Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1705-1715, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39235030

ABSTRACT

Understanding the composition and spatial distribution patterns of microbial communities in plateau peatland soils is crucial for preserving the structural and functional stability of highland wetlands. We collected 50 soil samples from the core conservation area of Zoige peatland along horizontal and vertical distributions to analyze the soil bacterial and fungal diversity by using high-throughput sequencing technology, combined with Mantel tests and multiple regression on matrices (MRM) statistical methods, as well as the spatial distribution characteristics of community structure similarity at a local scale. The results showed that the dominant soil bacterial and fungal groups were Chloroflexi (accounting for 33.2% and 25.1% of the total bacterial community in horizontal and vertical directions, respectively) and Ascomycota (54.7% and 76.4%). The similarity of microbial community structure in both horizontal and vertical directions decreased with increasing spatial distance of the sampling points. The turnover rates of bacterial and fungal communities in the vertical direction were 8.8 and 8.6 times as those in the horizontal direction, respectively. Based on the relative abundance of the communities, we classified microbes into six groups. As the number of rare species in the community increased, the slope of community distance decay decreased. The conditionally rare or abundant taxa (CRAT) category group showed the most similar spatial distribution characteristics to the total microbial community. Mantel analysis indicated that soil organic carbon, total nitrogen, and available phosphorus were key factors driving the distribution of bacterial and fungal communities in the horizontal direction, while soil organic carbon, available carbon, pH, and soil bulk density were the main factors determining the vertical distribution. MRM analysis further showed that both soil physicochemical indicators and spatial distance significantly affected the assembly of microbial communities, where soil factors explained more about the vertical distribution of microbial communities than the horizontal distribution. The impact of soil factors on microbial community distribution was much greater than that of spatial factors through diffusion limitation. In summary, the microbial communities in the plateau peatland soils exhibited more pronounced vertical distribution differences and environmental response characteristics.


Subject(s)
Bacteria , Fungi , Soil Microbiology , China , Bacteria/classification , Bacteria/isolation & purification , Bacteria/growth & development , Bacteria/genetics , Fungi/classification , Fungi/isolation & purification , Fungi/growth & development , Wetlands , Spatial Analysis , Biodiversity , Altitude , Soil/chemistry , Microbiota , Chloroflexi/classification , Chloroflexi/growth & development , Chloroflexi/isolation & purification , Ascomycota/growth & development , Ascomycota/isolation & purification
2.
Environ Microbiol Rep ; 16(5): e13315, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39267241

ABSTRACT

Blue holes are vertical water-filled openings in carbonate rock that exhibit complex morphology, ecology, and water chemistry. In this study, macroscopic microbial mat structures found in complete anoxic conditions in the Faanu Mudugau Blue Hole (Maldives) were studied by metagenomic methods. Such communities have likely been evolutionary isolated from the surrounding marine environment for more than 10,000 years since the Blue Hole formation during the last Ice Age. A total of 48 high-quality metagenome-assembled genomes (MAGs) were recovered, predominantly composed of the phyla Chloroflexota, Proteobacteria and Desulfobacterota. None of these MAGs have been classified to species level (<95% ANI), suggesting the discovery of several new microbial taxa. In particular, MAGs belonging to novel bacterial genera within the order Dehalococcoidales accounted for 20% of the macroscopic mat community. Genome-resolved metabolic analysis of this dominant microbial fraction revealed a mixotrophic lifestyle based on energy conservation via fermentation, hydrogen metabolism and anaerobic CO2 fixation through the Wood-Ljungdahl pathway. Interestingly, these bacteria showed a high proportion of ancestral genes in their genomes providing intriguing perspectives on mechanisms driving microbial evolution in this peculiar environment. Overall, our results provide new knowledge for understanding microbial life under extreme conditions in blue hole environments.


Subject(s)
Metagenome , Metagenomics , Phylogeny , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Geologic Sediments/microbiology , Genome, Bacterial/genetics , Anaerobiosis , Deltaproteobacteria/genetics , Deltaproteobacteria/classification , Deltaproteobacteria/isolation & purification , Deltaproteobacteria/metabolism , Chloroflexi/genetics , Chloroflexi/classification , Chloroflexi/isolation & purification , Chloroflexi/metabolism , Proteobacteria/genetics , Proteobacteria/classification , Proteobacteria/isolation & purification , Microbiota
3.
Appl Environ Microbiol ; 90(8): e0110624, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39082809

ABSTRACT

The archaeal mevalonate pathway is a recently discovered modified version of the eukaryotic mevalonate pathway. This pathway is widely conserved in archaea, except for some archaeal lineages possessing the eukaryotic or other modified mevalonate pathways. Although the pathway seems almost exclusive to the domain Archaea, the whole set of homologous genes of the pathway is found in the metagenome-assembled genome sequence of an uncultivated bacterium, Candidatus Promineifilum breve, of the phylum Chloroflexota. To prove the existence of the archaea-specific pathway in the domain Bacteria, we confirmed the activities of the enzymes specific to the pathway, phosphomevalonate dehydratase and anhydromevalonate phosphate decarboxylase, because only these two enzymes are absent in closely related Chloroflexota bacteria that possess a different type of modified mevalonate pathway. The activity of anhydromevalonate phosphate decarboxylase was evaluated by carotenoid production via the archaeal mevalonate pathway reconstituted in Escherichia coli cells, whereas that of phosphomevalonate dehydratase was confirmed by an in vitro assay using the recombinant enzyme after purification and iron-sulfur cluster reconstruction. Phylogenetic analyses of some mevalonate pathway-related enzymes suggest an evolutionary route for the archaeal mevalonate pathway in Candidatus P. breve, which probably involves horizontal gene transfer events.IMPORTANCEThe recent discovery of various modified mevalonate pathways in microorganisms, such as archaea and Chloroflexota bacteria, has shed light on the complexity of the evolution of metabolic pathways, including those involved in primary metabolism. The fact that the archaeal mevalonate pathway, which is almost exclusive to the domain Archaea, exists in a Chloroflexota bacterium provides valuable insights into the molecular evolution of the mevalonate pathways and associated enzymes. Putative genes probably involved in the archaeal mevalonate pathway have also been found in the metagenome-assembled genomes of Chloroflexota bacteria. Such genes can contribute to metabolic engineering for the bioproduction of valuable isoprenoids because the archaeal mevalonate pathway is known to be an energy-saving metabolic pathway that consumes less ATP than other mevalonate pathways do.


Subject(s)
Mevalonic Acid , Mevalonic Acid/metabolism , Archaea/genetics , Archaea/metabolism , Archaea/classification , Archaea/enzymology , Chloroflexi/genetics , Chloroflexi/metabolism , Chloroflexi/enzymology , Chloroflexi/classification , Metabolic Networks and Pathways/genetics , Phylogeny , Escherichia coli/genetics , Escherichia coli/metabolism
4.
Commun Biol ; 7(1): 853, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997445

ABSTRACT

SAR202 bacteria in the Chloroflexota phylum are abundant and widely distributed in the ocean. Their genome coding capacities indicate their potential roles in degrading complex and recalcitrant organic compounds in the ocean. However, our understanding of their genomic diversity, vertical distribution, and depth-related metabolisms is still limited by the number of assembled SAR202 genomes. In this study, we apply deep metagenomic sequencing (180 Gb per sample) to investigate microbial communities collected from six representative depths at the Bermuda Atlantic Time Series (BATS) station. We obtain 173 SAR202 metagenome-assembled genomes (MAGs). Intriguingly, 154 new species and 104 new genera are found based on these 173 SAR202 genomes. We add 12 new subgroups to the current SAR202 lineages. The vertical distribution of 20 SAR202 subgroups shows their niche partitioning in the euphotic, mesopelagic, and bathypelagic oceans, respectively. Deep-ocean SAR202 bacteria contain more genes and exhibit more metabolic potential for degrading complex organic substrates than those from the euphotic zone. With deep metagenomic sequencing, we uncover many new lineages of SAR202 bacteria and their potential functions which greatly deepen our understanding of their diversity, vertical profile, and contribution to the ocean's carbon cycling, especially in the deep ocean.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Metagenomics/methods , Oceans and Seas , Metagenome , Seawater/microbiology , Phylogeny , Genome, Bacterial , Chloroflexi/genetics , Chloroflexi/classification , Bermuda , Adaptation, Physiological/genetics , Microbiota/genetics
5.
Microbiologyopen ; 11(1): e1258, 2022 02.
Article in English | MEDLINE | ID: mdl-35212484

ABSTRACT

Denitrification plays a central role in the global nitrogen cycle, reducing and removing nitrogen from marine and terrestrial ecosystems. The flux of nitrogen species through this pathway has a widespread impact, affecting ecological carrying capacity, agriculture, and climate. Nitrite reductase (Nir) and nitric oxide reductase (NOR) are the two central enzymes in this pathway. Here we present a previously unreported Nir domain architecture in members of phylum Chloroflexi. Phylogenetic analyses of protein domains within Nir indicate that an ancestral horizontal transfer and fusion event produced this chimeric domain architecture. We also identify an expanded genomic diversity of a rarely reported NOR subtype, eNOR. Together, these results suggest a greater diversity of denitrification enzyme arrangements exist than have been previously reported.


Subject(s)
Chloroflexi/metabolism , Nitrite Reductases/chemistry , Oxidoreductases/chemistry , Chloroflexi/classification , Chloroflexi/enzymology , Chloroflexi/genetics , Denitrification , Genetic Variation , Nitrite Reductases/genetics , Nitrite Reductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny
6.
Microbes Environ ; 36(3)2021.
Article in English | MEDLINE | ID: mdl-34470945

ABSTRACT

Roseilinea is a novel lineage of Chloroflexota known only from incomplete metagenome-assembled genomes (MAGs) and preliminary enrichments. Roseilinea is notable for appearing capable of anoxygenic photoheterotrophy despite being only distantly related to well-known phototrophs in the Chloroflexia class such as Chloroflexus and Roseiflexus. Here, we present a high-quality MAG of a member of Roseilinea, improving our understanding of the metabolic capacity and phylogeny of this genus, and resolving the multiple instances of horizontal gene transfer that have led to its metabolic potential. These data allow us to propose a candidate family for these organisms, Roseilineaceae, within the Anaerolineae class.


Subject(s)
Chloroflexi/genetics , Chloroflexi/metabolism , Genome, Bacterial , Base Sequence , Chloroflexi/classification , Chloroflexi/isolation & purification , Gene Transfer, Horizontal , Molecular Sequence Data , Phototrophic Processes , Phylogeny
7.
Nat Commun ; 12(1): 5308, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489463

ABSTRACT

Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.


Subject(s)
Droughts/statistics & numerical data , Microbiota/physiology , Soil Microbiology , Soil/chemistry , Water/analysis , Acidobacteria/classification , Acidobacteria/genetics , Acidobacteria/isolation & purification , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Altitude , Austria , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Biomass , Carbon/analysis , Chloroflexi/classification , Chloroflexi/genetics , Chloroflexi/isolation & purification , Grassland , Humans , Nitrogen/analysis , Phosphorus/analysis , Planctomycetales/classification , Planctomycetales/genetics , Planctomycetales/isolation & purification , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , Sulfur/analysis , Verrucomicrobia/classification , Verrucomicrobia/genetics , Verrucomicrobia/isolation & purification
8.
FEMS Microbiol Lett ; 368(16)2021 08 26.
Article in English | MEDLINE | ID: mdl-34390245

ABSTRACT

A mesophilic filamentous anoxygenic phototrophic bacterium, designated M50-1, was isolated from a microbial mat of the Chukhyn Nur soda lake (northeastern Mongolia) with salinity of 5-14 g/L and pH 8.0-9.3. The organism is a strictly anaerobic phototrophic bacterium, which required sulfide for phototrophic growth. The cells formed short undulate trichomes surrounded by a thin sheath and containing gas vesicles. Motility of the trichomes was not observed. The cells contained chlorosomes. The antenna pigments were bacteriochlorophyll d and ß- and γ-carotenes. Analysis of the genome assembled from the metagenome of the enrichment culture revealed all the enzymes of the 3-hydroxypropionate bi-cycle for autotrophic CO2 assimilation. The genome also contained the genes encoding a type IV sulfide:quinone oxidoreductase (sqrX). The organism had no nifHDBK genes, encoding the proteins of the nitrogenase complex responsible for dinitrogen fixation. The DNA G + C content was 58.6%. The values for in silico DNA‒DNA hybridization and average nucleotide identity between M50-1 and a closely related bacterium 'Ca. Chloroploca asiatica' B7-9 containing bacteriochlorophyll c were 53.4% and 94.0%, respectively, which corresponds to interspecies differences. Classification of the filamentous anoxygenic phototrophic bacterium M50-1 as a new 'Ca. Chloroploca' species was proposed, with the species name 'Candidatus Chloroploca mongolica' sp. nov.


Subject(s)
Bacteria, Anaerobic , Chloroflexi , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Chloroflexi/classification , Chloroflexi/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Species Specificity , Sulfides/metabolism
9.
Article in English | MEDLINE | ID: mdl-34296987

ABSTRACT

The aerobic, Gram-positive, mesophilic Ktedonobacteria strains, Uno17T, SOSP1-1T, 1-9T, 1-30T and 150040T, formed mycelia of irregularly branched filaments, produced spores or sporangia, and numerous secondary metabolite biosynthetic gene clusters. The five strains grew at 15-40 °C (optimally at 30 °C) and pH 4.0-8.0 (optimally at pH 6.0-7.0), and had 7.21-12.67 Mb genomes with 49.7-53.7 mol% G+C content. They shared MK9(H2) as the major menaquinone and C16 : 1-2OH and iso-C17 : 0 as the major cellular fatty acids. Phylogenetic and phylogenomic analyses showed that Uno17T and SOSP1-9T were most closely related to members of the genus Dictyobacter, with 94.43-96.21 % 16S rRNA gene similarities and 72.16-81.56% genomic average nucleotide identity. The strain most closely related to SOSP1-1T and SOSP1-30T was Ktedonobacter racemifer SOSP1-21T, with 91.33 and 98.84 % 16S rRNA similarities, and 75.13 and 92.35% average nucleotide identities, respectively. Strain 150040T formed a distinct clade within the order Ktedonobacterales, showing <90.47 % 16S rRNA gene similarity to known species in this order. Based on these results, we propose: strain 150040T as Reticulibacter mediterranei gen. nov., sp. nov. (type strain 150 040T=CGMCC 1.17052T=BCRC 81202T) within the family Reticulibacteraceae fam. nov. in the order Ktedonobacterales; strain SOSP1-1T as Ktedonospora formicarum gen. nov., sp. nov. (type strain SOSP1-1T=CGMCC 1.17205T=BCRC 81203T) and strain SOSP1-30T as Ktedonobacter robiniae sp. nov. (type strain SOSP1-30T=CGMCC 1.17733T=BCRC 81205T) within the family Ktedonobacteraceae; strain Uno17T as Dictyobacter arantiisoli sp. nov. (type strain Uno17T=NBRC 113155T=BCRC 81116T); and strain SOSP1-9T as Dictyobacter formicarum sp. nov. (type strain SOSP1-9T=CGMCC 1.17206T=BCRC 81204T) within the family Dictyobacteraceae.


Subject(s)
Chloroflexi/classification , Phylogeny , Bacterial Typing Techniques , Base Composition , Chloroflexi/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
10.
J Biosci Bioeng ; 131(6): 622-630, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33676867

ABSTRACT

Traditionally, filamentous fungi and actinomycetes are well-known cellulolytic microorganisms that have been utilized in the commercial production of cellulase enzyme cocktails for industrial-scale degradation of plant biomass. Noticeably, the Ktedonobacteria lineage (phylum Chloroflexi) with actinomycetes-like morphology was identified and exhibited diverse carbohydrate utilization or degradation abilities. In this study, we performed genome-wide profiling of carbohydrate-active enzymes (CAZymes) in the filamentous Ktedonobacteria lineage. Numerous CAZymes (153-290 CAZymes, representing 63-131 glycoside hydrolases (GHs) per genome), including complex mixtures of endo- and exo-cellulases, were predicted in 15 available Ktedonobacteria genomes. Of note, 4-28 CAZymes were predicted to be extracellular enzymes, whereas 3-29 CAZymes were appended with carbohydrate-binding modules (CBMs) that may promote their binding to insoluble carbohydrate substrates. This number far exceeded other Chloroflexi lineages and were comparable to the cellulolytic actinomycetes. Six multi-modular extracellular GHs were cloned from the thermophilic Thermosporothrix hazakensis SK20-1T strain and heterologously expressed. The putative endo-glucanases of ThazG5-1, ThazG9, and ThazG12 exhibited strong cellulolytic activity, whereas the putative exo-glucanases ThazG6 and ThazG48 formed weak but observable halos on carboxymethyl cellulose plates, indicating their potential biotechnological application. The purified recombinant ThazG12 had near-neutral pH (optimal 6.0), high thermostability (60°C), and broad specificity against soluble and insoluble polysaccharide substrates. It also represented described a novel thermostable bacterial ß-1,4-glucanase in the GH12 family. Together, this research revealed the underestimated cellulolytic potential of the Ktedonobacteria lineage and highlighted its potential biotechnological utility as a promising microbial resource for the discovery of industrially useful cellulases.


Subject(s)
Carbohydrate Metabolism/genetics , Cellulases/genetics , Cellulose/metabolism , Chloroflexi , Bacteria/metabolism , Cellulases/metabolism , Chloroflexi/classification , Chloroflexi/enzymology , Chloroflexi/genetics , Chloroflexi/metabolism , Chromosome Mapping , Fungi/metabolism , Gene Expression Regulation, Bacterial , Genome, Bacterial , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Metabolic Engineering , Organisms, Genetically Modified , Plants/metabolism , Polysaccharides/metabolism
11.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190578, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33012223

ABSTRACT

While microbial communities in the human body (microbiota) are now commonly associated with health and disease in industrialised populations, we know very little about how these communities co-evolved and changed with humans throughout history and deep prehistory. We can now examine these communities by sequencing ancient DNA preserved within calcified dental plaque (calculus), providing insights into the origins of disease and their links to human history. Here, we examine ancient DNA preserved within dental calculus samples and their associations with two major cultural periods in Japan: the Jomon period hunter-gatherers approximately 3000 years before present (BP) and the Edo period agriculturalists 400-150 BP. We investigate how human oral microbiomes have changed in Japan through time and explore the presence of microorganisms associated with oral diseases (e.g. periodontal disease, dental caries) in ancient Japanese populations. Finally, we explore oral microbial strain diversity and its potential links to ancient demography in ancient Japan by performing phylogenomic analysis of a widely conserved oral species-Anaerolineaceae oral taxon 439. This research represents, to our knowledge, the first study of ancient oral microbiomes from Japan and demonstrates that the analysis of ancient dental calculus can provide key information about the origin of non-infectious disease and its deep roots with human demography. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Subject(s)
Chloroflexi/genetics , Dental Caries/history , Genome, Bacterial , Microbiota , Mouth/microbiology , Periodontal Diseases/history , Chloroflexi/classification , Demography , Dental Caries/microbiology , History, 17th Century , History, 18th Century , History, 19th Century , History, Ancient , Humans , Japan , Periodontal Diseases/microbiology , Phylogeny , Population Dynamics
12.
FEMS Microbiol Lett ; 367(19)2020 10 21.
Article in English | MEDLINE | ID: mdl-33016309

ABSTRACT

Chloroflexales bacteria are mostly known as filamentous anoxygenic phototrophs that thrive as members of the microbial communities of hot spring cyanobacterial mats. Recently, we described many new Chloroflexales species from non-thermal environments and showed that mesophilic Chloroflexales are more diverse than previously expected. Most of these species were isolated from aquatic environments of mid-latitudes. Here, we present the comprehensive characterization of a new filamentous multicellular anoxygenic phototrophic Chloroflexales bacterium from an Arctic coastal environment (Kandalaksha Gulf, the White Sea). Phylogenomic analysis and 16S rRNA phylogeny indicated that this bacterium belongs to the Oscillochloridaceae family as a new species. We propose that this species be named 'Candidatus Oscillochloris kuznetsovii'. The genomes of this species possessed genes encoding sulfide:quinone reductase, the nitrogenase complex and the Calvin cycle, which indicate potential for photoautotrophic metabolism. We observed only mesophilic anaerobic anoxygenic phototrophic growth of this novel bacterium. Electron microphotography showed the presence of chlorosomes, polyhydroxyalkanoate-like granules and polyphosphate-like granules in the cells. High-performance liquid chromatography also revealed the presence of bacteriochlorophylls a, c and d as well as carotenoids. In addition, we found that this bacterium is present in benthic microbial communities of various coastal environments of the Kandalaksha Gulf.


Subject(s)
Chloroflexi/classification , Arctic Regions , Chloroflexi/genetics , Chloroflexi/metabolism , Environment , Phototrophic Processes , Phylogeny , RNA, Ribosomal, 16S/genetics , Species Specificity
13.
Microbes Environ ; 35(3)2020.
Article in English | MEDLINE | ID: mdl-32727976

ABSTRACT

We report the draft metagenome-assembled genome of a member of the Chloroflexi family Herpetosiphonaceae from microbial biofilms developed in a circumneutral, iron-rich hot spring in Japan. This taxon represents a novel genus and species-here proposed as Candidatus Anthektikosiphon siderophilum-that expands the known taxonomic and genetic diversity of the Herpetosiphonaceae and helps orient the evolutionary history of key traits like photosynthesis and aerobic respiration in the Chloroflexi.


Subject(s)
Chloroflexi/classification , Hot Springs/microbiology , Chloroflexi/genetics , DNA, Bacterial/genetics , Evolution, Molecular , Ferrous Compounds/analysis , Genes, Bacterial/genetics , Genetic Variation , Genome, Bacterial/genetics , Hot Springs/chemistry , Japan , Metagenome , Phylogeny , Sequence Analysis, DNA
14.
J Microbiol ; 58(9): 750-760, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32710300

ABSTRACT

The soil organic carbon (SOC) mineralization rate in sandy soil plays an important role in improving soil quality, and a research is needed to determine management practices that optimize the mineralization rate. When sandy soil is improved by adding soft rock, the specific promotion process of bacterium to SOC mineralization remain unclear. To investigate these mechanisms, we selected four treatments with soft rock to sand volume ratios of 0:1 (CK), 1:5 (C1), 1:2 (C2) and 1:1 (C3) to study. The mineralization rate of organic carbon was measured using the lye absorption method. High-throughput sequencing and scanning electron microscopy were used to determine the bacterial community structure and soil microstructure, respectively. The results showed that the organic carbon content of the sandy soil increased significantly (182.22-276.43%) after using the soft rock treatments. The SOC mineralization rate could be divided into two stages: a rapid decline during days 1-8 and a slow decline during days 8-60. With increased incubation time, the intensity of the cumulative release of organic carbon gradually weakened. Compared with the CK treatment, the SOC mineralization accumulation (Ct) and the potential mineralizable organic carbon content (C0) in the C1, C2, and C3 treatments increased significantly, by 106.98-225.94% and 112.22-254.08%, respectively. The cumulative mineralization rate (Cr) was 18.11% and 21.38% smaller with treatments C2 and C3, respectively. The SOC mineralization rate constant (k) decreased significantly after the addition of soft rock, while the half-turnover period (Th) changed inversely with k. Compared with the CK treatment, the number of gene copies of the soil bacteria increased by 15.38-272.53% after adding soft rock, with the most significant increase in treatment C3. The bacterial diversity index also increased significantly under treatment C3. The three dominant bacteria were Proteobacteria, Actinobacteria, and Chloroflexi. The correlation between Cr and one of the non-dominant bacteria, Firmicutes, was large, and the bacteria had a significant positive correlation with k. At the same time, the abundance of Firmicutes under treatments C2 and C3 was small. As the proportion of soft rock increased, the soil particles changed from point contact to surface contact, and the adhesion on the surface of the particles gradually increased. Results from this study show that the retention time of SOC can be increased and the carbon sequestration effect is better when the ratio of soft rock to sand is set to 1:2.


Subject(s)
Bacteria/metabolism , Carbon Sequestration/physiology , Organic Chemicals/analysis , Soil/chemistry , Actinobacteria/classification , Actinobacteria/metabolism , Bacteria/classification , Biodiversity , Chloroflexi/classification , Chloroflexi/metabolism , Firmicutes/classification , Firmicutes/metabolism , Microbiota , Organic Chemicals/chemistry , Proteobacteria/classification , Proteobacteria/metabolism , RNA, Ribosomal, 16S/genetics , Soil Microbiology
15.
Environ Microbiol Rep ; 12(5): 503-513, 2020 10.
Article in English | MEDLINE | ID: mdl-32613733

ABSTRACT

Photosynthetic bacteria are abundant in alkaline, terrestrial hot springs and there is a long history of research on phototrophs in Yellowstone National Park (YNP). Hot springs provide a framework to examine the ecophysiology of phototrophs in situ because they provide natural gradients of geochemistry, pH and temperature. Phototrophs within the Cyanobacteria and Chloroflexi groups are frequently observed in alkaline hot springs. Decades of research has determined that temperature constrains Cyanobacteria in alkaline hot springs, but factors that constrain the distribution of phototrophic Chloroflexi remain unresolved. Using a combination of 16S rRNA gene sequencing and photoassimilation microcosms, we tested the hypothesis that temperature would constrain the activity and composition of phototrophic Cyanobacteria and Chloroflexi. We expected diversity and rates of photoassimilation to decrease with increasing temperature. We report 16S rRNA amplicon sequencing along with carbon isotope signatures and photoassimilation from 45 to 72°C in two alkaline hot springs. We find that Roseiflexus, Chloroflexus (Chloroflexi) and Leptococcus (Cyanobacteria) operational taxonomic units (OTUs) have distinct distributions with temperature. This distribution suggests that, like phototrophic Cyanobacteria, temperature selects for specific phototrophic Chloroflexi taxa. The richness of phototrophic Cyanobacteria decreased with increasing temperature along with a decrease in oxygenic photosynthesis, whereas Chloroflexi richness and rates of anoxygenic photosynthesis did not decrease with increasing temperature, even at temperatures approaching the upper limit of photosynthesis (~72-73°C). Our carbon isotopic data suggest an increasing prevalence of the 3-hydroxypropionate pathway with decreasing temperature coincident with photoautotrophic Chloroflexi. Together these results indicate temperature plays a role in defining the niche space of phototrophic Chloroflexi (as has been observed for Cyanobacteria), but other factors such as morphology, geochemistry, or metabolic diversity of Chloroflexi, in addition to temperature, could determine the niche space of this highly versatile group.


Subject(s)
Chloroflexi/metabolism , Cyanobacteria/metabolism , Hot Springs/chemistry , Hot Springs/microbiology , Alkalies/analysis , Chloroflexi/classification , Chloroflexi/genetics , Chloroflexi/growth & development , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/growth & development , Ecosystem , Hot Temperature , Parks, Recreational , Photosynthesis , Phototrophic Processes , Phylogeny
16.
Environ Microbiol ; 22(8): 3394-3412, 2020 08.
Article in English | MEDLINE | ID: mdl-32495495

ABSTRACT

Recent advances in sequencing technology and bioinformatic pipelines have allowed unprecedented access to the genomes of yet-uncultivated microorganisms from diverse environments. However, the catalogue of freshwater genomes remains limited, and most genome recovery attempts in freshwater ecosystems have only targeted specific taxa. Here, we present a genome recovery pipeline incorporating iterative subtractive binning, and apply it to a time series of 100 metagenomic datasets from seven connected lakes and estuaries along the Chattahoochee River (Southeastern USA). Our set of metagenome-assembled genomes (MAGs) represents >400 yet-unnamed genomospecies, substantially increasing the number of high-quality MAGs from freshwater lakes. We propose names for two novel species: 'Candidatus Elulimicrobium humile' ('Ca. Elulimicrobiota', 'Patescibacteria') and 'Candidatus Aquidulcis frankliniae' ('Chloroflexi'). Collectively, our MAGs represented about half of the total microbial community at any sampling point. To evaluate the prevalence of these genomospecies in the chronoseries, we introduce methodologies to estimate relative abundance and habitat preference that control for uneven genome quality and sample representation. We demonstrate high degrees of habitat-specialization and endemicity for most genomospecies in the Chattahoochee lakes. Wider ecological ranges characterized smaller genomes with higher coding densities, indicating an overall advantage of smaller, more compact genomes for cosmopolitan distributions.


Subject(s)
Chloroflexi/classification , Chloroflexi/isolation & purification , Genome, Bacterial/genetics , Lakes/microbiology , Chloroflexi/genetics , Databases, Genetic , Metagenome/genetics , Metagenomics , Microbiota/genetics
17.
Environ Microbiol ; 22(8): 3143-3157, 2020 08.
Article in English | MEDLINE | ID: mdl-32372527

ABSTRACT

Members of the bacterial candidate phylum WPS-2 (or Eremiobacterota) are abundant in several dry, bare soil environments. In a bare soil deposited by an extinct iron-sulfur spring, we found that WPS-2 comprised up to 24% of the bacterial community and up to 108 cells per g of soil based on 16S rRNA gene sequencing and quantification. A single genus-level cluster (Ca. Rubrimentiphilum) predominated in bare soils but was less abundant in adjacent forest. Nearly complete genomes of Ca. Rubrimentiphilum were recovered as single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs). Surprisingly, given the abundance of WPS-2 in bare soils, the genomes did not indicate any capacity for autotrophy, phototrophy, or trace gas metabolism. Instead, they suggest a predominantly aerobic organoheterotrophic lifestyle, perhaps based on scavenging amino acids, nucleotides, and complex oligopeptides, along with lithotrophic capacity on thiosulfate. Network analyses of the entire community showed that some species of Chloroflexi, Actinobacteria, and candidate phylum AD3 (or Dormibacterota) co-occurred with Ca. Rubrimentiphilum and may represent ecological or metabolic partners. We propose that Ca. Rubrimentiphilum act as efficient heterotrophic scavengers. Combined with previous studies, these data suggest that the phylum WPS-2 includes bacteria with diverse metabolic capabilities.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Chloroflexi/classification , Chloroflexi/genetics , Chloroflexi/isolation & purification , Genomics , Metagenome , Phylogeny , RNA, Ribosomal, 16S , Soil
18.
Environ Microbiol Rep ; 12(3): 277-287, 2020 06.
Article in English | MEDLINE | ID: mdl-32090489

ABSTRACT

Methylmercury is a neurotoxin that bioaccumulates from seawater to high concentrations in marine fish, putting human and ecosystem health at risk. High methylmercury levels have been found in the oxic subsurface waters of all oceans, but only anaerobic microorganisms have been shown to efficiently produce methylmercury in anoxic environments. The microaerophilic nitrite-oxidizing bacteria Nitrospina have previously been suggested as possible mercury methylating bacteria in Antarctic sea ice. However, the microorganisms responsible for processing inorganic mercury into methylmercury in oxic seawater remain unknown. Here, we show metagenomic and metatranscriptomic evidence that the genetic potential for microbial methylmercury production is widespread in oxic seawater. We find high abundance and expression of the key mercury methylating genes hgcAB across all ocean basins, corresponding to the taxonomic relatives of known mercury methylating bacteria from Deltaproteobacteria, Firmicutes and Chloroflexi. Our results identify Nitrospina as the predominant and widespread microorganism carrying and actively expressing hgcAB. The highest hgcAB abundance and expression occurs in the oxic subsurface waters of the global ocean where the highest MeHg concentrations are typically observed.


Subject(s)
Bacteria , Methylmercury Compounds/metabolism , Seawater , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Chloroflexi/classification , Chloroflexi/genetics , Chloroflexi/isolation & purification , Chloroflexi/metabolism , Deltaproteobacteria/classification , Deltaproteobacteria/genetics , Deltaproteobacteria/isolation & purification , Deltaproteobacteria/metabolism , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Firmicutes/metabolism , Genes, Bacterial , Mercury/metabolism , Metagenomics , Methylation , Microbiota , Oceans and Seas , Phylogeny , Seawater/chemistry , Seawater/microbiology , Transcriptome
19.
Int J Syst Evol Microbiol ; 70(3): 1805-1813, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31971497

ABSTRACT

An aerobic, Gram-stain-positive, mesophilic Ktedonobacteria strain, W12T, was isolated from soil of the Mt Zao volcano in Miyagi, Japan. Cells were filamentous, non-motile, and grew at 20-37 °C (optimally at 30 °C), at pH 5.0-7.0 (optimally at pH 6.0) and with <2 % (w/v) NaCl on 10-fold diluted Reasoner's 2A (R2A) medium. Oval-shaped spores were formed on aerial mycelia. Strain W12T hydrolysed microcrystalline cellulose and xylan very weakly, and used d-glucose as its sole carbon source. The major menaquinone was MK-9, and the major cellular fatty acids were C16 : 1 2-OH, iso-C17 : 0, summed feature 9 (10-methyl C16 : 0 and/or iso-C17 : 1ω9c) and anteiso-C17 : 0. Cell-wall sugars were mannose and xylose, and cell-wall amino acids were d-glutamic acid, glycine, l-serine, d-alanine, l-alanine, ß-alanine and l-ornithine. Polar lipids were phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol, an unidentified glycolipid and an unidentified phospholipid. Strain W12T has a genome of 7.42 Mb with 49.7 mol% G+C content. Nine copies of 16S rRNA genes with a maximum dissimilarity of 1.02 % and 13 biosynthetic gene clusters mainly coding for peptide products were predicted in the genome. Phylogenetic analysis based on both 16S rRNA gene and whole genome sequences indicated that strain W12T represents a novel species in the genus Dictyobacter. The most closely related Dictyobacter type strain was Dictyobacter alpinus Uno16T, with 16S rRNA gene sequence similarity and genomic average nucleotide identity of 98.37 % and 80.00 %, respectively. Herein, we propose the name Dictyobacter vulcani sp. nov. for the type strain W12T (=NBRC 113551T=BCRC 81169T) in the bacterial class Ktedonobacteria.


Subject(s)
Chloroflexi/classification , Phylogeny , Soil Microbiology , Bacterial Typing Techniques , Base Composition , Cell Wall/chemistry , Chloroflexi/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Glycolipids/chemistry , Japan , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry , Volcanic Eruptions
20.
Environ Microbiol ; 22(1): 433-446, 2020 01.
Article in English | MEDLINE | ID: mdl-31736217

ABSTRACT

The Laurentian Great Lakes are a vast, interconnected freshwater system spanning strong physicochemical gradients, thus constituting a powerful natural laboratory for addressing fundamental questions about microbial ecology and evolution. We present a comparative analysis of pelagic microbial communities across all five Laurentian Great Lakes, focusing on Bacterial and Archaeal picoplankton characterized via 16S rRNA amplicon sequencing. We collected samples throughout the water column from the major basins of each lake in spring and summer over 2 years. Two oligotypes, classified as LD12 (Alphaproteobacteria) and acI-B1 (Actinobacteria), were among the most abundant in every sample. At the same time, microbial communities showed distinct patterns with depth during summer stratification. Deep hypolimnion samples were frequently dominated by a Chloroflexi oligotype that reached up to 19% relative abundance. Stratified surface communities differed between the colder, less productive upper lakes (Superior, Michigan, Huron) and warmer, more productive lower lakes (Erie, Ontario), in part due to an Actinobacteria oligotype (acI-C2) that averaged 7.7% of sequences in the lower lakes but <0.2% in the upper lakes. Together, our findings suggest that both hydrologic connectivity and local selective pressures shape microbial communities in the Great Lakes and establish a framework for future investigations.


Subject(s)
Actinobacteria/isolation & purification , Alphaproteobacteria/isolation & purification , Archaea/isolation & purification , Chloroflexi/isolation & purification , Lakes/microbiology , Microbiota/genetics , Actinobacteria/classification , Actinobacteria/genetics , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Archaea/classification , Archaea/genetics , Chloroflexi/classification , Chloroflexi/genetics , Michigan , Phylogeny , Plankton/classification , Plankton/genetics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL