Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.187
Filter
1.
PLoS One ; 19(7): e0306031, 2024.
Article in English | MEDLINE | ID: mdl-38959268

ABSTRACT

Brown spot of citrus caused by Alternaria citri is one of the emerging threats to the successful production of citrus crops. The present study, conducted with a substantial sample size of 50 leaf samples for statistical reliability, aimed to determine the change in mineral content in citrus leaves after brown spot disease attack. Leaf samples from a diverse range of susceptible citrus varieties (Valentia late, Washington navel, and Kinnow) and resistant varieties (Citron, Eruka lemon, and Mayer lemon) were analyzed. Significant variations (p ≤ 0.05) in mineral contents were observed across reaction groups (inoculated and un-inoculated), types (resistant and susceptible), and varieties of citrus in response to infection of Alternaria citri. The analysis of variance showed significant changes in mineral levels of citrus leaves, including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn), sodium (Na), iron (Fe), and copper (Cu). The results indicate that the concentration of N and P differed by 6.63% and 1.44%, respectively, in resistant plants, while susceptible plants showed a difference of 6.07% and 1.19%. Moreover, resistant plants showed a higher concentrations of K, Ca, Mg, Zn, Na, Fe, and Cu at 8.40, 2.1, 1.83, 2.21, 1.58, 2.89, and 0.36 ppm respectively, compared to susceptible plants which showed concentrations of 5.99, 1.93, 1.47, 1.09, 1.24, 1.81, and 0.31 ppm respectively. Amounts of mineral contents were reduced in both resistant as well as susceptible plants of citrus after inoculation. Amount of N (8.56), P (1.87) % while K (10.74), Ca (2.71), Mg (2.62), Zn (2.20), Na (2.08), Fe (3.57) and Cu (0.20) ppm were recorded in un-inoculated group of citrus plants that reduced to 3.15 and 0.76% and 3.66, 1.40, 0.63,0.42, 0.74, 1.13 and 0.13 ppm in inoculated group respectively. It was accomplished that susceptible varieties contained lower ionic contents than resistant varieties. The higher concentrations of ionic contents in resistant citrus varieties build up the biochemical and physiological processes of the citrus plant, which help to restrict spread of pathogens. Further research could explore the interplay between mineral nutrition and disease resistance in citrus, potentially leading to the development of new disease-resistant varieties.


Subject(s)
Alternaria , Citrus , Minerals , Plant Diseases , Plant Leaves , Citrus/microbiology , Citrus/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Minerals/analysis , Minerals/metabolism , Plant Leaves/microbiology , Plant Leaves/chemistry , Genotype , Disease Resistance/genetics , Phosphorus/analysis
2.
Pestic Biochem Physiol ; 202: 105933, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879325

ABSTRACT

Citrus sour rot is a common postharvest citrus disease caused by Geotrichum citri-aurantiiti, which has led to enormous economic losses, particularly during rainy seasons. In this study, we aimed to clarify the impact of berberine hydrochloride (BH), the hydrochloride form of an isoquinoline alkaloid, on the control efficiency of citrus sour rot and its antifungal mode against G. citri-aurantii. Results demonstrated that BH markedly impede the propagation of G. citri-aurantii by delaying the spores development from dormant stage into swollen and germinating stages, with the MIC and MFC value of 0.08 and 0.16 g L-1, respectively. When the artificially inoculated citrus fruit in control group were totally rotted, the disease incidence of BH-treated groups decreased by 35.00%-73.30%, which effectively delayed the disease progression and almost did not negatively affect fruit quality. SEM observation, CFW and PI staining images revealed that BH caused significant damage to both the cell membrane and cell wall of G. citri-aurantii spores, whereas only the cell membrane of the mycelium was affected. The impact of cell wall was related to the block of chitin and ß-1,3-glucan synthesis. Transcriptome results and further verification proved that 0.5 × MIC BH treatment affected the glycolysis pathway and TCA cycle mainly by inhibiting the production of acetyl-CoA and pyruvate. Subsequently, the activities of key enzymes declined, resulting in a further decrease in ATP levels, ultimately inhibiting the germination of spores. In conlusion, BH delays citrus sour rot mainly by disrupting carbohydrate and energy metabolism of G. citri-aurantii spores.


Subject(s)
Berberine , Citrus , Energy Metabolism , Geotrichum , Plant Diseases , Spores, Fungal , Citrus/microbiology , Geotrichum/drug effects , Geotrichum/metabolism , Plant Diseases/microbiology , Plant Diseases/prevention & control , Berberine/pharmacology , Energy Metabolism/drug effects , Spores, Fungal/drug effects , Carbohydrate Metabolism/drug effects , Fungicides, Industrial/pharmacology
3.
Front Cell Infect Microbiol ; 14: 1408362, 2024.
Article in English | MEDLINE | ID: mdl-38938879

ABSTRACT

The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama is the leading vector of Candidatus Liberibacter asiaticus (CLas), the causative agent of citrus Huanglongbing (HLB) disease. The distribution and dynamics of CLas within ACP are critical to understanding how the transmission, spread and infection of CLas occurs within its host vector in nature. In this study, the distribution and titer changes of CLas in various tissues of ACP 5th instar nymphs and adults were examined by fluorescence in situ hybridization (FISH) and real-time quantitative PCR (qPCR) techniques. Results demonstrated that 100% of ACP 5th instar nymphs and adults were infected with CLas following feeding on infected plants, and that CLas had widespread distribution in most of the tissues of ACP. The titers of CLas within the midgut, salivary glands and hemolymph tissues were the highest in both 5th instar nymphs and adults. When compared with adults, the titers of CLas in these three tissues of 5th instar nymphs were significantly higher, while in the mycetome, ovary and testes they were significantly lower than those of adults. FISH visualization further confirmed these findings. Dynamic analysis of CLas demonstrated that it was present across all the developmental ages of ACP adults. There was a discernible upward trend in the presence of CLas with advancing age in most tissues of ACP adults, including the midgut, hemolymph, salivary glands, foot, head, cuticula and muscle. Our findings have significant implications for the comprehensive understanding of the transmission, dissemination and infestation of CLas, which is of much importance for developing novel strategies to halt the spread of CLas, and therefore contribute to the efficient prevention and control of HLB.


Subject(s)
Citrus , Hemiptera , In Situ Hybridization, Fluorescence , Insect Vectors , Nymph , Plant Diseases , Animals , Hemiptera/microbiology , Insect Vectors/microbiology , Plant Diseases/microbiology , Nymph/microbiology , Citrus/microbiology , Rhizobiaceae/genetics , Rhizobiaceae/physiology , Real-Time Polymerase Chain Reaction , Salivary Glands/microbiology , Hemolymph/microbiology
4.
Food Chem ; 455: 139769, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38843716

ABSTRACT

Bitter orange (Citrus aurantium) is an important source of essential oils with high antimicrobial activities, however the composition and antifungal potential of the decoction peels is little explored. This study assessed the peel decoction's chemical profile at the secondary metabolism level and its antifungal activity against the melon phytopathogen Fusarium jinanense. The decoction's antifungal potential was investigated using a bioassay-guided fractionation approach based on Solid-Phase Extraction (SPE) and LC-HRMS/MS analysis. Coumarins and flavones were the most abundant classes of compounds in the high-value fractions responsible for up to 61% of the mycelial inhibition of F. jinanense. Overall, this study has presented for the first time the chemical composition, the antifungal potential of the decoction of C. aurantium peels and the compounds associated with these results. This strategy can guide the exploration of under-explored food sources and add value to compounds or fractions enriched with bioactive compounds.


Subject(s)
Citrus , Fusarium , Plant Diseases , Plant Extracts , Fusarium/drug effects , Plant Diseases/microbiology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Citrus/chemistry , Citrus/microbiology , Cucurbitaceae/chemistry , Cucurbitaceae/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Tandem Mass Spectrometry , Solid Phase Extraction , Microbial Sensitivity Tests
5.
Int J Biol Macromol ; 273(Pt 1): 133109, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871099

ABSTRACT

Green (Penicillium digitatum) mold can severely endanger the citrus fruits production and quality. Targeting the protection of lemon fruits from green mold infestations with nanobiotechnology approach, the fenugreek seed mucilage (FM) was extracted and exploited for biosynthesis of selenium (SeNPs) nanoparticles; their nanocomposites (NCs) with chitosan (CT) was constructed and employed as antifungal materials and edible coating (ECs) to protect lemon fruits against green mold. The nanoparticles formation and conjugations were verified by infrared (FTIR) analysis and electron microscopy. The FM-synthesized SeNPs had particles average of 8.35 nm, were the NCs of them with CT had size mean of 49.33 nm and charged with +22.8 mV. The CT/FM/SeNPs composite exhibited superior antifungal actions toward P. digitatum isolates, up to 32.2 mm inhibition diameter and 12.5 mg/mL inhibitory concentration, which exceeded the actions of imazilil. The microscopic screening of exposed P. digitatum to NCs clarified their mycelial destructive action within 30 h. The coating of infected lemons with fabricated NCs led to complete elimination of green mold development after 10 days of coating, without any infestation remarks. The innovative fabrication of NCs from CT/FM/SeNPs is strongly suggested to protect citrus crops from green mold and preserve fruits quality.


Subject(s)
Chitosan , Citrus , Nanocomposites , Plant Mucilage , Seeds , Selenium , Trigonella , Chitosan/chemistry , Chitosan/pharmacology , Nanocomposites/chemistry , Citrus/chemistry , Citrus/microbiology , Seeds/chemistry , Trigonella/chemistry , Selenium/chemistry , Selenium/pharmacology , Plant Mucilage/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Nanoparticles/chemistry , Penicillium/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control
6.
Microbiol Spectr ; 12(7): e0017024, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38832800

ABSTRACT

Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a devastating agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Physiological concentrations of diaphorin, which D. citri contains at levels as high as 2-20 mM, are inhibitory to various eukaryotes and Bacillus subtilis (Firmicutes: Bacilli) but promote the growth and metabolic activity of Escherichia coli (Gammaproteobacteria: Enterobacterales). Our previous study demonstrated that 5-mM diaphorin, which exhibits significant inhibitory and promoting effects on cultured B. subtilis and E. coli, respectively, inhibits in vitro gene expression utilizing purified B. subtilis and E. coli ribosomes. This suggested that the adverse effects of diaphorin on B. subtilis are partly due to its influence on gene expression. However, the result appeared inconsistent with the positive impact on E. coli. Moreover, the diaphorin concentration in bacterial cells, where genes are expressed in vivo, may be lower than in culture media. Therefore, the present study analyzed the effects of 50 and 500 µM of diaphorin on bacterial gene expression using the same analytical method. The result revealed that this concentration range of diaphorin, in contrast to 5-mM diaphorin, promotes the in vitro translation with the B. subtilis and E. coli ribosomes, suggesting that the positive effects of diaphorin on E. coli are due to its direct effects on translation. This study demonstrated for the first time that a pederin-type compound promotes gene expression, establishing a basis for utilizing its potential in pest management and industrial applications.IMPORTANCEThis study revealed that a limited concentration range of diaphorin, a secondary metabolite produced by a bacterial symbiont of an agricultural pest, promotes cell-free gene expression utilizing substrates and proteins purified from bacteria. The unique property of diaphorin, which is inhibitory to various eukaryotes and Bacillus subtilis but promotes the growth and metabolic activity of Escherichia coli, may affect the microbial flora of the pest insect, potentially influencing the transmission of devastating plant pathogens. Moreover, the activity may be exploited to improve the efficacy of industrial production by E. coli, which is often used to produce various important materials, including pharmaceuticals, enzymes, amino acids, and biofuels. This study elucidated a part of the mechanism by which the unique activity of diaphorin is expressed, constructing a foundation for applying the distinct property to pest management and industrial use.


Subject(s)
Bacillus subtilis , Escherichia coli , Hemiptera , Polyketides , Ribosomes , Symbiosis , Hemiptera/microbiology , Animals , Ribosomes/metabolism , Ribosomes/genetics , Polyketides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Gene Expression Regulation, Bacterial , Citrus/microbiology , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism
7.
Microbiol Spectr ; 12(6): e0367323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38722158

ABSTRACT

Xanthomonas citri subsp. citri (Xcc) is a bacterium that causes citrus canker, an economically important disease that results in premature fruit drop and reduced yield of fresh fruit. In this study, we demonstrated the involvement of XanB, an enzyme with phosphomannose isomerase (PMI) and guanosine diphosphate-mannose pyrophosphorylase (GMP) activities, in Xcc pathogenicity. Additionally, we found that XanB inhibitors protect the host against Xcc infection. Besides being deficient in motility, biofilm production, and ultraviolet resistance, the xanB deletion mutant was unable to cause disease, whereas xanB complementation restored wild-type phenotypes. XanB homology modeling allowed in silico virtual screening of inhibitors from databases, three of them being suitable in terms of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, which inhibited GMP (but not PMI) activity of the Xcc recombinant XanB protein in more than 50%. Inhibitors reduced citrus canker severity up to 95%, similarly to copper-based treatment. xanB is essential for Xcc pathogenicity, and XanB inhibitors can be used for the citrus canker control. IMPORTANCE: Xcc causes citrus canker, a threat to citrus production, which has been managed with copper, being required a more sustainable alternative for the disease control. XanB was previously found on the surface of Xcc, interacting with the host and displaying PMI and GMP activities. We demonstrated by xanB deletion and complementation that GMP activity plays a critical role in Xcc pathogenicity, particularly in biofilm formation. XanB homology modeling was performed, and in silico virtual screening led to carbohydrate-derived compounds able to inhibit XanB activity and reduce disease symptoms by 95%. XanB emerges as a promising target for drug design for control of citrus canker and other economically important diseases caused by Xanthomonas sp.


Subject(s)
Bacterial Proteins , Citrus , Plant Diseases , Xanthomonas , Xanthomonas/enzymology , Xanthomonas/genetics , Xanthomonas/pathogenicity , Citrus/microbiology , Plant Diseases/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Biofilms/growth & development , Virulence
8.
Microb Pathog ; 192: 106688, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750772

ABSTRACT

The unprecedented worldwide spread of the Citrus greening disorder, called Huanglongbing (HLB), has urged researchers for rapid interventions. HLB poses a considerable threat to global citriculture owing to its devastating impact on citrus species. This disease is caused by Candidatus Liberibacter species (CLs), primarily transferred through psyllid insects, such as Trioza erytreae and Diaphorina citri. It results in phloem malfunction, root decline, and altered plant source-sink relationships, leading to a deficient plant with minimal yield before it dies. Thus, many various techniques have been employed to eliminate HLB and control vector populations through the application of insecticides and antimicrobials. The latter have evidenced short-term efficiency. While nucleic acid-based analyses and symptom-based identification of the disease have been used for detection, they suffer from limitations such as false negatives, complex sample preparation, and high costs. To address these challenges, secreted protein-based biomarkers offer a promising solution for accurate, rapid, and cost-effective disease detection. This paper presents an overview of HLB symptoms in citrus plants, including leaf and fruit symptoms, as well as whole tree symptoms. The differentiation between HLB symptoms and those of nutrient deficiencies is discussed, emphasizing the importance of precise identification for effective disease management. The elusive nature of CLs and the challenges in culturing them in axenic cultures have hindered the understanding of their pathogenic mechanisms. However, genome sequencing has provided insights into CLs strains' metabolic traits and potential virulence factors. Efforts to identify potential host target genes for resistance are discussed, and a high-throughput antimicrobial testing method using Citrus hairy roots is introduced as a promising tool for rapid assessment of potential treatments. This review summarizes current challenges and novel therapies for HLB disease. It highlights the urgency of developing accurate and efficient detection methods and identifying the complex relations between CLs and their host plants. Transgenic citrus in conjunction with secreted protein-based biomarkers and innovative testing methodologies could revolutionize HLB management strategies toward achieving a sustainable citrus cultivation. It offers more reliable and practical solutions to combat this devastating disease and safeguard the global citriculture industry.


Subject(s)
Citrus , Plant Diseases , Citrus/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Animals , Hemiptera/microbiology , Rhizobiaceae/genetics , Rhizobiaceae/pathogenicity , Liberibacter/genetics , Plant Leaves/microbiology , Fruit/microbiology , Biomarkers , Insect Vectors/microbiology
9.
J Econ Entomol ; 117(3): 733-749, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38701242

ABSTRACT

Wolbachia pipientis is a maternally inherited intracellular bacterium that infects a wide range of arthropods. Wolbachia can have a significant impact on host biology and development, often due to its effects on reproduction. We investigated Wolbachia-mediated effects in the Asian citrus psyllid, Diaphorina citri Kuwayama, which transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease. Diaphorina citri are naturally infected with Wolbachia; therefore, investigating Wolbachia-mediated effects on D. citri fitness and CLas transmission required artificial reduction of this endosymbiont with the application of doxycycline. Doxycycline treatment of psyllids reduced Wolbachia infection by approximately 60% in both male and female D. citri. Psyllids treated with doxycycline exhibited higher CLas acquisition in both adults and nymphs as compared with negative controls. In addition, doxycycline-treated psyllids exhibited decreased fitness as measured by reduced egg and nymph production as well as adult emergence as compared with control lines without the doxycycline treatment. Our results indicate that Wolbachia benefits D. citri by improving fitness and potentially competes with CLas by interfering with phytopathogen acquisition. Targeted manipulation of endosymbionts in this phytopathogen vector may yield disease management tools.


Subject(s)
Doxycycline , Genetic Fitness , Hemiptera , Wolbachia , Animals , Wolbachia/physiology , Hemiptera/microbiology , Female , Doxycycline/pharmacology , Male , Nymph/microbiology , Nymph/growth & development , Liberibacter , Plant Diseases/microbiology , Plant Diseases/prevention & control , Symbiosis , Anti-Bacterial Agents/pharmacology , Citrus/microbiology
10.
Int J Biol Macromol ; 270(Pt 1): 132017, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697438

ABSTRACT

Citrus fruit rich in beneficial health-promoting nutrients used for functional foods or dietary supplements production. However, its quality and yield were damaged by citrus target spot. Citrus target spot is a low-temperature fungal disease caused by Pseudofabraea citricarpa, resulting in citrus production reductions and economic losses. In this study, transcriptome and gene knockout mutant analyses were performed on the growth and pathogenicity of P. citricarpa under different temperature conditions to quantify the functions of temperature-sensitive proteins (PscTSP). The optimum growth temperature for P. citricarpa strain WZ1 was 20 °C, while it inhibited or stopped growth above 30 °C and stopped growth below 4 °C or above 30 °C. Certain PscTSP-key genes of P. citricarpa were identified under high temperature stress. qRT-PCR analysis confirmed the expression levels of PscTSPs under high temperature stress. PscTSPs were limited by temperature and deletion of the PscTSP-X gene leads to changes in the integrity of citrus cell walls, osmotic regulation, oxidative stress response, calcium regulation, chitin synthesis, and the pathogenicity of P. citricarpa. These results provide insight into the underlying mechanisms of temperature sensitivity and pathogenicity in P. citricarpa, providing a foundation for developing resistance strategies against citrus target spot disease.


Subject(s)
Citrus , Fungal Proteins , Citrus/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Fungal , Temperature , Stress, Physiological , Hot Temperature , Virulence/genetics , Heat-Shock Response/genetics
11.
Food Chem ; 453: 139669, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781900

ABSTRACT

Green mold is a common postharvest disease infected by Penicillium digitatum that causes citrus fruit decay, and severely affects fruit storage quality. This work aimed to investigate the antifungal activity of Sanxiapeptin against P. digitatum, and elucidate the possible mechanisms involved. Sanxiapeptin was capable of inhibiting spore germination, germ tube length and mycelial growth. The SYTOX green staining assay revealed that Sanxiapeptin targeted the fungal membrane, and changed the membrane permeability, leading to the leakage of cell constituents. Meanwhile, Sanxiapeptin could influence the cell wall permeability and integrity by increasing the activities of chitinase and glucanase, resulting in abnormal chitin consumption and the decrease of glucan. Intriguingly, Sanxiapeptin could effectively control postharvest decay in citrus fruits, and activate the host resistance responses by regulating the phenylpropanoid pathway. In conclusion, Sanxiapeptin exhibits multiphasic antifungal mechanisms of action to control green mold in citrus fruits, shows great potential as novel food preservatives.


Subject(s)
Citrus , Food Preservatives , Fruit , Penicillium , Plant Diseases , Citrus/microbiology , Citrus/chemistry , Penicillium/growth & development , Penicillium/drug effects , Plant Diseases/microbiology , Fruit/microbiology , Fruit/chemistry , Fruit/growth & development , Fruit/drug effects , Food Preservatives/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Food Preservation/methods , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry
12.
J Agric Food Chem ; 72(22): 12596-12606, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771666

ABSTRACT

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a severe citrus disease. Currently, copper-containing pesticides are widely used to manage this disease, posing high risks to the environment and human health. This study reports the discovery of naturally occurring anti-Xcc compounds from a deep-sea fungus, Aspergillus terreus SCSIO 41202, and the possible mode of action. The ethyl acetate extract of A. terreus was subjected to bioassay-guided isolation, resulting in the discovery of eight anti-Xcc compounds (1-8) with minimum inhibitory concentrations (MICs) ranging from 0.078 to 0.625 mg/mL. The chemical structures of these eight metabolites were determined by integrative analysis of various spectroscopic data. Among these compounds, Asperporonin A (1) and Asperporonin B (2) were identified as novel compounds with a very unusual structural skeleton. The electronic circular dichroism was used to determine the absolute configurations of 1 and 2 through quantum chemical calculation. A bioconversion pathway involving pinacol rearrangement was proposed to produce the unusual compounds (1-2). Compound 6 exhibited an excellent anti-Xcc effect with a MIC value of 0.078 mg/mL, which was significantly more potent than the positive control CuSO4 (MIC = 0.3125 mg/mL). Compound 6 inhibited cell growth by disrupting biofilm formation, destroying the cell membrane, and inducing the accumulation of reactive oxygen species. In vivo tests indicated that compound 6 is highly effective in controlling citrus canker disease. These results indicate that compounds 1-8, especially 6, have the potential as lead compounds for the development of new, environmentally friendly, and efficient anti-Xcc pesticides.


Subject(s)
Anti-Bacterial Agents , Aspergillus , Microbial Sensitivity Tests , Plant Diseases , Xanthomonas , Xanthomonas/drug effects , Aspergillus/drug effects , Aspergillus/chemistry , Aspergillus/metabolism , Plant Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Citrus/chemistry , Citrus/microbiology , Molecular Structure
13.
Sci Rep ; 14(1): 12183, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806617

ABSTRACT

The fabrication of the first label-free electrochemical DNA probe biosensor for highly sensitive detection of Candidatus Liberibacter asiaticus (CLas), as the causal agent of citrus huanglongbing disease, is conducted here. An OMP probe was designed based on the hybridization with its target-specific sequence in the outer membrane protein (OMP) gene of CLas. The characterization of the steps of biosensor fabrication and hybridization process between the immobilized OMP-DNA probe and the target ssDNA oligonucleotides (OMP-complementary and three mismatches OMP or OMP-mutation) was monitored using cyclic voltammetry and electrochemical impedance spectroscopy based on increasing or decreasing in the electron transfer in [Fe (CN)6]3-/4- on the modified gold electrode surface. The biosensor sensitivity indicated that the peak currents were linear over ranges from 20 to 100 nM for OMP-complementary with the detection limit of 0.026 nM (S/N = 3). The absence of any cross-interference with other biological DNA sequences confirmed a high selectivity of fabricated biosensor. Likewise, it showed good specificity in discriminating the mutation oligonucleotides from complementary target DNAs. The functional performance of optimized biosensor was achieved via the hybridization of OMP-DNA probe with extracted DNA from citrus plant infected with CLas. Therefore, fabricated biosensor indicates promise for sensitivity and early detection of citrus huanglongbing disease.


Subject(s)
Bacterial Outer Membrane Proteins , Biosensing Techniques , Citrus , DNA Probes , Electrochemical Techniques , Plant Diseases , Biosensing Techniques/methods , Citrus/microbiology , Plant Diseases/microbiology , DNA Probes/genetics , Bacterial Outer Membrane Proteins/genetics , Electrochemical Techniques/methods , Electrodes , Nucleic Acid Hybridization , Dielectric Spectroscopy , Limit of Detection , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Liberibacter/genetics
14.
Fungal Biol ; 128(3): 1806-1813, 2024 May.
Article in English | MEDLINE | ID: mdl-38796265

ABSTRACT

Citrus black spot (CBS) caused by Phyllosticta citricarpa was reported for the first time in Tunisia in 2019. This was also the first reported occurrence of the disease in a Mediterranean climate. In Tunisia, CBS is mainly found in lemon (Citrus limon) orchards, and is seldom observed on sweet orange (Citrus × sinensis). This recent finding in North Africa raises questions about how the disease has been able to spread under Mediterranean climatic conditions. In this work, 216 Phyllosticta strains collected from lemon orchards in 2021, 2022 and 2023 throughout the country's main citrus-growing provinces were characterised by species morphological and molecular identification, mating type and Simple Sequence Repeats (SSR) microsatellite genotyping (MLG). P. citricarpa was the only species found to be associated with CBS in Tunisia. Although P. citricarpa is a heterothallic fungal species, potentially able to reproduce both sexually and asexually, a single mating type (MAT 1-1-1) idiomorph was found in the population. In addition, three MLGs were observed, across ten microsatellite loci, one of which was massively represented (93 %), indicating a clonal population. The clonality observed suggests a single recent introduction of the pathogen into the country. These findings support the idea that in Tunisia, P. citricarpa only reproduces asexually by pycniospores, with a relatively limited dispersal potential. This is consistent with the absence of pseudothecia on the leaf litter. These results show that CBS is able to thrive under Mediterranean conditions, even in the absence of sexual reproduction. This should be taken into consideration for CBS risk assessment and management.


Subject(s)
Ascomycota , Citrus , Genes, Mating Type, Fungal , Genotype , Microsatellite Repeats , Plant Diseases , Tunisia , Citrus/microbiology , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Plant Diseases/microbiology , Reproduction, Asexual , Genotyping Techniques
15.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791176

ABSTRACT

Extensive microbial interactions occur within insect hosts. However, the interactions between the Huanglongbing (HLB) pathogen and endosymbiotic bacteria within the Asian citrus psyllid (ACP, Diaphorina citri Kuwayama) in wild populations remain elusive. Thus, this study aimed to detect the infection rates of HLB in the ACP across five localities in China, with a widespread prevalence in Ruijin (RJ, 58%), Huidong (HD, 28%), and Lingui (LG, 15%) populations. Next, microbial communities of RJ and LG populations collected from citrus were analyzed via 16S rRNA amplicon sequencing. The results revealed a markedly higher microbial diversity in the RJ population compared to the LG population. Moreover, the PCoA analysis identified significant differences in microbial communities between the two populations. Considering that the inter-population differences of Bray-Curtis dissimilarity in the RJ population exceeded those between populations, separate analyses were performed. Our findings indicated an increased abundance of Enterobacteriaceae in individuals infected with HLB in both populations. Random forest analysis also identified Enterobacteriaceae as a crucial indicator of HLB infection. Furthermore, the phylogenetic analysis suggested a potential regulatory role of ASV4017 in Enterobacteriaceae for ACP, suggesting its possible attractant activity. This research contributes to expanding the understanding of microbial communities associated with HLB infection, holding significant implications for HLB prevention and treatment.


Subject(s)
Enterobacteriaceae , Hemiptera , Phylogeny , Plant Diseases , RNA, Ribosomal, 16S , Animals , Hemiptera/microbiology , Enterobacteriaceae/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/pathogenicity , RNA, Ribosomal, 16S/genetics , Plant Diseases/microbiology , China/epidemiology , Citrus/microbiology , Microbiota
16.
BMC Plant Biol ; 24(1): 378, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724893

ABSTRACT

Pakistan's economy greatly benefits from citrus production since these fruits are sold and consumed all over the world. Although citrus fruits are easy to cultivate, they are susceptible to diseases caused by bacteria, viruses, and fungi. These challenges, as well as difficulties in obtaining the proper nutrients, might negatively impact fruit yields and quality. Citrus canker is another complicated problem caused by the germ Xanthomonas axonopodis. This germ affects many types of citrus fruits all over the world. This study looked closely at how citrus canker affects the leaves and the quality of the fruit in places like Sargodha, Bhalwal, Kotmomin, and Silanwali, which are big areas for growing citrus in the Sargodha district. What we found was that plants without the disease had more chlorophyll in their leaves compared to the sick plants. Also, the healthy plants had better amounts of important minerals like calcium, magnesium, potassium, and phosphorus in their fruits. But the fruits with the disease had too much sodium, and the iron levels were a bit different. The fruits with the disease also didn't have as much of something that protects them called antioxidants, which made them more likely to get sick. This study helps us understand how citrus canker affects plants and fruit, so we can think of ways to deal with it.


Subject(s)
Citrus , Fruit , Plant Diseases , Plant Leaves , Xanthomonas axonopodis , Citrus/microbiology , Xanthomonas axonopodis/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Diseases/microbiology , Fruit/microbiology , Minerals/metabolism , Minerals/analysis , Chlorophyll/metabolism , Pakistan
17.
J Invertebr Pathol ; 204: 108122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710321

ABSTRACT

The Asian citrus psyllid (ACP) Diaphorina citri transmits the causative agent of huanglongbing, or citrus greening disease, that has decimated global citrus production. Pesticidal proteins derived from bacteria such as Bacillus thuringiensis (Bt) can provide effective and environmentally friendly alternatives for management of D. citri, but few with sufficient toxicity to D. citri have been identified. Here, we report on the toxicity of 14 Bt-derived pesticidal proteins from five different structural groups against D. citri. These proteins were selected based on previously reported toxicity to other hemipteran species and on pesticidal protein availability. Most of the proteins were expressed in Escherichia coli and purified from inclusion bodies or His-tag affinity purification, while App6Aa2 was expressed in Bt and purified from spore/crystal mixtures. Pesticidal proteins were initially screened by feeding psyllids on a single dose, and lethal concentration (LC50) then determined for proteins with significantly greater mortality than the buffer control. The impact of CLas infection of D. citri on toxicity was assessed for selected proteins via topical feeding. The Bt protein Tpp78Aa1 was toxic to D. citri adults with an LC50 of approximately 204 µg/mL. Nymphs were more susceptible to Tpp78Aa1 than adults but no significant difference in susceptibility was observed between healthy and CLas-infected nymphs or adults. Tpp78Aa1 and other reported D. citri-active proteins may provide valuable tools for suppression of D. citri populations.


Subject(s)
Bacterial Proteins , Hemiptera , Pest Control, Biological , Animals , Hemiptera/microbiology , Citrus/microbiology , Insect Vectors , Bacillus thuringiensis/chemistry , Plant Diseases/microbiology , Insecticides
18.
Enzyme Microb Technol ; 178: 110441, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38574421

ABSTRACT

Millions of tons of citrus peel waste are produced every year as a byproduct of the juice industry. Citrus peel is rich in pectin and xyloglucan, but while the pectin is extracted for use in the food industry, the xyloglucan is currently not valorized. To target hydrolytic degradation of citrus peel xyloglucan into oligosaccharides, we have used bioinformatics to identify three glycoside hydrolase 12 (GH12) endoxyloglucanases (EC 3.2.1.151) from the citrus fruit pathogens Penicillium italicum GL-Gan1 and Penicillium digitatum Pd1 and characterized them on xyloglucan obtained by alkaline extraction from citrus peel. The enzymes displayed pH-temperature optima of pH 4.6-5.3 and 35-37°C. PdGH12 from P. digitatum and PiGH12A from P. italicum share 84% sequence identity and displayed similar kinetics, although kcat was highest for PdGH12. In contrast, PiGH12B from P. italicum, which has the otherwise conserved Trp in subsite -4 replaced with a Tyr, displayed a 3 times higher KM and a 4 times lower kcat/KM than PiGH12A, but was the most thermostable enzyme of the three Penicillium-derived endoxyloglucanases. The benchmark enzyme AnGH12 from Aspergillus nidulans was more thermally stable and had a higher pH-temperature optimum than the enzymes from Penicillum spp. The difference in structure of the xyloglucan oligosaccharides extracted from citrus peel xyloglucan and tamarind xyloglucan by the new endoxyloglucanases was determined by LC-MS. The inclusion of citrus peel xyloglucan demonstrated that the endoxyloglucanases liberated fucosylated xyloglucan oligomers, implying that these enzymes have the potential to upgrade citrus peel residues to produce oligomers useful as intermediates or bioactive compounds.


Subject(s)
Citrus , Computational Biology , Fungal Proteins , Glucans , Glycoside Hydrolases , Penicillium , Xylans , Penicillium/enzymology , Penicillium/genetics , Citrus/microbiology , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/isolation & purification , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Xylans/metabolism , Glucans/metabolism , Hydrogen-Ion Concentration , Kinetics , Substrate Specificity , Amino Acid Sequence , Enzyme Stability , Temperature , Hydrolysis
19.
PLoS One ; 19(4): e0301584, 2024.
Article in English | MEDLINE | ID: mdl-38578716

ABSTRACT

Argentina is among the most important lemon fruit producers in the world. Penicillium digitatum is the primary lemon fungal phytopathogen, causing green mold during the postharvest. Several alternatives to the use of synthetic fungicides have been developed, being the use of biocontrol yeasts one of the most promising. Although many of the reports are based on the use of a single yeast species, it has been shown that the combination of agents with different mechanisms of action can increase control efficiency through synergistic effects. The combined use of native yeasts with different mechanisms of action had not been studied as a biological control strategy in lemons. In this work, the mechanisms of action of native yeasts (Clavispora lusitaniae AgL21, Clavispora lusitaniae AgL2 and Clavispora lusitaniae AcL2) with biocontrol activity against P. digitatum were evaluated. Isolate AgL21 was selected for its ability to form biofilm, colonize lemon wounds, and inhibit fungal spore germination. The compatibility of C. lusitaniae AgL21 with two killer yeasts of the species Kazachstania exigua (AcL4 and AcL8) was evaluated. In vivo assays were then carried out with the yeasts applied individually or mixed in equal cell concentrations. AgL21 alone was able to control green mold with 87.5% efficiency, while individual killer yeasts were significantly less efficient (43.3% and 38.3%, respectively). Inhibitory effects were increased when C. lusitaniae AgL21 and K. exigua strains were jointly applied. The most efficient treatment was the combination of AgL21 and AcL4, reaching 100% efficiency in wound protection. The combination of AgL21 with AcL8 was as well promising, with an efficiency of 97.5%. The combined application of native yeasts showed a synergistic effect considering that the multiple mechanisms of action involved could hinder the development of green mold in lemon more efficiently than using single yeasts. Therefore, this work demonstrates that the integration of native yeasts with diverse modes of action can provide new insights to formulate effective microbial consortia. This could lead to the development of tailor-made biofungicides, allowing control of postharvest fungal diseases in lemons while remaining competitive with traditionally used synthetic chemicals.


Subject(s)
Citrus , Fungicides, Industrial , Penicillium , Saccharomycetales , Yeasts , Citrus/microbiology , Fungicides, Industrial/pharmacology , Spores, Fungal , Fruit/microbiology , Plant Diseases/microbiology
20.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38599631

ABSTRACT

AIMS: Citrus canker caused by Xanthomonas citri subsp. citri (X. citri) is a disease of economic importance. Control of this disease includes the use of metallic copper, which is harmful to the environment and human health. Previous studies showed that the crude extract from the fungus Pseudogymnoascus sp. LAMAI 2784 isolated from Antarctic soil had in vitro antibacterial action against X. citri. The aim of the present study was to expand the applications of this extract. METHODS AND RESULTS: In greenhouse assays, the crude extract was able to reduce bacterial infection on citrus leaves from 1.55 lesions/cm2 (untreated plants) to 0.04 lesions/cm2. Bisdechlorogeodin was identified as the main compound of the bioactive fraction produced by Pseudogymnoascus sp. LAMAI 2784, which inhibited bacterial growth in vitro (IC90 ≈ 156 µg ml-1) and permeated 80% of X. citri cells, indicating that the membrane is the primary target. CONCLUSION: The present results showed that the bioactive fraction of the extract is mainly composed of the compound bisdechlorogeodin, which is likely responsible for the biological activity against X. citri, and the main mechanism of action is the targeting of the cell membrane. This study indicates that bisdechlorogeodin has valuable potential for the control of X. citri.


Subject(s)
Citrus , Plant Diseases , Xanthomonas , Citrus/microbiology , Xanthomonas/drug effects , Plant Diseases/microbiology , Plant Diseases/prevention & control , Antarctic Regions , Ascomycota/drug effects , Anti-Bacterial Agents/pharmacology , Plant Leaves/microbiology , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL