Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.650
Filter
1.
Food Chem ; 462: 141011, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39226643

ABSTRACT

Chlorogenic acid (CGA) is a well-known plant secondary metabolite exhibiting multiple physiological functions. The present study focused on screening for synergistic antibacterial combinations containing CGA. The combination of CGA and p-coumaric acid (pCA) exhibited remarkably enhanced antibacterial activity compared to that when administering the treatment only. Scanning electron microscopy revealed that a low-dose combination treatment could disrupt the Shigella dysenteriae cell membrane. A comprehensive analysis using nucleic acid and protein leakage assay, conductivity measurements, and biofilm formation inhibition experiments revealed that co-treatment increased the cell permeability and inhibited the biofilm formation substantially. Further, the polyacrylamide protein- and agarose gel-electrophoresis indicated that the proteins and DNA genome of Shigella dysenteriae severely degraded. Finally, the synergistic bactericidal effect was established for fresh-cut tomato preservation. This study demonstrates the remarkable potential of strategically selecting antibacterial agents with maximum synergistic effect and minimum dosage exhibiting excellent antibacterial activity in food preservation.


Subject(s)
Anti-Bacterial Agents , Chlorogenic Acid , Coumaric Acids , Drug Synergism , Shigella dysenteriae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/chemistry , Shigella dysenteriae/drug effects , Microbial Sensitivity Tests , Biofilms/drug effects , Propionates/pharmacology , Solanum lycopersicum/chemistry , Solanum lycopersicum/microbiology , Food Preservation/methods
2.
Int J Mol Sci ; 25(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39273607

ABSTRACT

Skin ageing is influenced by both intrinsic and extrinsic factors, with excessive ultraviolet (UV) exposure being a significant contributor. Such exposure can lead to moisture loss, sagging, increased wrinkling, and decreased skin elasticity. Prolonged UV exposure negatively impacts the extracellular matrix by reducing collagen, hyaluronic acid, and aquaporin 3 (AQP-3) levels. Fermentation, which involves microorganisms, can produce and transform beneficial substances for human health. Natural product fermentation using lactic acid bacteria have demonstrated antioxidant, anti-inflammatory, antibacterial, whitening, and anti-wrinkle properties. Snowberry, traditionally used as an antiemetic, purgative, and anti-inflammatory agent, is now also used as an immune stimulant and for treating digestive disorders and colds. However, research on the skin benefits of Fermented Snowberry Extracts remains limited. Thus, we aimed to evaluate the skin benefits of snowberry by investigating its moisturising and anti-wrinkle effects, comparing extracts from different parts of the snowberry plant with those subjected to fermentation using Lactobacillus plantarum. Chlorophyll-free extracts were prepared from various parts of the snowberry plant, and ferments were created using Lactobacillus plantarum. The extracts and ferments were analysed using high-performance liquid chromatography (HPLC) to determine and compare their chemical compositions. Moisturising and anti-ageing tests were conducted to assess the efficacy of the extracts and ferments on the skin. The gallic acid content remained unchanged across all parts of the snowberry before and after fermentation. However, Fermented Snowberry Leaf Extracts exhibited a slight decrease in chlorogenic acid content but a significant increase in ferulic acid content. The Fermented Snowberry Fruit Extract demonstrated increased chlorogenic acid and a notable rise in ferulic acid compared to its non-fermented counterpart. Skin efficacy tests revealed that Fermented Snowberry Leaf and Fruit Extracts enhanced the expression of AQP-3, HAS-3, and COL1A1. These extracts exhibited distinct phenolic component profiles, indicating potential skin benefits such as improved moisture retention and protection against ageing. These findings suggest that Fermented Snowberry Extracts could be developed into effective skincare products, providing a natural alternative for enhancing skin hydration and reducing signs of ageing.


Subject(s)
Fermentation , Plant Extracts , Skin Aging , Plant Extracts/pharmacology , Plant Extracts/chemistry , Skin Aging/drug effects , Humans , Lactobacillus plantarum/metabolism , Skin/metabolism , Skin/drug effects , Dermatologic Agents/pharmacology , Animals , Fruit/chemistry , Fruit/metabolism , Coumaric Acids/analysis
3.
Molecules ; 29(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39274915

ABSTRACT

Phenylpropanoid sucrose esters are a large and important group of natural substances with significant therapeutic potential. This work describes a pilot study of the enzymatic hydroxycinnamoylation of sucrose and its derivatives which was carried out with the aim of obtaining precursors of natural phenylpropanoid sucrose esters, e.g., vanicoside B. In addition to sucrose, some chemically prepared sucrose acetonides and substituted 3'-O-cinnamates were subjected to enzymatic transesterification with vinyl esters of coumaric, ferulic and 3,4,5-trimethoxycinnamic acid. Commercial enzyme preparations of Lipozyme TL IM lipase and Pentopan 500 BG exhibiting feruloyl esterase activity were tested as biocatalysts in these reactions. The substrate specificity of the used biocatalysts for the donor and acceptor as well as the regioselectivity of the reactions were evaluated and discussed. Surprisingly, Lipozyme TL IM catalyzed the cinnamoylation of sucrose derivatives more to the 1'-OH and 4'-OH positions than to the 6'-OH when the 3'-OH was free and the 6-OH was blocked by isopropylidene. In this case, Pentopan reacted comparably to 1'-OH and 6'-OH positions. If sucrose 3'-O-coumarate was used as an acceptor, in the case of feruloylation with Lipozyme in CH3CN, 6-O-ferulate was the main product (63%). Pentopan feruloylated sucrose 3'-O-coumarate comparably well at the 6-OH and 6'-OH positions (77%). When a proton-donor solvent was used, migration of the 3'-O-cinnamoyl group from fructose to the 2-OH position of glucose was observed. The enzyme hydroxycinnamoylations studied can shorten the targeted syntheses of various phenylpropanoid sucrose esters.


Subject(s)
Coumaric Acids , Sucrose , Sucrose/chemistry , Sucrose/metabolism , Coumaric Acids/chemistry , Coumaric Acids/metabolism , Lipase/metabolism , Lipase/chemistry , Cinnamates/chemistry , Cinnamates/metabolism , Substrate Specificity , Esterification , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/chemistry , Esters/chemistry , Esters/metabolism , Biocatalysis
4.
Nutrients ; 16(17)2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39275165

ABSTRACT

This study analyzes the effects on body composition and variables related to metabolic syndrome of two coffees with different degree of roasting and phenolic content. Sixty participants with body mass index between 25 and 35 kg/m2 and a median age of 51.0 years (Interquartile range 46.3-56) were recruited. The study was a controlled, randomized, single-blind crossover trial consisting in drinking three cups/day of roasted coffee (RC) or lightly roasted coffee (LRC) during 12 weeks with 2-week wash-out stages before each coffee intervention. LRC contained ≈400 mg of hydroxycinnamic acids and ≈130 mg of caffeine per 200 mL/cup while RC contained ≈150 mg of hydroxycinnamic acids and ≈70 mg of caffeine per 200 mL/cup. Along the study, in each of the six visits, blood pressure, body composition by bioimpedance, anthropometric measurements, and blood biochemistry were analyzed. The mean differences and p values were calculated using a linear mixed model (JASP.v.0.18.0.3). A total of 38 participants completed the study. After the consumption of both coffees, fat mass and body fat percentage (LRC: -1.4%, p < 0.001; RC: -1.0%, p = 0.005) were reduced, whereas muscle mass and muscle mass percentage slightly increased (LRC: 0.8%, p < 0.001; RC: 0.7%, p = 0.002). The decrease in fat percentage was greater with LRC compared to RC (-0.8%; p = 0.029). There were no significant changes in metabolic syndrome variables or in body weight. In conclusion, LRC was slightly superior at inducing changes in body composition.


Subject(s)
Body Composition , Coffee , Cross-Over Studies , Obesity , Overweight , Phenols , Humans , Coffee/chemistry , Middle Aged , Male , Body Composition/drug effects , Female , Single-Blind Method , Phenols/analysis , Obesity/diet therapy , Overweight/diet therapy , Caffeine/administration & dosage , Body Mass Index , Adult , Coumaric Acids/analysis , Metabolic Syndrome/diet therapy
5.
Food Res Int ; 194: 114913, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232536

ABSTRACT

The formation of starch-polyphenol complexes through high-pressure homogenization (HPH) is a promising method to reduce starch digestibility and control postprandial glycemic responses. This study investigated the combined effect of pH (5, 7, 9) and polyphenol structures (gallic acid, ferulic acid, quercetin, and tannic acid) on the formation, muti-scale structure, physicochemical properties, and digestibility of pea starch (PS)-polyphenol complexes prepared by HPH. Results revealed that reducing pH from 9 to 5 significantly strengthened the non-covalent binding between polyphenols and PS, achieving a maximum complex index of 13.89 %. This led to the formation of complexes with higher crystallinity and denser structures, promoting a robust network post-gelatinization with superior viscoelastic and thermal properties. These complexes showed increased resistance to enzymatic digestion, with the content of resistant starch increasing from 28.66 % to 42.00 %, rapidly digestible starch decreasing from 42.82 % to 21.88 %, and slowly digestible starch reducing from 71.34 % to 58.00 %. Gallic acid formed the strongest hydrogen bonds with PS, especially at pH 5, leading to the highest enzymatic resistance in PS-gallic acid complexes, with the content of resistant starch of 42.00 %, rapidly digestible starch of 23.35 % and slowly digestible starch of 58.00 %, and starch digestion rates at two digestive stages of 1.82 × 10-2 min-1 and 0.34 × 10-2 min-1. These insights advance our understanding of starch-polyphenol interactions and support the development of functional food products to improve metabolic health by mitigating rapid glucose release.


Subject(s)
Digestion , Gallic Acid , Pisum sativum , Polyphenols , Starch , Hydrogen-Ion Concentration , Polyphenols/chemistry , Starch/chemistry , Starch/metabolism , Pisum sativum/chemistry , Gallic Acid/chemistry , Tannins/chemistry , Pressure , Coumaric Acids/chemistry , Food Handling/methods , Quercetin/chemistry
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1508-1517, 2024 Aug 20.
Article in Chinese | MEDLINE | ID: mdl-39276046

ABSTRACT

OBJECTIVE: To analyze the core functional component groups (CFCG) in Yinchenhao Decoction (YCHD) and their possible pathways for treating hepatic fibrosis based on network pharmacology. METHODS: PPI data were extracted from DisGeNET, Genecards, CMGRN and PTHGRN to construct a weighted network using Cytoscape 3.9.1. The data of the chemical components in YCHD were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the potential active components and targets were selected using PreADMET Web server and SwissTargetPrediction. A fusion model was constructed to obtain the functional effect space and evaluate the effective proteins to identify the CFCG followed by GO and KEGG pathway enrichment analyses for all the targets. In cultured human hepatic stellate cells (LX-2 cells), the cytotoxicity of different compounds in YCHD was tested using CCK-8 assay; the effects of these compounds on collagen α1 (Col1a1) mRNA expression and the pathways in 20 ng/mL TGF-ß1-stimulated cells were analyzed using RT-qPCR and Western blotting. RESULTS: A total of 1005 pathogenic genes, 226 potential active components and 1529 potential targets in YCHD and 52 potential targets of CFCG were obtained. Benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid were selected for CCK-8 verification, and they all showed minimal cytotoxicity below the concentration of 200 µmol/L. Clorius, polydatin, lauric acid and ferulic acid all effectively inhibited TGF-ß1-induced LX-2 cell activation. At the concentration of 200 µmol/L, all these 4 components inhibited PI3K, p-PI3K, AKT, p-AKT, ERK, p-ERK, P38 MAPK and p-P38 MAPK expressions in TGF-ß1-induced LX-2 cells. CONCLUSION: The therapeutic effect of YCHD on hepatic fibrosis is probably mediated by its core functional components including benzyl acetate, vanillic acid, clorius, polydatin, lauric acid and ferulic acid, which inhibit the PI3K-AKT and MAPK pathways in hepatic stellate cells.


Subject(s)
Drugs, Chinese Herbal , Hepatic Stellate Cells , Liver Cirrhosis , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Humans , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Medicine, Chinese Traditional/methods , Transforming Growth Factor beta1/metabolism , Collagen Type I/metabolism , Collagen Type I/genetics , Coumaric Acids/pharmacology , Cell Line , Signal Transduction/drug effects , Network Pharmacology , Collagen Type I, alpha 1 Chain
7.
J Appl Microbiol ; 135(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39299920

ABSTRACT

AIMS: This study aimed to assess the effects of phenolic acid-degrading bacteria strains on phenolic acid content, plant growth, and soil bacterial community in phenolic acid-treated soils. METHODS AND RESULTS: The strain of interest coded as B55 was isolated from cucumber root litter, and its degradation rates of ferulic acid and p-coumaric acid were 81.92% and 72.41% in Luria-Bertani solution, respectively, and B55 was identified as Bacillus subtilis. B55 had plant growth-promoting attributes, including solubilization of inorganic phosphate and production of siderophore and indole acetic acid. Both ferulic acid and p-coumaric acid significantly restrained an increase in cucumber seedling dry biomass, while the B55 inoculation not only completely counteracted the damage of phenolic acids to cucumber seedlings and decreased the content of ferulic acid and p-coumaric acid in soil, but also promoted cucumber seedlings growth. Amplicon sequencing found that B55 inoculation changed the cucumber rhizosphere bacterial community structure and promoted the enrichment of certain bacteria, such as Pseudomonas, Arthrobacter, Bacillus, Flavobacterium, Streptomyces, and Comamonas. CONCLUSIONS: B55 not only promoted cucumber seedling growth, and decreased the content of ferulic acid and p-coumaric acid in soil, but it also increased the relative abundance of beneficial microorganisms in the cucumber rhizosphere.


Subject(s)
Bacillus subtilis , Coumaric Acids , Cucumis sativus , Propionates , Rhizosphere , Seedlings , Soil Microbiology , Coumaric Acids/metabolism , Cucumis sativus/microbiology , Cucumis sativus/metabolism , Cucumis sativus/growth & development , Bacillus subtilis/metabolism , Bacillus subtilis/growth & development , Seedlings/microbiology , Seedlings/growth & development , Seedlings/metabolism , Propionates/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Plant Roots/microbiology , Plant Roots/metabolism , Microbiota , Hydroxybenzoates/metabolism , Soil/chemistry
8.
PLoS One ; 19(9): e0308825, 2024.
Article in English | MEDLINE | ID: mdl-39331639

ABSTRACT

With the increasing demand for non-chemical weed control methods, phenolic acids have shown promise due to their natural weed inhibitory potential. In this study, the inhibitory effect of ferulic acid, vanillic acid and p-coumaric acid was investigated on Ambrosia artemisiifolia L. and the selectivity of Zea mays L. against these phenolic acids was tested. The seeds of A. artemisiifolia and Z. mays were treated in vitro with three phenolic acids at doses of 200-600 × 10-7 mol and in vivo foliar on A. artemisiifolia and Z. mays plants. While all phenolic acids had effects on the early growth of A. artemisiifolia, p-coumaric acid significantly reduced the length of radicle and hypocotyl by more than 60% while the effects on Z. mays were minimal. In vivo assessments using chlorophyll fluorescence and multispectral imaging showed selective stress responses in A. artemisiifolia but not in Z. mays after foliar application. The in vitro results show that p-coumaric acid is a promising compound for the control of A. artemisiifolia. However, these phenolic acids at these doses led to an insufficient reduction in photochemical efficiency. Therefore, these natural compounds need to be combined with other methods of weed control.


Subject(s)
Ambrosia , Coumaric Acids , Hydroxybenzoates , Zea mays , Zea mays/growth & development , Zea mays/drug effects , Hydroxybenzoates/pharmacology , Coumaric Acids/pharmacology , Propionates/pharmacology , Vanillic Acid/pharmacology , Seeds/growth & development , Seeds/drug effects , Weed Control/methods
9.
J Agric Food Chem ; 72(39): 21702-21710, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39298915

ABSTRACT

Ferulic acid (FA) exhibits antioxidant and anti-inflammatory properties, making it valuable for numerous industrial applications. Traditionally, FA is produced by the alkaline hydrolysis of γ-oryzanol, which is typically associated with wastewater generation. Recently, an increasing demand of natural FA necessitates its green production via enzymatic hydrolysis of γ-oryzanol, a mixture comprising triterpene alcohol ferulates and phytosteryl ferulates. Thus far, γ-oryzanol can be hydrolyzed by only four commercial cholesterol esterases with low yields. Herein, we report a recombinant cholesterol esterase from Mustela putorius furo (MPFCE) for the enzymatic hydrolysis of γ-oryzanol. The enzyme yielded 25.5% FA, which is the highest reported through enzymatic means thus far. The hydrolysis profile revealed that the enhanced yield primarily resulted from the near-complete hydrolysis of phytosteryl ferulates, together with slight hydrolysis of triterpene alcohol ferulates. MPFCE serves as a potential candidate for the enzymatic production of FA through targeted hydrolysis of γ-oryzanol.


Subject(s)
Phenylpropionates , Sterol Esterase , Phenylpropionates/metabolism , Phenylpropionates/chemistry , Hydrolysis , Sterol Esterase/genetics , Sterol Esterase/metabolism , Sterol Esterase/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Saccharomycetales/genetics , Saccharomycetales/enzymology , Saccharomycetales/metabolism , Coumaric Acids/metabolism , Coumaric Acids/chemistry , Gene Expression , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry
10.
Nat Plants ; 10(9): 1389-1399, 2024 09.
Article in English | MEDLINE | ID: mdl-39232219

ABSTRACT

A transformation in plant cell wall evolution marked the emergence of grasses, grains and related species that now cover much of the globe. Their tough, less digestible cell walls arose from a new pattern of cross-linking between arabinoxylan polymers with distinctive ferulic acid residues. Despite extensive study, the biochemical mechanism of ferulic acid incorporation into cell walls remains unknown. Here we show that ferulic acid is transferred to arabinoxylans via an unexpected sucrose derivative, 3,6-O-diferuloyl sucrose (2-feruloyl-O-α-D-glucopyranosyl-(1'→2)-3,6-O-feruloyl-ß-D-fructofuranoside), formed by a sucrose ferulate cycle. Sucrose gains ferulate units through sequential transfers from feruloyl-CoA, initially at the O-3 position of sucrose catalysed by a family of BAHD-type sucrose ferulic acid transferases (SFT1 to SFT4 in maize), then at the O-6 position by a feruloyl sucrose feruloyl transferase (FSFT), which creates 3,6-O-diferuloyl sucrose. An FSFT-deficient mutant of maize, disorganized wall 1 (dow1), sharply decreases cell wall arabinoxylan ferulic acid content, causes accumulation of 3-O-feruloyl sucrose (α-D-glucopyranosyl-(1'→2)-3-O-feruloyl-ß-D-fructofuranoside) and leads to the abortion of embryos with defective cell walls. In vivo, isotope-labelled ferulic acid residues are transferred from 3,6-O-diferuloyl sucrose onto cell wall arabinoxylans. This previously unrecognized sucrose ferulate cycle resolves a long-standing mystery surrounding the evolution of the distinctive cell wall characteristics of cereal grains, biofuel crops and related commelinid species; identifies an unexpected role for sucrose as a ferulate group carrier in cell wall biosynthesis; and reveals a new paradigm for modifying cell wall polymers through ferulic acid incorporation.


Subject(s)
Cell Wall , Coumaric Acids , Sucrose , Xylans , Coumaric Acids/metabolism , Xylans/metabolism , Sucrose/metabolism , Cell Wall/metabolism , Cell Wall/chemistry , Zea mays/metabolism , Zea mays/genetics
11.
Nat Plants ; 10(9): 1284-1286, 2024 09.
Article in English | MEDLINE | ID: mdl-39232220
12.
Narra J ; 4(2): e775, 2024 08.
Article in English | MEDLINE | ID: mdl-39280296

ABSTRACT

Ferulic acid (4-hydroxy-3-methoxycinnamic acid) is a phytochemical compound that is commonly found in conjugated forms within mono-, di-, polysaccharides and other organic compounds in cell walls of grain, fruits, and vegetables. This compound is highly abundant in the palm oil waste. The aim of the study was to predict the anticancer activity of ferulic acid against the breast cancer cell lines (MCF-7) receptors through a computational analysis. MCF-7 receptors with PDB IDs of 1R5K, 2IOG, 4IV2, 4IW6, 5DUE, 5T92, and 5U2B were selected based on the Simplified Molecular Input Line Entry System (SMILES) similarity of the native ligand. Thereafter, the protein was prepared on Chimera 1.16 and docked with ferulic acid on Autodock Vina 1.2.5. The ligand-protein complex interaction was validated by computing the root mean square fluctuation (RMSF) and radius of gyration (Rg) through molecular dynamic simulation. In addition, an absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction was performed on ferulic acid using the pkCSM platform. The molecular docking revealed that the ferulic acid could interact with all receptors as indicated by the affinity energy <-5 kcal/mol. The compound had the most optimum interaction with receptor 2IOG (affinity energy=-6.96 kcal/mol), involving hydrophobic interaction (n=12) and polar hydrogen interaction (n=4). The molecular dynamic simulation revealed that the complex had an RMSF of 1.713 Å with a fluctuation of Rg value around 1.000 Å. The ADMET properties of ferulic acid suggested that the compound is an ideal drug candidate. In conclusion, this study suggested that ferulic acid, which can be isolated from palm oil waste, has the potential to interact with MCF-7 receptors.


Subject(s)
Coumaric Acids , Palm Oil , Palm Oil/chemistry , Palm Oil/metabolism , Coumaric Acids/chemistry , Coumaric Acids/metabolism , Coumaric Acids/pharmacology , Humans , MCF-7 Cells , Molecular Docking Simulation , Computer Simulation , Molecular Dynamics Simulation , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism
13.
Int J Biol Macromol ; 279(Pt 3): 135292, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39236956

ABSTRACT

Diabetic kidney disease, known as diabetic nephropathy (DN), is a widespread severe diabetes complication leading to kidney failure. Due to the lack of efficacious therapies, this study endeavors to enhance DN therapeutic effectiveness of ferulic acid (FRA), a natural phenolic with poor oral bioavailability, by developing a transdermal kidney-targeted spanlastic formulation. Spanlastics (SP) nanovesicles were prepared using Span 60 and Labrasol or Brij35 as edge activators (EA). Cationic guar (CG) and hyaluronic acid (HA) were employed as coatings. The formulations were assessed for entrapment efficiency (EE), particle size (PS) and zeta potential (ZP). A 21 × 31 factorial optimization of FRA spanlastic formulations revealed the desirable nanoformula was FRA-L-H-SP comprising Labrasol and hyaluronate coating. Transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), Diphenylpicrylhydrazyl (DPPH) antioxidant activity, in-vitro release, and rat skin ex-vivo permeation assessed this formula and the uncoated one (FRA-L-SP). Biochemical indicators and histopathology for diabetes and kidney injury were evaluated in the Streptozotocin (STZ)-induced DN rat model. Results showed significant improvements after treatment with FRA-L-H-SP compared to FRA-L-SP and free FRA, with decreased blood glucose, creatinine, and intercellular adhesion molecule-1 (ICAM-1) levels and increased insulin, AMP-activated protein kinase (AMPK), and sirtuins (SIRT). This enhancement can be acknowledged as passive targeting of SP and active targeting properties of hyaluronic to cluster of differentiation 44 (CD44) receptors, revealing the potential to improve DN pathophysiology.


Subject(s)
Coumaric Acids , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Hyaluronic Acid , Animals , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/administration & dosage , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Male , Administration, Cutaneous , Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/administration & dosage , Drug Carriers/chemistry , Particle Size , Glycerides
14.
Int J Biol Macromol ; 279(Pt 4): 135570, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39270908

ABSTRACT

Excessive UVB exposure increased the production of reactive oxygen species (ROS), leading to oxidative damage and epidermal inflammation. To enhance UVB protection effect, a strong phenolic antioxidant, ferulic acid (FA) was designed onto HA via a free radical mediated method. Our previous work has confirmed its structural characterization and in vitro antioxidant. The aim of this study was to evaluate its protective effects against UVB-induced damage in human HaCaT cells. We observed a significant reduction in cell viability to 57.43 % following UVB exposure at a dose of 80 mJ/cm2. However, pretreatment with FA-HA (250 to 2000 µg·mL-1) significantly attenuated cytotoxicity in a dose-dependent manner. Furthermore, FA-HA was found to suppress the intracellular generation of ROS and up-regulated the expression of the antioxidant enzyme superoxide dismutase (SOD). The elevated levels of pro-inflammatory cytokines, including interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) as well as the mRNA expression of matrix metalloproteinase-1/9 (MMP-1/9) induced by UVB irradiation, were also effectively reduced by FA-HA. Additionally, FA-HA treatment decreases the phosphorylation of mitogen-activated protein kinase (MAPK) and activator protein-1 (AP-1), ultimately preventing apoptosis. These findings suggest that FA-HA is a promising candidate for UVB protection in skincare formulations.


Subject(s)
Cell Survival , Coumaric Acids , HaCaT Cells , Hyaluronic Acid , Reactive Oxygen Species , Ultraviolet Rays , Humans , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Ultraviolet Rays/adverse effects , Cell Survival/drug effects , Hyaluronic Acid/pharmacology , Hyaluronic Acid/chemistry , Reactive Oxygen Species/metabolism , Cytokines/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/chemistry , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Superoxide Dismutase/metabolism , Polymers/chemistry , Polymers/pharmacology
15.
Wei Sheng Yan Jiu ; 53(5): 790-796, 2024 Sep.
Article in Chinese | MEDLINE | ID: mdl-39308111

ABSTRACT

OBJECTIVE: To establish a high-performance liquid chromatography-mass spectrometry(HPLC-MS/MS) method for detecting 13 kind of free and bound phenolic acids(chlorogenic acid, protocatechuic acid, ferulic acid, p-coumaric acid, gallic acid, gentisic acid, vanillic acid, caffeic acid, syringic acid, sinapic acid, rosmarinic acid, salicylic acid, p-hydroxybenzoic acid) in fruits, and optimize the pre-treatment conditions to meet the detection requirements for phenolic acid content in various types of fruits. METHODS: Free phenolic acids in fruits were extracted using methanol through ultrasonic extraction. Conjugated phenolic acids in the centrifuged residue were released by alkaline hydrolysis and extracted with ethyl acetate. The two extracts were combined, concentrated, and analyzed using HPLC-MS/MS. Separation was achieved using an Agilent ZORBAX SB-C_(18) chromatography column(3.0 mm×100 mm, 3.5 µm), and detection was performed in multiple reaction monitoring(MRM) mode. RESULTS: All 13 standard phenolic acids achieved complete separation within 10 minutes, with linear correlation coefficients greater than 0.998 and detection limits ranging from 0.172 to 3.471 ng/mL. After optimization of the pre-treatment method, the recovery rates of the method for four types of fruits-apples, strawberries, oranges, and peaches-ranged from 80.0% to 119.4%, and the precision were lower than 7.00%(n=6). The result of testing on four categories of twelve types of fruits demonstrated significant variations in the content of phenolic acids among different fruits, and within the same category, the composition of phenolic acids did not exhibit consistency. CONCLUSION: The HPLC-MS/MS method exhibits high sensitivity, precision, and accuracy. It is suitable for the detection of both free and bound phenolic acids in various types of fruits.


Subject(s)
Coumaric Acids , Fruit , Hydroxybenzoates , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Hydroxybenzoates/analysis , Fruit/chemistry , Tandem Mass Spectrometry/methods , Coumaric Acids/analysis , Gallic Acid/analysis , Gallic Acid/analogs & derivatives , Chlorogenic Acid/analysis , Vanillic Acid/analysis , Caffeic Acids/analysis , Rosmarinic Acid , Cinnamates/analysis , Gentisates/chemistry , Gentisates/analysis , Salicylic Acid/analysis , Liquid Chromatography-Mass Spectrometry
16.
J Nanobiotechnology ; 22(1): 576, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300534

ABSTRACT

BACKGROUND: Radiation-induced skin injury is a significant adverse reaction to radiotherapy. However, there is a lack of effective prevention and treatment methods for this complication. Ferulic acid (FA) has been identified as an effective anti-radiation agent. Conventional administrations of FA limit the reaching of it on skin. We aimed to develop a novel FA hydrogel to facilitate the use of FA in radiation-induced skin injury. METHODS: We cross-linked carbomer 940, a commonly used adjuvant, with FA at concentrations of 5%, 10%, and 15%. Sweep source optical coherence tomography system, a novel skin structure evaluation method, was applied to investigate the influence of FA on radiation-induced skin injury. Calcein-AM/PI staining, CCK8 assay, hemolysis test and scratch test were performed to investigate the biocompatibility of FA hydrogel. The reducibility of DPPH and ABTS radicals by FA hydrogel was also performed. HE staining, Masson staining, laser Doppler blood flow monitor, and OCT imaging system are used to evaluate the degree of skin tissue damage. Potential differentially expressed genes were screened via transcriptome analysis. RESULTS: Good biocompatibility and in vitro antioxidant ability of the FA hydrogels were observed. 10% FA hydrogel presented a better mechanical stability than 5% and 15% FA hydrogel. All three concentrations of FA remarkably promoted the recovery of radiation-induced skin injury by reducing inflammation, oxidative conidiation, skin blood flow, and accelerating skin tissue reconstruction, collagen deposition. FA hydrogel greatly inhibiting the levels of NLRP3, caspase-1, IL-18, pro-IL-1ß and IL-1ß in vivo and vitro levels through restraining the activation of NLRP3 inflammasome. Transcriptome analysis indicated that FA might regulate wound healing via targeting immune response, inflammatory response, cell migration, angiogenesis, hypoxia response, and cell matrix adhesion. CONCLUSIONS: These findings suggest that the novel FA hydrogel is a promising therapeutic method for the prevention and treatment of radiation-induced skin injury patients.


Subject(s)
Coumaric Acids , Hydrogels , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Skin , Wound Healing , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Wound Healing/drug effects , Inflammasomes/metabolism , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Skin/drug effects , Male , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Radiation Injuries/drug therapy , Mice, Inbred C57BL
17.
Molecules ; 29(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39202843

ABSTRACT

Degenerative conditions, such as neurodegenerative disorders (Alzheimer's disease (AD), Parkinson's disease (PD)) and cardiovascular diseases, are complex, multifactorial disorders whose pathophysiology has not been fully elucidated yet. As a result, the available treatment options cannot eliminate these diseases radically, but only alleviate the symptoms. Both inflammatory processes and oxidation are key factors in the development and evolution of neurodegeneration, while acetylcholinesterase inhibitors are the most used therapeutic options against AD. In this work, following the multi-targeting compound approach, we designed and synthesized a series of proline and gamma-aminobutyric acid (GABA) amides with various acidic moieties that possess an antioxidant and/or anti-inflammatory potency. Proline is the pharmacophore of nootropic drugs (e.g., piracetam) used for memory improvement, while GABA is the main inhibitory neurotransmitter in the central nervous system. The designed molecules were subjected to a preliminary screening of their bioactivity in antioxidant and anti-inflammatory assays, as well as against acetylcholinesterase. Most of the synthesized compounds could inhibit lipid peroxidation (IC50 as low as 8 µΜ) and oxidative protein glycation (inhibition of up to 48%) and reduce the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH). In addition, all of the compounds were moderate inhibitors of lipoxygenase (LOX) (up to 46% at 100 µΜ) and could decrease carrageenan-induced paw edema in rats by up to 55%. Finally, some of the compounds were moderate acetylcholinesterase inhibitors (IC50 as low as 219 µΜ). The results confirmed the design rationale, indicating that the compounds could be further optimized as multi-targeting molecules directed against degenerative conditions.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cinnamates , Coumaric Acids , Proline , gamma-Aminobutyric Acid , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Coumaric Acids/pharmacology , Coumaric Acids/chemistry , Animals , gamma-Aminobutyric Acid/metabolism , Cinnamates/pharmacology , Cinnamates/chemistry , Proline/chemistry , Proline/pharmacology , Rats , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/chemical synthesis , Lipid Peroxidation/drug effects , Chromans
18.
Waste Manag ; 188: 39-47, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39098271

ABSTRACT

Brewers' spent grain (BSG) is the main byproduct from the brewing industry, which accounts for 85 % of the total waste generated during beer production. This lignocellulosic material is traditionally used as livestock feed and sold at a low price. However, BSG can be used as a low-cost feedstock for the production of bioactive molecules and chemicals precursors, upgrading the value of this byproduct. In this context, BSG is a promising feedstock for the extraction of antioxidants like ferulic acid (FA) and p-coumaric acid (p-Cu). The effectiveness of three hydrolysis treatments were evaluated for the extraction of FA and p-Cu from BSG, namely enzymatic (based on the synergistic cooperation between a feruloyl esterase and an endo-1,4-ß-xylanase), alkaline and hydrothermal. The hydrothermal treatment produced the highest extraction yields (7.2 g/kgBSG and 1.4 g/kgBSG for FA and p-Cu, respectively) in a short extraction time (an hour). On the other hand, enzymatic hydrolysis extracted 4.3 g/kgBSG for FA and negligible yields for p-Cu in 4 h of incubation at 25 °C. Yields of 5.5 g/kgBSG for FA and 0.6 g/kgBSG for p-Cu were obtained in more than 5 h of alkaline treatment at 120 °C. The mass and energy balances revealed the high dependence of the operating costs on the concentration of BSG used during the extraction process, with costs of 34.5 €, 6607 € and 205.5 € per kg of FA for the chemical, enzymatic and hydrothermal extraction methods at 100 kg BSG/m3.


Subject(s)
Coumaric Acids , Edible Grain , Edible Grain/chemistry , Hydrolysis , Beer , Propionates , Industrial Waste/analysis , Carboxylic Ester Hydrolases/metabolism , Endo-1,4-beta Xylanases/metabolism , Waste Management/methods
19.
Food Chem ; 461: 140799, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39154464

ABSTRACT

Plant secondary metabolites have attracted considerable attention due to the increasing demand for finite fossil resources and environmental concerns. However, the biosynthesis of aromatic aldehydes or alcohols from renewable resources remains challenging and costly. This study explores a novel approach performed by the aromatic catabolizing organism Rhizopus oryzae, which enables a ferulic acid-activated co-production of 4-vinyl guaiacol (4-VG) and fumaric acid. The strain produced 4.60 g/L 4-VG and 11.25 g/L fumaric acid from a mixed carbon source of glucose and xylose, suggesting that this new pathway allows the potential production of natural 4-VG from low-cost substrates. This green route, which utilizes Rhizopus oryzae's ability to efficiently convert various renewable resources into valuable chemicals, paves the way for improved catalytic efficiency in 4-VG production.


Subject(s)
Coumaric Acids , Fumarates , Guaiacol , Lignin , Rhizopus oryzae , Coumaric Acids/metabolism , Coumaric Acids/chemistry , Lignin/metabolism , Lignin/chemistry , Fumarates/metabolism , Guaiacol/metabolism , Guaiacol/analogs & derivatives , Guaiacol/chemistry , Rhizopus oryzae/metabolism , Rhizopus oryzae/genetics , Carbon/metabolism , Carbon/chemistry , Rhizopus/metabolism
20.
Food Funct ; 15(18): 9272-9283, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39162187

ABSTRACT

Highland barley is a natural source for the development of phenolic compounds that exhibit potential in preventing type 2 diabetes, which is important for the agricultural and industrial utilization of highland barley. However, very few studies have focused on their effect on small intestinal absorption and barrier dysfunction, as well as the direct target for the modulation of hepatic glucose metabolism. In this study, procyanidin B1 (PB) and p-coumaric acid (CA) isolated from highland barley supplementation in impaired glucose tolerance (IGT) mice significantly increased lactase-phlorizin hydrolase (LPH), sulfotransferase 1A1 (SULT1A1), UDP glucuronosyltransferase 1A (UGT1A) families and sodium-dependent glucose transporter 1 (SGLT1) expression in the small intestine of IGT mice, indicating beneficial effects on polyphenol deglycosylation and transportation. Supplementation with PB and CA also exhibited attenuation of small intestinal barrier dysfunction by improving the mucus layer and tight junctions, which was closely related to the transportation of phenolic compounds. In addition, PB and CA supplementation were explored directly to bind to the insulin receptor and activate the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, thereby modulating hepatic glucose metabolism and ameliorating hyperglycemic in IGT mice. These results offer crucial insights into the potential development of PB and CA as non-food nutraceuticals, as well as the extensive utilization of highland barley as an industrial crop.


Subject(s)
Biflavonoids , Catechin , Coumaric Acids , Glucose Intolerance , Glucose , Hordeum , Intestine, Small , Liver , Proanthocyanidins , Animals , Hordeum/chemistry , Proanthocyanidins/pharmacology , Mice , Male , Glucose Intolerance/drug therapy , Glucose Intolerance/metabolism , Biflavonoids/pharmacology , Coumaric Acids/pharmacology , Catechin/pharmacology , Liver/metabolism , Liver/drug effects , Intestine, Small/metabolism , Intestine, Small/drug effects , Glucose/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Propionates , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 1/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL