-resolution linear US probes in neurologically healthy infants and children aged 0-19 months and assess whether subdural fluid collections can be delineated. METHODS: Two radiologists measured the width of the CSF spaces with a conventional linear probe and an ultralight hockey-stick probe in neurologically healthy children not referred for cranial or spinal US. RESULTS: This study included 359 neurologically healthy children (nboys = 178, 49.6%; ngirls = 181, 50.4%) with a median age of 46.0 days and a range of 1-599 days. We constructed prediction plots, including the 5th, 50th, and 95th percentiles, and an interactive spreadsheet to calculate normative values for individual patients. The measurements of the two probes and the left and right sides did not differ, eliminating the need for separate normative values. No subdural fluid collection was detected. CONCLUSION: Normative values for the widths of the subarachnoid space and the internal CSF spaces are useful for evaluating intracranial pathology, especially when determining whether an increase in the subarachnoid space width is abnormal.


Subject(s)
Subarachnoid Space , Ultrasonography , Humans , Infant , Prospective Studies , Male , Female , Reference Values , Infant, Newborn , Ultrasonography/methods , Subarachnoid Space/diagnostic imaging , Cerebrospinal Fluid/diagnostic imaging
12.
Fluids Barriers CNS ; 21(1): 47, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816737

ABSTRACT

BACKGROUND: Bidirectional reciprocal motion of cerebrospinal fluid (CSF) was quantified using four-dimensional (4D) flow magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) MRI. To estimate various CSF motions in the entire intracranial region, we attempted to integrate the flow parameters calculated using the two MRI sequences. To elucidate how CSF dynamics deteriorate in Hakim's disease, an age-dependent chronic hydrocephalus, flow parameters were estimated from the two MRI sequences to assess CSF motion in the entire intracranial region. METHODS: This study included 127 healthy volunteers aged ≥ 20 years and 44 patients with Hakim's disease. On 4D flow MRI for measuring CSF motion, velocity encoding was set at 5 cm/s. For the IVIM MRI analysis, the diffusion-weighted sequence was set at six b-values (i.e., 0, 50, 100, 250, 500, and 1000 s/mm2), and the biexponential IVIM fitting method was adapted. The relationships between the fraction of incoherent perfusion (f) on IVIM MRI and 4D flow MRI parameters including velocity amplitude (VA), absolute maximum velocity, stroke volume, net flow volume, and reverse flow rate were comprehensively evaluated in seven locations in the ventricles and subarachnoid spaces. Furthermore, we developed a new parameter for fluid oscillation, the Fluid Oscillation Index (FOI), by integrating these two measurements. In addition, we investigated the relationship between the measurements and indices specific to Hakim's disease and the FOIs in the entire intracranial space. RESULTS: The VA on 4D flow MRI was significantly associated with the mean f-values on IVIM MRI. Therefore, we estimated VA that could not be directly measured on 4D flow MRI from the mean f-values on IVIM MRI in the intracranial CSF space, using the following formula; e0.2(f-85) + 0.25. To quantify fluid oscillation using one integrated parameter with weighting, FOI was calculated as VA × 10 + f × 0.02. In addition, the FOIs at the left foramen of Luschka had the strongest correlations with the Evans index (Pearson's correlation coefficient: 0.78). The other indices related with Hakim's disease were significantly associated with the FOIs at the cerebral aqueduct and bilateral foramina of Luschka. FOI at the cerebral aqueduct was also elevated in healthy controls aged ≥ 60 years. CONCLUSIONS: We estimated pulsatile CSF movements in the entire intracranial CSF space in healthy individuals and patients with Hakim's disease using FOI integrating VA from 4D flow MRI and f-values from IVIM MRI. FOI is useful for quantifying the CSF oscillation.


Subject(s)
Cerebrospinal Fluid , Magnetic Resonance Imaging , Humans , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Adult , Male , Female , Magnetic Resonance Imaging/methods , Middle Aged , Young Adult , Aged , Hydrodynamics , Hydrocephalus/diagnostic imaging , Hydrocephalus/physiopathology , Hydrocephalus/cerebrospinal fluid , Brain/diagnostic imaging , Brain/physiology
13.
Eur J Radiol ; 176: 111483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705051

ABSTRACT

BACKGROUND: The pathological mechanisms following aneurysmal subarachnoid hemorrhage (SAH) are poorly understood. Limited clinical evidence exists on the association between cerebrospinal fluid (CSF) volume and the risk of delayed cerebral ischemia (DCI) or cerebral vasospasm (CV). In this study, we raised the hypothesis that the amount of CSF or its ratio to hemorrhage blood volume, as determined from non-contrast Computed Tomography (NCCT) images taken on admission, could be a significant predictor for CV and DCI. METHODS: The pilot study included a retrospective analysis of NCCT scans of 49 SAH patients taken shortly after an aneurysm rupture (33 males, 16 females, mean age 56.4 ± 15 years). The SynthStrip and Slicer3D software tools were used to extract radiological factors - CSF, brain, and hemorrhage volumes from the NCCT images. The "pure" CSF volume (VCSF) was estimated in the range of [-15, 15] Hounsfield units (HU). RESULTS: VCSF was negatively associated with the risk of CV occurrence (p = 0.0049) and DCI (p = 0.0069), but was not associated with patients' outcomes. The hemorrhage volume (VSAH) was positively associated with an unfavorable outcome (p = 0.0032) but was not associated with CV/DCI. The ratio VSAH/VCSF was positively associated with, both, DCI (p = 0.031) and unfavorable outcome (p = 0.002). The CSF volume normalized by the brain volume showed the highest characteristics for DCI prediction (AUC = 0.791, sensitivity = 0.80, specificity = 0.812) and CV prediction (AUC = 0.769, sensitivity = 0.812, specificity = 0.70). CONCLUSION: It was demonstrated that "pure" CSF volume retrieved from the initial NCCT images of SAH patients (including CV, Non-CV, DCI, Non-DCI groups) is a more significant predictor of DCI and CV compared to other routinely used radiological biomarkers. VCSF could be used to predict clinical course as well as to personalize the management of SAH patients. Larger multicenter clinical trials should be performed to test the added value of the proposed methodology.


Subject(s)
Subarachnoid Hemorrhage , Tomography, X-Ray Computed , Humans , Male , Female , Subarachnoid Hemorrhage/diagnostic imaging , Subarachnoid Hemorrhage/cerebrospinal fluid , Subarachnoid Hemorrhage/complications , Middle Aged , Pilot Projects , Retrospective Studies , Cerebrospinal Fluid/diagnostic imaging , Vasospasm, Intracranial/diagnostic imaging , Vasospasm, Intracranial/cerebrospinal fluid , Vasospasm, Intracranial/etiology , Brain Ischemia/diagnostic imaging , Brain Ischemia/cerebrospinal fluid , Brain Ischemia/complications , Aged , Aneurysm, Ruptured/diagnostic imaging , Aneurysm, Ruptured/complications , Aneurysm, Ruptured/cerebrospinal fluid , Predictive Value of Tests , Adult , Sensitivity and Specificity
14.
NMR Biomed ; 37(9): e5159, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38634301

ABSTRACT

Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the "EU Joint Programme - Neurodegenerative Disease Research (JPND)" consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.


Subject(s)
Brain , Contrast Media , Magnetic Resonance Imaging , Humans , Contrast Media/pharmacokinetics , Brain/diagnostic imaging , Brain/metabolism , Metabolic Clearance Rate , Animals , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid/diagnostic imaging
15.
Spinal Cord ; 62(7): 371-377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38627568

ABSTRACT

DESIGN: Prospective diagnostic study. OBJECTIVES: Anatomical evaluation and graduation of the severity of spinal stenosis is essential in degenerative cervical spine disease. In clinical practice, this is subjectively categorized on cervical MRI lacking an objective and reliable classification. We implemented a fully-automated quantification of spinal canal compromise through 3D T2-weighted MRI segmentation. SETTING: Medical Center - University of Freiburg, Germany. METHODS: Evaluation of 202 participants receiving 3D T2-weighted MRI of the cervical spine. Segments C2/3 to C6/7 were analyzed for spinal cord and cerebrospinal fluid space volume through a fully-automated segmentation based on a trained deep convolutional neural network. Spinal canal narrowing was characterized by relative values, across sever segments as adapted Maximal Canal Compromise (aMCC), and within the index segment as adapted Spinal Cord Occupation Ratio (aSCOR). Additionally, all segments were subjectively categorized by three observers as "no", "relative" or "absolute" stenosis. Computed scores were applied on the subjective categorization. RESULTS: 798 (79.0%) segments were subjectively categorized as "no" stenosis, 85 (8.4%) as "relative" stenosis, and 127 (12.6%) as "absolute" stenosis. The calculated scores revealed significant differences between each category (p ≤ 0.001). Youden's Index analysis of ROC curves revealed optimal cut-offs to distinguish between "no" and "relative" stenosis for aMCC = 1.18 and aSCOR = 36.9%, and between "relative" and "absolute" stenosis for aMCC = 1.54 and aSCOR = 49.3%. CONCLUSION: The presented fully-automated segmentation algorithm provides high diagnostic accuracy and objective classification of cervical spinal stenosis. The calculated cut-offs can be used for convenient radiological quantification of the severity of spinal canal compromise in clinical routine.


Subject(s)
Cervical Vertebrae , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Spinal Stenosis , Humans , Spinal Stenosis/diagnostic imaging , Magnetic Resonance Imaging/methods , Female , Male , Middle Aged , Aged , Imaging, Three-Dimensional/methods , Cervical Vertebrae/diagnostic imaging , Prospective Studies , Spinal Cord/diagnostic imaging , Spinal Cord/pathology , Adult , Severity of Illness Index , Aged, 80 and over , Cerebrospinal Fluid/diagnostic imaging
16.
Fluids Barriers CNS ; 21(1): 25, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454518

ABSTRACT

BACKGROUND: Understanding of the cerebrospinal fluid (CSF) circulation is essential for physiological studies and clinical diagnosis. Real-time phase contrast sequences (RT-PC) can quantify beat-to-beat CSF flow signals. However, the detailed effects of free-breathing on CSF parameters are not fully understood. This study aims to validate RT-PC's accuracy by comparing it with the conventional phase-contrast sequence (CINE-PC) and quantify the effect of free-breathing on CSF parameters at the intracranial and extracranial levels using a time-domain multiparametric analysis method. METHODS: Thirty-six healthy participants underwent MRI in a 3T scanner for CSF oscillations quantification at the cervical spine (C2-C3) and Sylvian aqueduct, using CINE-PC and RT-PC. CINE-PC uses 32 velocity maps to represent dynamic CSF flow over an average cardiac cycle, while RT-PC continuously quantifies CSF flow over 45-seconds. Free-breathing signals were recorded from 25 participants. RT-PC signal was segmented into independent cardiac cycle flow curves (Qt) and reconstructed into an averaged Qt. To assess RT-PC's accuracy, parameters such as segmented area, flow amplitude, and stroke volume (SV) of the reconstructed Qt from RT-PC were compared with those derived from the averaged Qt generated by CINE-PC. The breathing signal was used to categorize the Qt into expiratory or inspiratory phases, enabling the reconstruction of two Qt for inspiration and expiration. The breathing effects on various CSF parameters can be quantified by comparing these two reconstructed Qt. RESULTS: RT-PC overestimated CSF area (82.7% at aqueduct, 11.5% at C2-C3) compared to CINE-PC. Stroke volumes for CINE-PC were 615 mm³ (aqueduct) and 43 mm³ (spinal), and 581 mm³ (aqueduct) and 46 mm³ (spinal) for RT-PC. During thoracic pressure increase, spinal CSF net flow, flow amplitude, SV, and cardiac period increased by 6.3%, 6.8%, 14%, and 6%, respectively. Breathing effects on net flow showed a significant phase difference compared to the other parameters. Aqueduct-CSF flows were more affected by breathing than spinal-CSF. CONCLUSIONS: RT-PC accurately quantifies CSF oscillations in real-time and eliminates the need for cardiac synchronization, enabling the quantification of the cardiac and breathing components of CSF flow. This study quantifies the impact of free-breathing on CSF parameters, offering valuable physiological references for understanding the effects of breathing on CSF dynamics.


Subject(s)
Cerebral Ventricles , Magnetic Resonance Imaging , Humans , Cerebral Ventricles/physiology , Cerebral Aqueduct/diagnostic imaging , Cerebral Aqueduct/physiology , Respiration , Pressure , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology
17.
Magn Reson Med ; 92(2): 807-819, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38469904

ABSTRACT

PURPOSE: To develop and validate a noninvasive imaging technique for accurately assessing very slow CSF flow within shunt tubes in pediatric patients with hydrocephalus, aiming to identify obstructions that might impede CSF drainage. THEORY AND METHODS: A simulation of shunt flow enhancement of signal intensity (shunt-FENSI) signal is used to establish the relationship between signal change and flow rate. The quantification of flow enhancement of signal intensity data involves normalization, curve fitting, and calibration to match simulated data. Additionally, a phase sweep method is introduced to accommodate the impact of magnetic field inhomogeneity on the flow measurement. The method is tested in flow phantoms, healthy adults, intensive care unit patients with external ventricular drains (EVD), and shunt patients. EVDs enable shunt-flow measurements to be acquired with a ground truth measure of CSF drainage. RESULTS: The flow-rate-to-signal simulation establishes signal-flow relationships and takes into account the T1 of draining fluid. The phase sweep method accurately accounts for phase accumulation due to frequency offsets at the shunt. Results in phantom and healthy human participants reveal reliable quantification of flow rates using controlled flows and agreement with the flow simulation. EVD patients display reliable measures of flow rates. Shunt patient results demonstrate feasibility of the method and consistent flow rates for functional shunts. CONCLUSION: The results demonstrate the technique's applicability, accuracy, and potential for diagnosing and noninvasively monitoring hydrocephalus. Limitations of the current approach include a high sensitivity to motion and strict requirement of imaging slice prescription.


Subject(s)
Cerebrospinal Fluid Shunts , Hydrocephalus , Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Hydrocephalus/diagnostic imaging , Hydrocephalus/physiopathology , Magnetic Resonance Imaging/methods , Adult , Male , Female , Reproducibility of Results , Computer Simulation , Child , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology , Algorithms , Image Processing, Computer-Assisted/methods
18.
World Neurosurg ; 184: e731-e736, 2024 04.
Article in English | MEDLINE | ID: mdl-38340799

ABSTRACT

OBJECTIVE: Spondylotic changes in the cervical spine cause degeneration, leading to cervical spinal canal stenosis. This stenotic change can affect cerebrospinal fluid (CSF) dynamics by compressing the dural sac and reducing space in the subarachnoid space. We examined CSF dynamics at the craniovertebral junction (CVJ) using time-spatial labeling inversion pulse magnetic resonance imaging (Time-SLIP MRI) in patients with cervical spinal canal stenosis. METHODS: The maximum longitudinal movement of the CSF at the CVJ was measured as length of motion (LOM) in the Time-SLIP MRI of 56 patients. The sum of ventral and dorsal LOM was defined as the total LOM. Patients were classified into 3 groups depending on their spinal sagittal magnetic resonance imaging findings: control (n = 27, Kang classification grades 0 and 1), stenosis (n = 14, Kang classification grade 2), and severe stenosis (n = 15, Kang classification grade 3). RESULTS: Time-SLIP MRI revealed pulsatile movement of the CSF at the CVJ. The mean total, ventral, and dorsal LOM was 14.2 ± 9, 8.1 ± 5.7, and 3.8 ± 2.9 mm, respectively. The ventral LOM was significantly larger than the dorsal LOM. The total LOM was significantly smaller in the severe stenosis group (6.1 ± 3.4 mm) than in the control (16.0 ± 8.4 mm) or stenosis (11 ± 5.4 mm) groups (P < 0.001, Kruskal-Wallis H-test). In 5 patients, postoperative total LOM was improved after adequate decompression surgery. CONCLUSIONS: This study demonstrates that CSF dynamics at the CVJ are influenced by cervical spinal canal stenosis. Time-SLIP MRI is useful for evaluating CSF dynamics at the CVJ in patients with spinal canal stenosis.


Subject(s)
Magnetic Resonance Imaging , Spinal Stenosis , Humans , Constriction, Pathologic/pathology , Magnetic Resonance Imaging/methods , Spinal Stenosis/diagnostic imaging , Spinal Stenosis/surgery , Spinal Stenosis/pathology , Radiography , Spinal Canal/diagnostic imaging , Spinal Canal/pathology , Cervical Vertebrae/surgery , Cerebrospinal Fluid/diagnostic imaging
19.
NMR Biomed ; 37(7): e5093, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38163739

ABSTRACT

The fluid transport of cerebrospinal fluid (CSF) and interstitial fluid in surrounding tissues plays an important role in the drainage pathway that facilitates waste clearance from the brain. This pathway is known as the glymphatic or perivascular system, and its functions are dependent on aquaporin-4 (AQP4). Recently, magnetization transfer indirect spin labeling (MISL) magnetic resonance imaging (MRI) has been proposed as a noninvasive and noncontrast-enhanced method for detecting water exchange between CSF and brain tissue. In this study, we first optimized the MISL sequence at preclinical 3 T MRI, and then studied the correlation of MISL in CSF with magnetization transfer (MT) in brain tissue, as well as the altered water exchange under AQP4 inhibition, using C57BL/6 mice. Results showed a strong correlation of MISL signal with MT signal. With the AQP4 inhibitor, we observed a significant decrease in MISL value (P < 0.05), suggesting that the hampered AQP4 activity led to decreased water exchange between CSF and brain tissue or the impairment of the glymphatic function. Overall, our findings demonstrate the potential application of MISL in assessing brain water exchange at 3 T MRI and its potential clinical translation.


Subject(s)
Aquaporin 4 , Brain , Cerebrospinal Fluid , Magnetic Resonance Imaging , Mice, Inbred C57BL , Spin Labels , Animals , Aquaporin 4/metabolism , Aquaporin 4/antagonists & inhibitors , Brain/diagnostic imaging , Brain/metabolism , Mice , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid/diagnostic imaging , Water/metabolism , Male , Body Water/metabolism , Niacinamide/analogs & derivatives , Thiadiazoles
20.
NMR Biomed ; 37(3): e5061, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37839870

ABSTRACT

Traumatic brain injury (TBI) is a major public health concern worldwide, with a high incidence and a significant impact on morbidity and mortality. The alteration of cerebrospinal fluid (CSF) dynamics after TBI is a well-known phenomenon; however, the underlying mechanisms and their implications for cognitive function are not fully understood. In this study, we propose a new approach to studying the alteration of CSF dynamics in TBI patients. Our approach involves using conventional echo-planar imaging-based functional MRI with no additional scan, allowing for simultaneous assessment of functional CSF dynamics and blood oxygen level-dependent-based functional brain activities. We utilized two previously suggested indices of (i) CSFpulse, and (ii) correlation between global brain activity and CSF inflow. Using CSFpulse, we demonstrated a significant decrease in CSF pulsation following TBI (p < 0.05), which was consistent with previous studies. Furthermore, we confirmed that the decrease in CSF pulsation was most prominent in the early months after TBI, which could be explained by ependymal ciliary loss, intracranial pressure increment, or aquaporin-4 dysregulation. We also observed a decreasing trend in the correlation between global brain activity and CSF inflow in TBI patients (p < 0.05). Our findings suggest that the decreased CSF pulsation after TBI could lead to the accumulation of toxic substances in the brain and an adverse effect on brain function. Further longitudinal studies with larger sample sizes, TBI biomarker data, and various demographic information are needed to investigate the association between cognitive decline and CSF dynamics after TBI. Overall, this study sheds light on the potential role of altered CSF dynamics in TBI-induced neurologic symptoms and may contribute to the development of novel therapeutic interventions.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Echo-Planar Imaging , Brain Injuries, Traumatic/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cerebrospinal Fluid/diagnostic imaging , Cerebrospinal Fluid/physiology
SELECTION OF CITATIONS
SEARCH DETAIL