Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.420
Filter
1.
BMC Pharmacol Toxicol ; 25(1): 34, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845014

ABSTRACT

Antiplatelet therapy is an important factor influencing the postterm patency rate of carotid artery stenting (CAS). Clopidogrel is a platelet aggregation inhibitor mediated by the adenosine diphosphate receptor and is affected by CYP2C19 gene polymorphisms in vivo. When the CYP2C19 gene has a nonfunctional mutation, the activity of the encoded enzyme will be weakened or lost, which directly affects the metabolism of clopidogrel and ultimately weakens its antiplatelet aggregation ability. Therefore, based on network pharmacology, analyzing the influence of CYP2C19 gene polymorphisms on the antiplatelet therapeutic effect of clopidogrel after CAS is highly important for the formulation of individualized clinical drug regimens. The effect of the CYP2C19 gene polymorphism on the antiplatelet aggregation of clopidogrel after CAS was analyzed based on network pharmacology. A total of 100 patients with ischemic cerebrovascular disease who were confirmed by the neurology department and required CAS treatment were studied. CYP2C19 genotyping was performed on all patients via a gene chip. All patients were classified into the wild-type (WT) group (*1/*1), heterozygous mutation (HTM) group (CYP2C19*1/*2, CYP2C19*1/*3), and homozygous mutation (HMM) group (CYP2C19*2/*2, CYP2C19*2/*3, and CYP2C19*3/*3). High-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) was used to detect the blood concentration of clopidogrel and the plasma clopidogrel clearance (CL) rate in different groups of patients before and after clopidogrel treatment. The platelet aggregation rate of patients with different genotypes was measured by turbidimetry. The incidences of clopidogrel resistance (CR) and stent thrombosis in different groups after three months of treatment were analyzed. The results showed that among the different CYP2C19 genotypes, patients from the HTM group accounted for the most patients, while patients from the HTM group accounted for the least patients. Similarly, the clopidogrel CL of patients in the HMM group was lower than that of patients in the WT group and HTM group (P < 0.01). The platelet inhibition rate of patients in the HMM group was evidently inferior to that of patients in the WT group and HTM group (P < 0.01). The incidence of CR and stent thrombosis in the WT group was notably lower than that in the HTM and HMM groups (P < 0.01). These results indicate that the CYP2C19 gene can affect CR occurrence and stent thrombosis after CAS by influencing clopidogrel metabolism and platelet count.


Subject(s)
Clopidogrel , Cytochrome P-450 CYP2C19 , Platelet Aggregation Inhibitors , Platelet Aggregation , Stents , Humans , Cytochrome P-450 CYP2C19/genetics , Clopidogrel/therapeutic use , Clopidogrel/pharmacology , Clopidogrel/pharmacokinetics , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/pharmacokinetics , Male , Female , Platelet Aggregation/drug effects , Aged , Middle Aged , Polymorphism, Genetic , Ticlopidine/analogs & derivatives , Ticlopidine/therapeutic use , Ticlopidine/pharmacology , Genotype , Carotid Arteries/drug effects , Carotid Arteries/surgery
2.
Clin Transl Sci ; 17(6): e13822, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860639

ABSTRACT

Specific selective serotonin reuptake inhibitors (SSRIs) metabolism is strongly influenced by two pharmacogenes, CYP2D6 and CYP2C19. However, the effectiveness of prospectively using pharmacogenetic variants to select or dose SSRIs for depression is uncertain in routine clinical practice. The objective of this prospective, multicenter, pragmatic randomized controlled trial is to determine the effectiveness of genotype-guided selection and dosing of antidepressants on control of depression in participants who are 8 years or older with ≥3 months of depressive symptoms who require new or revised therapy. Those randomized to the intervention arm undergo pharmacogenetic testing at baseline and receive a pharmacy consult and/or automated clinical decision support intervention based on an actionable phenotype, while those randomized to the control arm have pharmacogenetic testing at the end of 6-months. In both groups, depression and drug tolerability outcomes are assessed at baseline, 1 month, 3 months (primary), and 6 months. The primary end point is defined by change in Patient-Reported Outcomes Measurement Information System (PROMIS) Depression score assessed at 3 months versus baseline. Secondary end points include change inpatient health questionnaire (PHQ-8) measure of depression severity, remission rates defined by PROMIS score < 16, medication adherence, and medication side effects. The primary analysis will compare the PROMIS score difference between trial arms among those with an actionable CYP2D6 or CYP2C19 genetic result or a CYP2D6 drug-drug interaction. The trial has completed accrual of 1461 participants, of which 562 were found to have an actionable phenotype to date, and follow-up will be complete in April of 2024.


Subject(s)
Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2D6 , Depression , Pharmacogenomic Testing , Selective Serotonin Reuptake Inhibitors , Humans , Cytochrome P-450 CYP2D6/genetics , Selective Serotonin Reuptake Inhibitors/administration & dosage , Selective Serotonin Reuptake Inhibitors/therapeutic use , Cytochrome P-450 CYP2C19/genetics , Depression/drug therapy , Depression/genetics , Depression/diagnosis , Prospective Studies , Female , Male , Pharmacogenomic Variants , Adult , Pragmatic Clinical Trials as Topic , Antidepressive Agents/therapeutic use , Antidepressive Agents/administration & dosage , Antidepressive Agents/adverse effects
3.
J Am Heart Assoc ; 13(10): e032248, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38761068

ABSTRACT

BACKGROUND: Carriers of CYP2C19 loss-of-function alleles have increased adverse events after percutaneous coronary intervention, but limited data are available for older patients. We aimed to evaluate the prognostic impact of CYP2C19 genotypes on clinical outcomes in older patients after percutaneous coronary intervention. METHODS AND RESULTS: The study included 1201 older patients (aged ≥75 years) who underwent percutaneous coronary intervention and received clopidogrel-based dual antiplatelet therapy in South Korea. Patients were grouped on the basis of CYP2C19 genotypes. The primary outcome was 3-year major adverse cardiac events, defined as a composite of cardiac death, myocardial infarction, and stent thrombosis. Older patients were grouped into 3 groups: normal metabolizer (36.6%), intermediate metabolizer (48.1%), and poor metabolizer (15.2%). The occurrence of the primary outcome was significantly different among the groups (3.1, 7.0, and 6.2% in the normal metabolizer, intermediate metabolizer, and poor metabolizer groups, respectively; P=0.02). The incidence rate of all-cause death at 3 years was greater in the intermediate metabolizer and poor metabolizer groups (8.1% and 9.2%, respectively) compared with that in the normal metabolizer group (3.5%, P=0.03) without significant differences in major bleeding. In the multivariable analysis, the intermediate metabolizer and poor metabolizer groups were independent predictors of 3-year clinical outcomes. CONCLUSIONS: In older patients, the presence of any CYP2C19 loss-of-function allele was found to be predictive of a higher incidence of major adverse cardiac events within 3 years following percutaneous coronary intervention. This finding suggests a need for further investigation into an optimal antiplatelet strategy for older patients. REGISTRATION: URL: https://clinicaltrials.gov. Identifier: NCT04734028.


Subject(s)
Clopidogrel , Cytochrome P-450 CYP2C19 , Genotype , Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors , Humans , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Percutaneous Coronary Intervention/adverse effects , Male , Female , Aged , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/adverse effects , Republic of Korea/epidemiology , Clopidogrel/pharmacokinetics , Clopidogrel/therapeutic use , Clopidogrel/adverse effects , Aged, 80 and over , Prognosis , Treatment Outcome , Time Factors , Coronary Artery Disease/genetics , Coronary Artery Disease/surgery , Coronary Artery Disease/mortality , Coronary Artery Disease/therapy , Risk Factors , Dual Anti-Platelet Therapy/adverse effects , Risk Assessment , Age Factors , Myocardial Infarction/genetics , Myocardial Infarction/epidemiology , Pharmacogenomic Variants
4.
Arch Dermatol Res ; 316(6): 303, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819581

ABSTRACT

Voriconazole exposure is associated with skin cancer, but it is unknown how the full spectrum of its metabolizer phenotypes impacts this association. We conducted a retrospective cohort study to determine how variation in metabolism of voriconazole as measured by metabolizer status of CYP2C19 is associated with the total number of skin cancers a patient develops and the rate of development of the first skin cancer after treatment. There were 1,739 organ transplant recipients with data on CYP2C19 phenotype. Of these, 134 were exposed to voriconazole. There was a significant difference in the number of skin cancers after transplant based on exposure to voriconazole, metabolizer phenotype, and the interaction of these two (p < 0.01 for all three). This increase was driven primarily by number of squamous cell carcinomas among rapid metabolizes with voriconazole exposure (p < 0.01 for both). Patients exposed to voriconazole developed skin cancers more rapidly than those without exposure (Fine-Grey hazard ratio 1.78, 95% confidence interval 1.19-2.66). This association was similarly driven by development of SCC (Fine-Grey hazard ratio 1.83, 95% confidence interval 1.14-2.94). Differences in voriconazoles metabolism are associated with an increase in the number of skin cancers developed after transplant, particularly SCC.


Subject(s)
Antifungal Agents , Carcinoma, Squamous Cell , Cytochrome P-450 CYP2C19 , Skin Neoplasms , Voriconazole , Humans , Voriconazole/adverse effects , Skin Neoplasms/epidemiology , Skin Neoplasms/etiology , Skin Neoplasms/metabolism , Retrospective Studies , Male , Female , Middle Aged , Antifungal Agents/adverse effects , Carcinoma, Squamous Cell/epidemiology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/etiology , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C19/genetics , Aged , Organ Transplantation/adverse effects , Adult
5.
Sci Rep ; 14(1): 11730, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778126

ABSTRACT

Metabolism of praziquantel (PZQ), a racemic mixture and the only drug approved to treat S. mansoni infection, is mediated by genetically polymorphic enzymes. Periodic school-based mass drug administration (MDA) with PZQ is the core intervention to control schistosomiasis. However data on the impact of pharmacogenetic variation, nutrition, and infection status on plasma PZQ exposure is scarce. We investigated genetic and non-genetic factors influencing PZQ plasma concentration and its metabolic ratios (trans-4-OH-PZQ/PZQ and cis-4-OH-PZQ/PZQ). Four hundred forty-six school children aged 7-15 years from four primary schools in southern Ethiopia who received albendazole and PZQ preventive chemotherapy through MDA campaign were enrolled. Genotyping for common functional variants of CYP3A4 (*1B), CYP3A5 (*3, *6), CYP2C19 (*2, *3, *17), CYP2C9 (*2, *3), and CYP2J2*7 was performed. Plasma concentrations of PZQ, trans-4-OH-PZQ, and cis-4-OH-PZQ were quantified using UPLCMS/MS. Carriers of CYP2C19 defective variant alleles (*2 and *3) had significantly higher mean PZQ plasma concentration than CYP2C19*1/*1 or *17 carriers (p = 0.005). CYP2C19*1/*1 and CYP2C19*17 carriers had higher trans-4-OH-PZQ/PZQ and cis-4-OH-PZQ/PZQ metabolic ratios compared with CYP2C19*2 or *3 carriers (p < 0.001). CYP2J2*7 carriers had lower mean PZQ plasma concentration (p = 0.05) and higher trans-4-OH-PZQ/PZQ and cis-4-OH-PZQ/PZQ metabolic ratios. Male participants had significantly higher PZQ concentration (p = 0.006) and lower metabolic ratios (p = 0.001) than females. There was no significant effect of stunting, wasting, S. mansoni or soil-transmitted helminth infections, CYP3A4, CYP3A5, or CYP2C9 genotypes on plasma PZQ or its metabolic ratios. In conclusion, sex, CYP2C19 and CYP2J2 genotypes significantly predict PZQ plasma exposure among Ethiopian children. The impact of CYP2C19 and CYP2J2 genotypes on praziquantel treatment outcomes requires further investigation.


Subject(s)
Cytochrome P-450 CYP2C19 , Cytochrome P-450 Enzyme System , Genotype , Praziquantel , Humans , Praziquantel/blood , Praziquantel/pharmacokinetics , Child , Male , Female , Ethiopia , Adolescent , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Anthelmintics/blood , Anthelmintics/pharmacokinetics , Anthelmintics/therapeutic use , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/blood , Schistosomiasis mansoni/genetics , Schistosomiasis mansoni/parasitology
6.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791422

ABSTRACT

The effectiveness of lipid-lowering therapies may be insufficient in high-risk cardiovascular patients and depends on the genetic variability of drug-metabolizing enzymes. Customizing statin therapy, including treatment with atorvastatin, may improve clinical outcomes. Currently, there is a lack of guidelines allowing the prediction of the therapeutic efficacy of lipid-lowering statin therapy. This study aimed to determine the effects of clinically significant gene variants of CYP2C19 on atorvastatin therapy in patients with acute coronary syndromes. In total, 92 patients with a confirmed diagnosis of ST-elevation myocardial infarction (STEMI) or non-ST-elevation myocardial infarction (NSTEMI) were sequenced for target regions within the CYP2C19 gene on the Illumina Miniseq system. The CYP2C19 poor metabolizer phenotype (carriers of CYP2C19*2, CYP2C19*4, and CYP2C19*8 alleles) was detected in 29% of patients. These patients had significantly lower responses to treatment with atorvastatin than patients with the normal metabolizer phenotype. CYP2C19-metabolizing phenotype, patient age, and smoking increased the odds of undertreatment in patients (∆LDL-C (mmol/L) < 1). These results revealed that the CYP2C19 phenotype may significantly impact atorvastatin therapy personalization in patients requiring LDL lipid-lowering therapy.


Subject(s)
Acute Coronary Syndrome , Atorvastatin , Cytochrome P-450 CYP2C19 , Humans , Cytochrome P-450 CYP2C19/genetics , Atorvastatin/therapeutic use , Female , Male , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/genetics , Middle Aged , Aged , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Alleles
7.
Expert Opin Drug Metab Toxicol ; 20(5): 319-332, 2024 May.
Article in English | MEDLINE | ID: mdl-38785066

ABSTRACT

INTRODUCTION: Medications are frequently prescribed for patients with irritable bowel syndrome (IBS) or disorders of gut brain interaction. The level of drug metabolism and modifications in drug targets determine medication efficacy to modify motor or sensory function as well as patient response outcomes. AREAS COVERED: The literature search included PubMed searches with the terms: pharmacokinetics, pharmacogenomics, epigenetics, clinical trials, irritable bowel syndrome, disorders of gut brain interaction, and genome-wide association studies. The main topics covered in relation to irritable bowel syndrome were precision medicine, pharmacogenomics related to drug metabolism, pharmacogenomics related to mechanistic targets, and epigenetics. EXPERT OPINION: Pharmacogenomics impacting drug metabolism [CYP 2D6 (cytochrome P450 2D6) or 2C19 (cytochrome P450 2C19)] is the most practical approach to precision medicine in the treatment of IBS. Although there are proof of concept studies that have documented the importance of genetic modification of transmitters or receptors in altering responses to medications in IBS, these principles have rarely been applied in patient response outcomes. Genome-wide association (GWAS) studies have now documented the association of symptoms with genetic variation but not the evaluation of treatment responses. Considerably more research, particularly focused on patient response outcomes and epigenetics, is essential to impact this field in clinical medicine.


Subject(s)
Genome-Wide Association Study , Irritable Bowel Syndrome , Pharmacogenetics , Precision Medicine , Humans , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/genetics , Precision Medicine/methods , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Gastrointestinal Agents/pharmacology , Gastrointestinal Agents/pharmacokinetics , Gastrointestinal Agents/administration & dosage , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Epigenesis, Genetic , Animals
8.
Biol Pharm Bull ; 47(5): 1028-1032, 2024.
Article in English | MEDLINE | ID: mdl-38797695

ABSTRACT

Omeprazole, a gastric acid pump inhibitor, is repeatedly administered and is oxidatively metabolized mainly by polymorphic cytochrome P450 2C19. The prescribed dosage of omeprazole was discontinued or reduced in 47 of the 135 patients who received omeprazole alone in this survey, as recorded in the Japanese Adverse Drug Event Report database. The days to onset of omeprazole-related disorders were 3-4 d (median) and 16 d for intravenous 20-40 mg and oral 20 mg daily doses, respectively, in 34 patients for whom relevant data were available. The maximum plasma concentration of omeprazole was pharmacokinetically modeled after a single oral 40-mg dose in P450 2C19-defective poor metabolizers and was 2.4-fold higher than that in extensive metabolizers. The modeled area under the hepatic concentration curves of omeprazole in P450 2C19 poor metabolizers after virtual daily 40-mg doses for 7 d was 5.2-fold higher than that in the extensive metabolizers. Omeprazole-induced P450 2C19 (approx. 2-fold), resulting in increased hepatic intrinsic clearance in repeated doses, was considered after the second day. Virtual plasma/hepatic exposure estimated using pharmacokinetic modeling in subjects with P450 2C19 poor metabolizers indicated that these exposure levels virtually estimated could be one of causal factors for unexpected hepatic disorders induced by prescribed omeprazole, such as those resulting from drug interactions with repeatedly co-administered medicines.


Subject(s)
Cytochrome P-450 CYP2C19 , Liver , Omeprazole , Proton Pump Inhibitors , Humans , Adverse Drug Reaction Reporting Systems , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/blood , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Databases, Factual , East Asian People , Japan , Liver/metabolism , Liver/drug effects , Models, Biological , Omeprazole/pharmacokinetics , Omeprazole/adverse effects , Omeprazole/blood , Omeprazole/administration & dosage , Proton Pump Inhibitors/adverse effects , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/pharmacokinetics , Proton Pump Inhibitors/blood
9.
BMC Psychiatry ; 24(1): 394, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38797832

ABSTRACT

BACKGROUND: Tailoring antidepressant drugs (AD) to patients' genetic drug-metabolism profile is promising. However, literature regarding associations of ADs' treatment effect and/or side effects with drug metabolizing genes CYP2D6 and CYP2C19 has yielded inconsistent results. Therefore, our aim was to longitudinally investigate associations between CYP2D6 (poor, intermediate, and normal) and CYP2C19 (poor, intermediate, normal, and ultrarapid) metabolizer-status, and switching/discontinuing of ADs. Next, we investigated whether the number of perceived side effects differed between metabolizer statuses. METHODS: Data came from the multi-site naturalistic longitudinal cohort Netherlands Study of Depression and Anxiety (NESDA). We selected depression- and/or anxiety patients, who used AD at some point in the course of the 9 years follow-up period (n = 928). Medication use was followed to assess patterns of AD switching/discontinuation over time. CYP2D6 and CYP2C19 alleles were derived using genome-wide data of the NESDA samples and haplotype data from the PharmGKB database. Logistic regression analyses were conducted to investigate the association of metabolizer status with switching/discontinuing ADs. Mann-Whitney U-tests were conducted to compare the number of patient-perceived side effects between metabolizer statuses. RESULTS: No significant associations were observed of CYP metabolizer status with switching/discontinuing ADs, nor with the number of perceived side effects. CONCLUSIONS: We found no evidence for associations between CYP metabolizer statuses and switching/discontinuing AD, nor with side effects of ADs, suggesting that metabolizer status only plays a limited role in switching/discontinuing ADs. Additional studies with larger numbers of PM and UM patients are needed to further determine the potential added value of pharmacogenetics to guide pharmacotherapy.


Subject(s)
Antidepressive Agents , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2D6 , Humans , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2C19/genetics , Male , Antidepressive Agents/therapeutic use , Female , Middle Aged , Adult , Longitudinal Studies , Netherlands , Anxiety Disorders/genetics , Anxiety Disorders/drug therapy , Depressive Disorder/drug therapy , Depressive Disorder/genetics
10.
Biomed Pharmacother ; 175: 116421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719708

ABSTRACT

Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.


Subject(s)
Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP3A , Drug Interactions , Flavonoids , Microsomes, Liver , Piperidines , Pyrimidines , Humans , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Pyrimidines/pharmacology , Pyrimidines/metabolism , Animals , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Rats , Piperidines/pharmacology , Piperidines/pharmacokinetics , Piperidines/metabolism , Polymorphism, Genetic , Pyrroles/pharmacology , Pyrroles/metabolism
11.
Genes (Basel) ; 15(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38790236

ABSTRACT

A recently discovered haplotype-CYP2C:TG-determines the ultrarapid metabolism of several CYP2C19 substrates. The platelet inhibitor clopidogrel requires CYP2C19-mediated activation: the risk of ischemic events is increased in patients with a poor (PM) or intermediate (IM) CYP2C19 metabolizer phenotype (vs. normal, NM; rapid, RM; or ultrarapid, UM). We investigated whether the CYP2C:TG haplotype affected efficacy/bleeding risk in clopidogrel-treated patients. Adults (n = 283) treated with clopidogrel over 3-6 months were classified by CYP2C19 phenotype based on the CYP2C19*2*17 genotype, and based on the CYP2C19/CYP2C cluster genotype, and regarding carriage of the CYP2:TG haplotype, and were balanced on a number of covariates across the levels of phenotypes/haplotype carriage. Overall, 45 (15.9%) patients experienced ischemic events, and 49 (17.3%) experienced bleedings. By either classification, the incidence of ischemic events was similarly numerically higher in PM/IM patients (21.6%, 21.8%, respectively) than in mutually similar NM, RM, and UM patients (13.2-14.8%), whereas the incidence of bleeding events was numerically lower (13.1% vs. 16.6-20.5%). The incidence of ischemic events was similar in CYP2C:TG carries and non-carries (14.1% vs. 16.1%), whereas the incidence of bleedings appeared mildly lower in the former (14.9% vs. 20.1%). We observed no signal to suggest a major effect of the CYP2C19/CYP2C cluster genotype or CYP2C:TG haplotype on the clinical efficacy/safety of clopidogrel.


Subject(s)
Clopidogrel , Cytochrome P-450 CYP2C19 , Haplotypes , Hemorrhage , Platelet Aggregation Inhibitors , Humans , Clopidogrel/adverse effects , Clopidogrel/therapeutic use , Male , Female , Cytochrome P-450 CYP2C19/genetics , Hemorrhage/chemically induced , Hemorrhage/genetics , Aged , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Platelet Aggregation Inhibitors/therapeutic use , Genotype , Ticlopidine/analogs & derivatives , Ticlopidine/adverse effects , Ticlopidine/therapeutic use
12.
BMC Pediatr ; 24(1): 299, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702595

ABSTRACT

PURPOSE: We aimed to investigated the influencing risk factors of voriconazole-induced liver injury in Uygur pediatric patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT). METHODS: This was a prospective cohort design study. High-performance liquid chromatography-mass spectrometry was employed to monitor voriconazole concentration. First-generation sequencing was performed to detect gene polymorphisms. Indicators of liver function were detected at least once before and after voriconazole therapy. RESULTS: Forty-one patients were included in this study, among which, 15 patients (36.6%) had voriconazole-induced liver injury. The proportion of voriconazole trough concentration > 5.5 µg·mL-1 patients within the DILI group (40.0%) was significantly higher compared to the control group (15.4%) (p < 0.05). After administration of voriconazole, the values of ALT (103.3 ± 80.3 U/L) and AST (79.9 ± 60.6 U/L) in the DILI group were higher than that in the control group (24.3 ± 24.8 and 30.4 ± 8.6 U/L) (p < 0.05). There was no significant difference between the two groups in genotype and allele frequencies of CYP2C19*2, CYP2C19*3, CYP2C19*17, and UGT1A4 (rs2011425) (p > 0.05). CONCLUSION: There was a significant correlation between voriconazole-induced liver injury and voriconazole trough concentration in high-risk Uygur pediatric patients with allogeneic HSCT.


Subject(s)
Antifungal Agents , Chemical and Drug Induced Liver Injury , Hematopoietic Stem Cell Transplantation , Voriconazole , Humans , Voriconazole/adverse effects , Hematopoietic Stem Cell Transplantation/adverse effects , Child , Male , Female , Prospective Studies , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Risk Factors , Antifungal Agents/adverse effects , Child, Preschool , China , Adolescent , Cytochrome P-450 CYP2C19/genetics , Transplantation, Homologous/adverse effects
13.
Clin Transl Sci ; 17(4): e13782, 2024 04.
Article in English | MEDLINE | ID: mdl-38629502

ABSTRACT

In this brief report, we provide an analysis of the influence of a novel CYP2C haplotype (CYP2C:TG) on proton pump inhibitor (PPI) pharmacokinetics (PK) in children. The CYP2C:TG haplotype has been proposed to be associated with increased CYP2C19 activity. We sought to determine if this CYP2C:TG haplotype resulted in similar alterations in metabolism for proton pump inhibitors, which are primarily metabolized by CYP2C19. In a cohort of 41 children aged 6-21 participating in a PPI pharmacokinetic study, effects of the CYP2C:TG allele were assessed by fitting two linear regression models for each of the six PK outcomes assessed, the second of which accounted for the presence of the CYP2C:TG allele. The difference in R2 values between the two models was computed to quantify the variability in the outcome that could be accounted for by the CYP2C:TG allele after adjustment for the CYP2C19 genotype. We found the CYP2C:TG haplotype to have no measurable additive impact on CYP2C19-mediated metabolism of PPIs in vivo in older children and adolescents. The findings of this study do not support the clinical utility of routine testing for the CYP2C:TG haplotype to guide PPI dose adjustments in children.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 Enzyme System , Proton Pump Inhibitors , Child , Humans , Adolescent , Proton Pump Inhibitors/pharmacokinetics , Haplotypes , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P-450 CYP2C19/genetics , Genotype
14.
J Am Coll Cardiol ; 83(15): 1370-1381, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38599713

ABSTRACT

BACKGROUND: An ABCD-GENE (age, body mass index, chronic kidney disease, diabetes, and CYP2C19 genetic variants) score ≥10 predicts reduced clopidogrel effectiveness, but its association with response to alternative therapy remains unclear. OBJECTIVES: The aim of this study was to evaluate the association between ABCD-GENE score and the effectiveness of clopidogrel vs alternative P2Y12 inhibitor (prasugrel or ticagrelor) therapy after percutaneous coronary intervention (PCI). METHODS: A total of 4,335 patients who underwent PCI, CYP2C19 genotyping, and P2Y12 inhibitor treatment were included. The primary outcome was major atherothrombotic events (MAE) within 1 year after PCI. Cox regression was performed to assess event risk in clopidogrel-treated (reference) vs alternatively treated patients, with stabilized inverse probability weights derived from exposure propensity scores after stratifying by ABCD-GENE score and further by CYP2C19 loss-of-function (LOF) genotype. RESULTS: Among patients with scores <10 (n = 3,200), MAE was not different with alternative therapy vs clopidogrel (weighted HR: 0.89; 95% CI: 0.65-1.22; P = 0.475). The risk for MAE also did not significantly differ by treatment among patients with scores ≥10 (n = 1,135; weighted HR: 0.75; 95% CI: 0.51-1.11; P = 0.155). Among CYP2C19 LOF allele carriers, MAE risk appeared lower with alternative therapy in both the group with scores <10 (weighted HR: 0.50; 95% CI: 0.25-1.01; P = 0.052) and the group with scores ≥10 (weighted HR: 0.48; 95% CI: 0.29-0.80; P = 0.004), while there was no difference in the group with scores <10 and no LOF alleles (weighted HR: 1.03; 95% CI: 0.70-1.51; P = 0.885). CONCLUSIONS: These data support the use of alternative therapy over clopidogrel in CYP2C19 LOF allele carriers after PCI, regardless of ABCD-GENE score, while clopidogrel is as effective as alternative therapy in non-LOF patients with scores <10.


Subject(s)
Percutaneous Coronary Intervention , Platelet Aggregation Inhibitors , Humans , Clopidogrel , Cytochrome P-450 CYP2C19/genetics , Percutaneous Coronary Intervention/adverse effects , Ticagrelor/therapeutic use , Treatment Outcome , Genotype
15.
Basic Clin Pharmacol Toxicol ; 134(6): 805-817, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599832

ABSTRACT

Clozapine is characterized by a large within- and between-patient variability in its pharmacokinetics, attributed to non-genetic and genetic factors. A cross-sectional analysis of clozapine trough concentration (Clz C0) issued from Tunisian schizophrenic patients was collected and analysed using a nonparametric modelling approach. We assessed the impact of demographic covariates (age, weight and sex), patient's habits (smoking status, alcohol and caffeine intake) and the genetic factors (CYP1A2*1C, CYP1A2*1F and CYP2C19*2 polymorphisms) on each pharmacokinetic parameter. An external validation of this pharmacokinetic model using an independent data set was performed. Fit goodness between observed- and individual-predicted data was evaluated using the mean prediction error (% MPE), the mean absolute prediction error (% MAPE) as a measure of bias, and the root mean squared error (% RMSE) as a measure of precision. Sixty-three CLz C0 values issued from 51 schizophrenic patients were assessed in this study and divided into building and validation groups. CYP1A2*1F polymorphism and smoking status were the only covariates significantly associated with clozapine clearance. Precision parameters were as follows: 1.02%, 0.95% and 22.4%, respectively, for % MPE, % MAPE and % RMSE. We developed and validated an accurate pharmacokinetic model able to predict Clz C0 in Tunisian schizophrenic patients using the two parameters CYP1A2*1F polymorphism and smoking.


Subject(s)
Antipsychotic Agents , Clozapine , Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP2C19 , Schizophrenia , Humans , Clozapine/pharmacokinetics , Clozapine/blood , Schizophrenia/drug therapy , Schizophrenia/genetics , Male , Female , Tunisia , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Adult , Antipsychotic Agents/pharmacokinetics , Cross-Sectional Studies , Middle Aged , Cytochrome P-450 CYP2C19/genetics , Models, Biological , Smoking , Young Adult , Polymorphism, Genetic
16.
J Psychiatr Res ; 174: 137-152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631139

ABSTRACT

Variability in hepatic cytochrome P450 (CYP) enzymes such as 2C19 and 2D6 may influence side-effect and efficacy outcomes for antipsychotics. Aripiprazole and risperidone are two commonly prescribed antipsychotics, metabolized primarily through CYP2D6. Here, we aimed to provide an overview of the effect of CYP2C19 and CYP2D6 on side-effects of aripiprazole and risperidone, and expand on existing literature by critically examining methodological issues associated with pharmacogenetic studies. A PRISMA compliant search of six electronic databases (Pubmed, PsychInfo, Embase, Central, Web of Science, and Google Scholar) identified pharmacogenetic studies on aripiprazole and risperidone. 2007 publications were first identified, of which 34 were included. Quality of literature was estimated using Newcastle-Ottowa Quality Assessment Scale (NOS) and revised Cochrane Risk of Bias tool. The average NOS score was 5.8 (range: 3-8) for risperidone literature and 5 for aripiprazole (range: 4-6). All RCTs on aripiprazole were rated as high risk of bias, and four out of six for risperidone literature. Study populations ranged from healthy volunteers to inpatient individuals in psychiatric units and included adult and pediatric samples. All n = 34 studies examined CYP2D6. Only one study genotyped for CYP2C19 and found a positive association with neurological side-effects of risperidone. Most studies did not report any relationship between CYP2D6 and any side-effect outcome. Heterogeneity between and within studies limited the ability to synthesize data and draw definitive conclusions. Studies lacked statistical power due to small sample size, selective genotyping methods, and study design. Large-scale randomized trials with multiple measurements, providing robust evidence on this topic, are suggested.


Subject(s)
Antipsychotic Agents , Aripiprazole , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2D6 , Risperidone , Humans , Aripiprazole/adverse effects , Aripiprazole/pharmacology , Cytochrome P-450 CYP2D6/genetics , Risperidone/adverse effects , Cytochrome P-450 CYP2C19/genetics , Antipsychotic Agents/adverse effects
17.
BMC Med Genomics ; 17(1): 109, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671468

ABSTRACT

OBJECTIVE: To study the distribution characteristics of CYP2C19 polymorphisms in patients suffering from stroke in Han Chinese patients. METHOD: PCR and DNA microarray chip technology were used to detect the CYP2C19 genotype of 549 patients with stroke, and the genotype, allele frequency and metabolic type of patients with different sexes, ages and types of infarctions and the independent risk factors for clopidogrel resistance were analyzed. RESULTS: Six genotypes were detected in these 549 patients. A total of 233 (42.44%) patients had the heterozygous allele *1/*2, which was the most prevalent, followed by the homozygous wild-type allele *1/*1 (191, 34.79%). A total of 30 (5.46%) patients possessed the heterozygous allele *1/*3, and 65 (11.84%) patients had the homozygous mutant allele *2/*2. Twenty-nine (5.28%) patients had the compound heterozygous mutant allele *2/*3, and only 1 patient had the homozygous mutant allele *3/*3. The distribution of genotypes, alleles, and metabolic types did not change significantly (P > 0.05) by sex, age, or type of stroke. In addition, no independent risk factors for clopidogrel resistance were found in this analysis. CONCLUSION: The distribution of CYP2C19 genotypes, allele frequencies, and metabolic types in patients with stroke in Han Chinese patients were not correlated with sex, age, or infarction type. The possibilities of hyperglycemia, hypercholesterolemia, hypertriglyceridemia, hypo-HDL-cholesterolemia, hyper-LDL-cholesterolemia and high blood pressure were not statistically associated with CYP2C19 genotypes. CYP2C19 gene polymorphism detection is recommended for patients who are available, and during treatment, the CYP2C19 genotype can be used to guide personalized precise medication use in patients with stroke.


Subject(s)
Cytochrome P-450 CYP2C19 , Gene Frequency , Stroke , Humans , Cytochrome P-450 CYP2C19/genetics , Male , Female , Stroke/genetics , Middle Aged , Aged , Clopidogrel/therapeutic use , Genotype , Adult , Alleles , Drug Resistance/genetics , Risk Factors , Polymorphism, Genetic
18.
Pathol Res Pract ; 257: 155290, 2024 May.
Article in English | MEDLINE | ID: mdl-38640781

ABSTRACT

The intricate relationship between smoking and the effects of the antiplatelet drug clopidogrel has been termed the "smoker's paradox". This paradox details the enhanced efficacy of clopidogrel in smokers compared to non-smokers. This review begins with an exploration of the proposed mechanisms of the smoker's paradox, particularly drawing attention to the induction of cytochrome P450 (CYP) isoenzymes via tobacco smoke, specifically the enzymes CYP1A2 and CYP2C19. Moreover, an investigation of the effects of genetic variability on the smoker's paradox was undertaken from both clinical and molecular perspectives, delving into the effects of ethnicity and genetic polymorphisms. The intriguing role of CYP1A2 genotypes and the response to clopidogrel in smoking and non-smoking populations was examined conferring insight into the individuality rather than universality of the smoker's paradox. CYP1A2 induction is hypothesised to elucidate the potency of smoking in exerting a counteracting effect in those taking clopidogrel who possess CYP2C19 loss of function polymorphisms. Furthermore, we assess the comparative efficacies of clopidogrel and other antiplatelet agents, namely prasugrel and ticagrelor. Studies indicated that prasugrel and ticagrelor provided a more consistent effect and further reduced platelet reactivity compared to clopidogrel within both smoking and non-smoking populations. Personalised dosing was another focus of the review considering patient comorbidities, genetic makeup, and smoking status with the objective of improving the antiplatelet response of those taking clopidogrel. In summation, this review provides insight into multiple areas of research concerning clopidogrel and the smoker's paradox taking into account proposed mechanisms, genetics, other antiplatelet agents, and personalised dosing.


Subject(s)
Clopidogrel , Platelet Aggregation Inhibitors , Smoking , Humans , Clopidogrel/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Platelet Aggregation Inhibitors/pharmacology , Smoking/adverse effects , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Smokers , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism
19.
Am J Med Sci ; 368(1): 18-24, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561047

ABSTRACT

BACKGROUND: Bortezomib, a commonly used anti-myeloma drug, is metabolized by liver microsomal enzymes which may be polymorphic and responsible for lack of response in 30% patients. Hence, the association of CYP2C19 polymorphism with treatment response was explored in this study. METHODS: Treatment naive multiple myeloma (MM) patients, eligible for bortezomib-based induction treatment, were recruited as per the inclusion - exclusion criteria. The genotyping of CYP2C19 was done using polymerase chain reaction-restriction fragment length polymorphism for *2, *3 and *17 alleles. The incidence and severity of peripheral neuropathy were noted at follow-up visits and graded as per CTCAE criteria ver 5.0. RESULTS: Total 220 patients were recruited from August 2016 till May 2021; with a mean age of 55.6 (9.5) years and 65.9% males. Bortezomib+cyclophosphamide+dexamethasone (41.8%) and bortezomib+lenalidomide+dexamethasone (38.2%) were the most prescribed regimens. The CYP2C19 was polymorphic in 38.6%, 2.3% and 23.7% patients for *2, *3 and *17 allele respectively. There were 195 treatment responders and 25 non-responders, and CYP2C19*2 allele was different between responders and non-responders (p = 0.02). All extensive metabolisers (n = 54) were noted to be treatment responders. Peripheral neuropathy was reported by 23.2% patients. The frequency of peripheral neuropathy was somewhat lower in patients having either *2/*2 or *3/*3 allele pattern for CYP2C19 (p = 0.44). CONCLUSIONS: Polymorphism in CYP2C19 enzyme is likely to have an impact on bortezomib treatment response and peripheral neuropathy. The study suggests the role of pharmacogenetics in personalised treatment of MM.


Subject(s)
Bortezomib , Cytochrome P-450 CYP2C19 , Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Bortezomib/therapeutic use , Cytochrome P-450 CYP2C19/genetics , Female , Male , Middle Aged , Aged , Polymorphism, Genetic , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Adult , Antineoplastic Agents/therapeutic use , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/drug therapy , Treatment Outcome , Genotype
20.
Clin Transl Sci ; 17(4): e13792, 2024 04.
Article in English | MEDLINE | ID: mdl-38581109

ABSTRACT

The aggregated risk of recurrent stroke in stroke/transient ischemic attack (TIA) patients carrying CYP2C19 LoF alleles who take clopidogrel has not been investigated recently, and the available research is limited. This study aimed to perform an updated meta-analysis to assess the association between CYP2C19 LoF alleles and the risk of recurrent stroke in patients taking clopidogrel. Databases were searched for the literature on eligible studies. The end points were recurrent stroke, composite vascular events, and bleeding events. Odds ratios (ORs) were calculated using RevMan software, where p < 0.05 was considered statistically significant. Patients carrying CYP2C19 LoF alleles who were treated with clopidogrel had a significantly increased risk of recurrent ischemic stroke compared with non-carriers (OR 2.18, 96% CI 1.80-2.63; p < 0.00001). The risk of recurrent stroke was only significantly different in Asian patients (OR 2.29, 96% CI 1.88-2.80; p < 0.00001) but not in patients of other ethnicities; however, there were a limited number of studies in other ethnic groups. Both observational studies (OR 2.83, 96% CI 2.20-3.65; p < 0.00001) and RCTs (OR 1.48, 96% CI 1.10-1.98; p = 0.009) found associations with a significantly increased risk of recurrent ischemic stroke. Asian stroke patients or TIA patients carrying CYP2C19 LoF alleles and taking clopidogrel were at a significantly higher risk of recurrent ischemic stroke than non-carriers. Significantly increased risk of recurrent ischemic stroke was found in both observational studies and RCTs.


Subject(s)
Ischemic Attack, Transient , Ischemic Stroke , Stroke , Humans , Clopidogrel/adverse effects , Platelet Aggregation Inhibitors/adverse effects , Ischemic Attack, Transient/drug therapy , Ischemic Attack, Transient/genetics , Ischemic Attack, Transient/chemically induced , Alleles , Cytochrome P-450 CYP2C19/genetics , Stroke/drug therapy , Stroke/genetics , Ischemic Stroke/drug therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL