Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 458
Filter
1.
Zoolog Sci ; 41(4): 407-415, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39093287

ABSTRACT

The circadian system comprises multiple clocks, including central and peripheral clocks. The central clock generally governs peripheral clocks to synchronize circadian rhythms throughout the animal body. However, whether the peripheral clock influences the central clock is unclear. This issue can be addressed through a system comprising a peripheral clock (compound eye clock [CE clock]) and central clock (the optic lobe [OL] clock) in the cricket Gryllus bimaculatus. We previously found that the compound eye regulates the free-running period (τ) and the stability of locomotor rhythms driven by the OL clock, as measured by the daily deviation of τ at 30°C. However, the role of the CE clock in this regulation remains unexplored. In this study, we investigated the importance of the CE clock in this regulation using RNA interference (RNAi) of the period (per) gene localized to the compound eye (perCE-RNAi). The perCE-RNAi abolished the compound eye rhythms of the electroretinogram (ERG) amplitude and clock gene expression but the locomotor rhythm driven by the OL clock was maintained. The locomotor rhythm of the tested crickets showed a significantly longer τ and greater daily variation of τ than those of control crickets treated with dsDsRed2. The variation of τ was comparable with that of crickets with the optic nerve severed. The τ was considerably longer but was comparable with that of crickets with the optic nerve severed. These results suggest that the CE clock regulates the OL clock to maintain and stabilize τ.


Subject(s)
Circadian Clocks , Gryllidae , Optic Lobe, Nonmammalian , Animals , Gryllidae/physiology , Circadian Clocks/physiology , Optic Lobe, Nonmammalian/physiology , Compound Eye, Arthropod/physiology , Gene Expression Regulation , Locomotion/physiology , Circadian Rhythm/physiology
2.
BMC Genomics ; 25(1): 570, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844864

ABSTRACT

Compound eyes formation in decapod crustaceans occurs after the nauplius stage. However, the key genes and regulatory mechanisms of compound eye development during crustacean embryonic development have not yet been clarified. In this study, RNA-seq was used to investigate the gene expression profiles of Neocaridina denticulata sinensis from nauplius to zoea stage. Based on RNA-seq data analysis, the phototransduction and insect hormone biosynthesis pathways were enriched, and molting-related neuropeptides were highly expressed. There was strong cell proliferation in the embryo prior to compound eye development. The formation of the visual system and the hormonal regulation of hatching were the dominant biological events during compound eye development. The functional analysis of DEGs across all four developmental stages showed that cuticle formation, muscle growth and the establishment of immune system occurred from nauplius to zoea stage. Key genes related to eye development were discovered, including those involved in the determination and differentiation of the eye field, eye-color formation, and visual signal transduction. In conclusion, the results increase the understanding of the molecular mechanism of eye formation in crustacean embryonic stage.


Subject(s)
Compound Eye, Arthropod , Gene Expression Profiling , Animals , Compound Eye, Arthropod/metabolism , Compound Eye, Arthropod/growth & development , Transcriptome , Gene Expression Regulation, Developmental , Decapoda/genetics , Decapoda/growth & development , Eye/metabolism , Eye/embryology , Eye/growth & development
3.
Arthropod Struct Dev ; 80: 101361, 2024 May.
Article in English | MEDLINE | ID: mdl-38795499

ABSTRACT

One of the least studied eyes of any beetle taxon are those of the scarabaeoid family Passalidae. Some members of this family of around 600 species worldwide are known to have superposition eyes (Aceraius grandis; A. hikidai) while others have apposition eyes (Cylindrocaulus patalis; Ceracupes yui). In C. yui of nearly 3 cm body length (this paper) the retinal layer is very thin and occupies approximately half of an ommatidium's total length, the latter amounting to 284 and 266 µm in the respective dorsal and ventral eye regions. The two eye regions are almost completely separated by a prominent cuticular canthus, a feature usually associated with the presence of a tracheal tapetum, a clear-zone between dioptric and light-perceiving structures and a regular array of smooth facets. In C. yui the facets are smooth (but not very regular) and a tracheal tapetum and a clear-zone are absent. The rhabdoms, formed by 8-9 retinula cells, are complicated, multilobed structures with widths and lengths of around 15 and 80 µm, respectively. The combination of some superposition and mostly apposition eye features, e.g., extensive corneal exocones, relatively small number of ommatidia, absence of a clear-zone and tracheal bush, suggest an adaptation of this species' eye to the fossorial lifestyle of C. yui, and, thus, a manifestation of the passalid eye's plasticity.


Subject(s)
Coleoptera , Animals , Coleoptera/ultrastructure , Coleoptera/anatomy & histology , Microscopy, Electron, Scanning , Compound Eye, Arthropod/ultrastructure , Compound Eye, Arthropod/anatomy & histology , Microscopy, Electron, Transmission , Female , Male , Eye/ultrastructure , Eye/anatomy & histology
4.
Sci Robot ; 9(90): eadl3606, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748779

ABSTRACT

Arthropods' eyes are effective biological vision systems for object tracking and wide field of view because of their structural uniqueness; however, unlike mammalian eyes, they can hardly acquire the depth information of a static object because of their monocular cues. Therefore, most arthropods rely on motion parallax to track the object in three-dimensional (3D) space. Uniquely, the praying mantis (Mantodea) uses both compound structured eyes and a form of stereopsis and is capable of achieving object recognition in 3D space. Here, by mimicking the vision system of the praying mantis using stereoscopically coupled artificial compound eyes, we demonstrated spatiotemporal object sensing and tracking in 3D space with a wide field of view. Furthermore, to achieve a fast response with minimal latency, data storage/transportation, and power consumption, we processed the visual information at the edge of the system using a synaptic device and a federated split learning algorithm. The designed and fabricated stereoscopic artificial compound eye provides energy-efficient and accurate spatiotemporal object sensing and optical flow tracking. It exhibits a root mean square error of 0.3 centimeter, consuming only approximately 4 millijoules for sensing and tracking. These results are more than 400 times lower than conventional complementary metal-oxide semiconductor-based imaging systems. Our biomimetic imager shows the potential of integrating nature's unique design using hardware and software codesigned technology toward capabilities of edge computing and sensing.


Subject(s)
Biomimetics , Compound Eye, Arthropod , Depth Perception , Animals , Depth Perception/physiology , Compound Eye, Arthropod/physiology , Compound Eye, Arthropod/anatomy & histology , Algorithms , Mantodea/physiology , Imaging, Three-Dimensional , Equipment Design , Biomimetic Materials
5.
Bioessays ; 46(5): e2300240, 2024 May.
Article in English | MEDLINE | ID: mdl-38593308

ABSTRACT

The compound eyes of insects exhibit stunning variation in size, structure, and function, which has allowed these animals to use their vision to adapt to a huge range of different environments and lifestyles, and evolve complex behaviors. Much of our knowledge of eye development has been learned from Drosophila, while visual adaptations and behaviors are often more striking and better understood from studies of other insects. However, recent studies in Drosophila and other insects, including bees, beetles, and butterflies, have begun to address this gap by revealing the genetic and developmental bases of differences in eye morphology and key new aspects of compound eye structure and function. Furthermore, technical advances have facilitated the generation of high-resolution connectomic data from different insect species that enhances our understanding of visual information processing, and the impact of changes in these processes on the evolution of vision and behavior. Here, we review these recent breakthroughs and propose that future integrated research from the development to function of visual systems within and among insect species represents a great opportunity to understand the remarkable diversification of insect eyes and vision.


Subject(s)
Biological Evolution , Insecta , Vision, Ocular , Animals , Vision, Ocular/physiology , Insecta/physiology , Insecta/genetics , Eye/anatomy & histology , Compound Eye, Arthropod/physiology , Compound Eye, Arthropod/anatomy & histology
6.
Development ; 149(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36355083

ABSTRACT

Morphogens of the Hh family trigger gene expression changes in receiving cells in a concentration-dependent manner to regulate their identity, proliferation, death or metabolism, depending on the tissue or organ. This variety of responses relies on a conserved signaling pathway. Its logic includes a negative-feedback loop involving the Hh receptor Ptc. Here, using experiments and computational models we study and compare the different spatial signaling profiles downstream of Hh in several developing Drosophila organs. We show that the spatial distributions of Ptc and the activator transcription factor CiA in wing, antenna and ocellus show similar features, but are markedly different from that in the compound eye. We propose that these two profile types represent two time points along the signaling dynamics, and that the interplay between the spatial displacement of the Hh source in the compound eye and the negative-feedback loop maintains the receiving cells effectively in an earlier stage of signaling. These results show how the interaction between spatial and temporal dynamics of signaling and differentiation processes may contribute to the informational versatility of the conserved Hh signaling pathway.


Subject(s)
Drosophila , Hedgehog Proteins , Signal Transduction , Drosophila/embryology , Animals , Hedgehog Proteins/physiology , Wings, Animal/embryology , Compound Eye, Arthropod/embryology
7.
Elife ; 112022 10 13.
Article in English | MEDLINE | ID: mdl-36226912

ABSTRACT

Revealing the functioning of compound eyes is of interest to biologists and engineers alike who wish to understand how visually complex behaviours (e.g. detection, tracking, and navigation) arise in nature, and to abstract concepts to develop novel artificial sensory systems. A key investigative method is to replicate the sensory apparatus using artificial systems, allowing for investigation of the visual information that drives animal behaviour when exposed to environmental cues. To date, 'compound eye models' (CEMs) have largely explored features such as field of view and angular resolution, but the role of shape and overall structure have been largely overlooked due to modelling complexity. Modern real-time ray-tracing technologies are enabling the construction of a new generation of computationally fast, high-fidelity CEMs. This work introduces a new open-source CEM software (CompoundRay) that is capable of accurately rendering the visual perspective of bees (6000 individual ommatidia arranged on 2 realistic eye surfaces) at over 3000 frames per second. We show how the speed and accuracy facilitated by this software can be used to investigate pressing research questions (e.g. how low resolution compound eyes can localise small objects) using modern methods (e.g. machine learning-based information exploration).


Subject(s)
Bees , Compound Eye, Arthropod , Animals , Cues
8.
Bioinspir Biomim ; 17(4)2022 05 24.
Article in English | MEDLINE | ID: mdl-35504271

ABSTRACT

In this study, an artificial compound eye lens (ACEL) was fabricated using a laser cutting machine and polyvinyl alcohol (PVA) solution. A laser cutter was used to punch micro-sized holes (500 µm diameter-the smallest possible diameter) into an acrylic plate; this punched plate was then placed on the aqueous PVA solution, and the water was evaporated. The plate was used as the mold to obtain a polydimethylsiloxane (PDMS) micro lens array film, which was fixed to a dome-shaped three-dimensional-printed mold for further PDMS curing, and a hemispherical compound eye lens was obtained. Using a gallium nitride (GaN) photodetector, a light detection experiment was performed with the ACEL, bare lens, and no lens by irradiating light at various angles under low temperatures. The photodetector with the ACEL generated a high photocurrent under several conditions. In particular, when the light was irradiated at 0° and below -20 °C, the photocurrent of the GaN sensor with the ACEL increased by 61% and 81% compared with the photocurrent of the GaN sensor with the bare lens and without a lens, respectively. In this study, a sensor for detecting light with ACEL was demonstrated in low-temperature environments, such as indoor refrigerated storages and external conditions in Antarctica and Arctic.


Subject(s)
Lens, Crystalline , Lenses , Animals , Biomimetics , Compound Eye, Arthropod , Temperature
9.
Cell Death Dis ; 13(2): 101, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110540

ABSTRACT

Hippo signaling is a conserved mechanism for controlling organ growth. Increasing evidence suggests that Hippo signaling is modulated by various cellular factors for normal development and tumorigenesis. Hence, identification of these factors is pivotal for understanding the mechanism for the regulation of Hippo signaling. Drosophila Mnat9 is a putative N-acetyltransferase that is required for cell survival by affecting JNK signaling. Here we show that Mnat9 is involved in the negative regulation of Hippo signaling. RNAi knockdown of Mnat9 in the eye disc suppresses the rough eye phenotype of overexpressing Crumbs (Crb), an upstream factor of the Hippo pathway. Conversely, Mnat9 RNAi enhances the eye phenotype caused by overexpressing Expanded (Ex) or Warts (Wts) that acts downstream to Crb. Similar genetic interactions between Mnat9 and Hippo pathway genes are found in the wing. The reduced wing phenotype of Mnat9 RNAi is suppressed by overexpression of Yorkie (Yki), while it is suppressed by knockdown of Hippo upstream factors like Ex, Merlin, or Kibra. Mnat9 co-immunoprecipitates with Mer, implying their function in a protein complex. Furthermore, Mnat9 overexpression together with Hpo knockdown causes tumorous overgrowth in the abdomen. Our data suggest that Mnat9 is required for organ growth and can induce tumorous growth by negatively regulating the Hippo signaling pathway.


Subject(s)
Carcinogenesis/metabolism , Drosophila melanogaster/metabolism , Hippo Signaling Pathway , N-Terminal Acetyltransferases/metabolism , Animals , Carcinogenesis/pathology , Compound Eye, Arthropod/growth & development , Compound Eye, Arthropod/metabolism , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , N-Terminal Acetyltransferases/genetics , Neurofibromin 2/genetics , Neurofibromin 2/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Small Interfering , Wings, Animal/metabolism
10.
ACS Appl Mater Interfaces ; 14(3): 4767-4774, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35014247

ABSTRACT

Natural compound eyes endow arthropods with wide-field high-performance light-harvesting capability that enables them to capture prey and avoid natural enemies in dim light. Inspired by natural compound eyes, a curved artificial-compound-eye (cACE) photodetector for diffused light harvesting is proposed and fabricated, and its light-harvesting capability is systematically investigated. The cACE photodetector is fabricated by introducing a cACE as a light-harvesting layer on the surface of a silicon-based photodetector, with the cACE being prepared via planar artificial-compound-eye (pACE) template deformation. The distinctive geometric morphology of the as-prepared cACE effectively reduces its surface reflection and the dependence of the projected area on the incident light direction, thereby significantly improving the light-harvesting ability and output photocurrent of the silicon-based photodetector. Furthermore, the performances of cACE, pACE, and bare polydimethylsiloxane (PDMS)-attached photodetectors as diffused light detectors are investigated under different luminances. The cACE-photodetector output photocurrent is 1.395 and 1.29 times those of the bare PDMS-attached and pACE photodetectors, respectively. Moreover, this photodetector has a desirable geometric shape. Thus, the proposed cACE photodetector will facilitate development of high-performance photodetectors for luminance sensing.


Subject(s)
Biocompatible Materials/chemistry , Compound Eye, Arthropod/chemistry , Light , Animals , Diffusion , Materials Testing , Particle Size
11.
Development ; 149(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-35072208

ABSTRACT

The eye-antennal disc of Drosophila is composed of three cell layers: a columnar epithelium called the disc proper (DP); an overlying sheet of squamous cells called the peripodial epithelium (PE); and a strip of cuboidal cells that joins the other two cellular sheets to each other and comprises the outer margin (M) of the disc. The M cells play an important role in patterning the eye because it is here that the Hedgehog (Hh), Decapentaplegic (Dpp) and JAK/STAT pathways function to initiate pattern formation. Dpp signaling is lost from the margin of eyes absent (eya) mutant discs and, as a result, the initiation of retinal patterning is blocked. Based on these observations, Eya has been proposed to control the initiation of the morphogenetic furrow via regulation of Dpp signaling within the M. We show that the failure in pattern formation surprisingly results from M cells prematurely adopting a head epidermis fate. This switch in fate normally takes place during pupal development after the eye has been patterned. Our results suggest that the timing of cell fate decisions is essential for correct eye development.


Subject(s)
Compound Eye, Arthropod/cytology , Drosophila Proteins/metabolism , Eye Proteins/metabolism , Animals , Cell Differentiation , Compound Eye, Arthropod/growth & development , Compound Eye, Arthropod/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster , Epithelial Cells/cytology , Epithelial Cells/metabolism , Eye Proteins/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Janus Kinases/metabolism , Morphogenesis , Mutation , STAT Transcription Factors/metabolism
12.
Opt Express ; 29(24): 39214-39226, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809290

ABSTRACT

Micro-lens array, an artificial compound eye vision system, provides a wide field of view and multi-perspective view. However, it has not been adopted as a computer vision application due to its limited visible range and high optical interference. In this research, a novel fabrication method for the flexible polydimethylsiloxane micro-lens array with a polytetrafluoroethylene light screen-aperture integrated layer was established by the simple protrusion method. The integrated layer provided longer visible range by one meter while maintaining the wide field-of-view of 100 °. The resulting images were used for obtaining depth information of a target as an example and for analyzing the rectangular and hexagonal arrangements of the micro-lenses for the future applications. With the improved visual range, wide field-of-view and flexibility, the fabricated micro-lens array can be applied to the small and curved CMOS image sensors in the future.


Subject(s)
Biomimetics/instrumentation , Biosensing Techniques/instrumentation , Compound Eye, Arthropod/physiology , Dimethylpolysiloxanes/chemistry , Lens, Crystalline/physiology , Polytetrafluoroethylene/chemistry , Animals , Biomimetics/methods , Equipment Design , Light
13.
J Exp Biol ; 224(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34542631

ABSTRACT

In addition to compound eyes, insects possess simple eyes known as ocelli. Input from the ocelli modulates optomotor responses, flight-time initiation, and phototactic responses - behaviours that are mediated predominantly by the compound eyes. In this study, using pattern electroretinography (pERG), we investigated the contribution of the compound eyes to ocellar spatial vision in the diurnal Australian bull ant Myrmecia tarsata by measuring the contrast sensitivity and spatial resolving power of the ocellar second-order neurons under various occlusion conditions. Furthermore, in four species of Myrmecia ants active at different times of the day, and in European honeybee Apis mellifera, we characterized the ocellar visual properties when both visual systems were available. Among the ants, we found that the time of activity had no significant effect on ocellar spatial vision. Comparing day-active ants and the honeybee, we did not find any significant effect of locomotion on ocellar spatial vision. In M. tarsata, when the compound eyes were occluded, the amplitude of the pERG signal from the ocelli was reduced 3 times compared with conditions when the compound eyes were available. The signal from the compound eyes maintained the maximum contrast sensitivity of the ocelli as 13 (7.7%), and the spatial resolving power as 0.29 cycles deg-1. We conclude that ocellar spatial vison improves significantly with input from the compound eyes, with a noticeably larger improvement in contrast sensitivity than in spatial resolving power.


Subject(s)
Ants , Animals , Australia , Bees , Compound Eye, Arthropod , Contrast Sensitivity , Vision, Ocular
14.
PLoS Biol ; 19(8): e3001367, 2021 08.
Article in English | MEDLINE | ID: mdl-34379617

ABSTRACT

Damage in the nervous system induces a stereotypical response that is mediated by glial cells. Here, we use the eye disc of Drosophila melanogaster as a model to explore the mechanisms involved in promoting glial cell response after neuronal cell death induction. We demonstrate that these cells rapidly respond to neuronal apoptosis by increasing in number and undergoing morphological changes, which will ultimately grant them phagocytic abilities. We found that this glial response is controlled by the activity of Decapentaplegic (Dpp) and Hedgehog (Hh) signalling pathways. These pathways are activated after cell death induction, and their functions are necessary to induce glial cell proliferation and migration to the eye discs. The latter of these 2 processes depend on the function of the c-Jun N-terminal kinase (JNK) pathway, which is activated by Dpp signalling. We also present evidence that a similar mechanism controls glial response upon apoptosis induction in the leg discs, suggesting that our results uncover a mechanism that might be involved in controlling glial cells response to neuronal cell death in different regions of the peripheral nervous system (PNS).


Subject(s)
Compound Eye, Arthropod/growth & development , Drosophila Proteins/physiology , Drosophila melanogaster/growth & development , Hedgehog Proteins/physiology , Neuroglia/physiology , Animals , Apoptosis , Cell Movement , Compound Eye, Arthropod/cytology , Drosophila melanogaster/cytology , MAP Kinase Signaling System
15.
Insect Biochem Mol Biol ; 137: 103624, 2021 10.
Article in English | MEDLINE | ID: mdl-34333110

ABSTRACT

The brown egg 4 (b-4) is a recessive mutant in the silkworm (Bombyx mori), whose egg and adult compound eyes exhibit a reddish-brown color instead of normal purple and black, respectively. By double digest restriction-site associated DNA sequencing (ddRAD-seq) analysis, we narrowed down a region linked to the b-4 phenotype to approximately 1.1 Mb that contains 69 predicted gene models. RNA-seq analysis in a b-4 strain indicated that one of the candidate genes had a different transcription start site, which generates a short open reading frame. We also found that exon skipping was induced in the same gene due to an insertion of a transposable element in other two b-4 mutant strains. This gene encoded a putative amino acid transporter that belongs to the ß-group of solute carrier (SLC) family and is orthologous to Drosophila eye color mutant gene, mahogany (mah). Accordingly, we named this gene Bmmah. We performed CRISPR/Cas9-mediated gene knockout targeting Bmmah. Several adult moths in generation 0 (G0) had totally or partially reddish-brown compound eyes. We also established three Bmmah knockout strains, all of which exhibit reddish-brown eggs and adult compound eyes. Furthermore, eggs from complementation crosses between the b-4 mutants and the Bmmah knockout mutants also exhibited reddish-brown color, which was similar to the b-4 mutant eggs, indicating that Bmmah is responsible for the b-4 phenotypes.


Subject(s)
Bombyx/genetics , Compound Eye, Arthropod/chemistry , Insect Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Bombyx/growth & development , Bombyx/metabolism , Insect Proteins/chemistry , Insect Proteins/metabolism , Larva/growth & development , Larva/metabolism , Mutation , Ovum/chemistry , Phylogeny , Pigmentation/genetics , Pigments, Biological/analysis , Sequence Alignment
16.
Sci Rep ; 11(1): 15601, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34341410

ABSTRACT

A precondition for colour vision is the presence of at least two spectral types of photoreceptors in the eye. The order Hymenoptera is traditionally divided into the Apocrita (ants, bees, wasps) and the Symphyta (sawflies, woodwasps, horntails). Most apocritan species possess three different photoreceptor types. In contrast, physiological studies in the Symphyta have reported one to four photoreceptor types. To better understand the evolution of photoreceptor diversity in the Hymenoptera, we studied the Symphyta Sirex noctilio, which belongs to the superfamily Siricoidea, a closely related group of the Apocrita suborder. Our aim was to (i) identify the photoreceptor types of the compound eye by electroretinography (ERG), (ii) characterise the visual opsin genes of S. noctilio by genomic comparisons and phylogenetic analyses and (iii) analyse opsin mRNA expression. ERG measurements revealed two photoreceptor types in the compound eye, maximally sensitive to 527 and 364 nm. In addition, we identified three opsins in the genome, homologous to the hymenopteran green or long-wavelength sensitive (LW) LW1, LW2 and ultra-violet sensitive (UV) opsin genes. The LW1 and UV opsins were found to be expressed in the compound eyes, and LW2 and UV opsins in the ocelli. The lack of a blue or short-wavelength sensitive (SW) homologous opsin gene and a corresponding receptor suggests that S. noctilio is a UV-green dichromate.


Subject(s)
Hymenoptera/physiology , Ultraviolet Rays , Animals , Compound Eye, Arthropod/physiology , Electroretinography , Gene Expression Regulation , Hymenoptera/genetics , Likelihood Functions , Phylogeny
17.
Dev Biol ; 479: 126-138, 2021 11.
Article in English | MEDLINE | ID: mdl-34343526

ABSTRACT

The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.


Subject(s)
Compound Eye, Arthropod/physiology , Photoreceptor Cells, Invertebrate/physiology , Retinal Cone Photoreceptor Cells/physiology , Animals , Compound Eye, Arthropod/metabolism , Cornea/metabolism , Cornea/physiology , Drosophila/genetics , Drosophila Proteins/genetics , Eye/metabolism , Eye Proteins/genetics , Lens, Crystalline/metabolism , Lens, Crystalline/physiology , Neuroglia/physiology , Photoreceptor Cells, Invertebrate/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Structure-Activity Relationship
18.
Nat Commun ; 12(1): 4258, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253734

ABSTRACT

The maintenance of constant karyoplasmic ratios suggests that nuclear size has physiological significance. Nuclear size anomalies have been linked to malignant transformation, although the mechanism remains unclear. By expressing dominant-negative TER94 mutants in Drosophila photoreceptors, here we show disruption of VCP (valosin-containing protein, human TER94 ortholog), a ubiquitin-dependent segregase, causes progressive nuclear size increase. Loss of VCP function leads to accumulations of MDC1 (mediator of DNA damage checkpoint protein 1), connecting DNA damage or associated responses to enlarged nuclei. TER94 can interact with MDC1 and decreases MDC1 levels, suggesting that MDC1 is a VCP substrate. Our evidence indicates that MDC1 accumulation stabilizes p53A, leading to TER94K2A-associated nuclear size increase. Together with a previous report that p53A disrupts autophagic flux, we propose that the stabilization of p53A in TER94K2A-expressing cells likely hinders the removal of nuclear content, resulting in aberrant nuclear size increase.


Subject(s)
Autophagy , Cell Nucleus Size , Cell Nucleus/metabolism , DNA Damage , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Tumor Suppressor Protein p53/metabolism , Valosin Containing Protein/metabolism , Animals , Biomarkers/metabolism , Compound Eye, Arthropod , DNA Repair , Mitosis , Signal Transduction , Time Factors , Ubiquitinated Proteins/metabolism
19.
Dev Biol ; 478: 205-211, 2021 10.
Article in English | MEDLINE | ID: mdl-34265355

ABSTRACT

Ire1 is an endoplasmic reticulum (ER) transmembrane RNase that cleaves substrate mRNAs to help cells adapt to ER stress. Because there are cell types with physiological ER stress, loss of Ire1 results in metabolic and developmental defects in diverse organisms. In Drosophila, Ire1 mutants show developmental defects at early larval stages and in pupal eye photoreceptor differentiation. These Drosophila studies relied on a single Ire1 loss of function allele with a Piggybac insertion in the coding sequence. Here, we report that an Ire1 allele with a specific impairment in the RNase domain, H890A, unmasks previously unrecognized Ire1 phenotypes in Drosophila eye pigmentation. Specifically, we found that the adult eye pigmentation is altered, and the pigment granules are compromised in Ire1H890A homozygous mosaic eyes. Furthermore, the Ire1H890A mutant eyes had dramatically reduced Rhodopsin-1 protein levels. Drosophila eye pigment granules are most notably associated with late endosome/lysosomal defects. Our results indicate that the loss of Ire1, which would impair ER homeostasis, also results in altered adult eye pigmentation.


Subject(s)
Compound Eye, Arthropod/chemistry , Compound Eye, Arthropod/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Pigments, Biological/analysis , Alleles , Animals , Compound Eye, Arthropod/ultrastructure , Drosophila melanogaster , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Eye Color , Mutation , Phenothiazines/analysis , Photoreceptor Cells, Invertebrate/metabolism , Pigmentation , Pteridines/analysis , Rhodopsin/metabolism
20.
Dev Biol ; 478: 173-182, 2021 10.
Article in English | MEDLINE | ID: mdl-34245727

ABSTRACT

A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.


Subject(s)
Compound Eye, Arthropod/growth & development , Drosophila/growth & development , Photoreceptor Cells, Invertebrate/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Patterning , Compound Eye, Arthropod/cytology , Computer Simulation , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , ErbB Receptors/metabolism , Larva/growth & development , Morphogenesis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Photoreceptor Cells, Invertebrate/cytology , Pupa/growth & development , Receptors, Invertebrate Peptide/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL