Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.923
Filter
2.
Cell Mol Biol (Noisy-le-grand) ; 70(7): 155-160, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39097881

ABSTRACT

Goats are considered the leading farm animal that has a substantial role in the agricultural sector in the Kurdistan Region of Iraq. No cytological examination has been carried out on them. This experiment aims to identify the Karyotype of the local breeds of domestic goats. This experiment was conducted on the Karyotype and prepared the ideogram of Meriz goats. The determination of the relative length and centromeric index arm ratio of the chromosomes in the breed was achieved by the production of karyotypes. A total of (30)Meriz goats, consisting of (10) males and (20) females, were selected to collect blood samples for a short-term lymphocyte culture. The diploid chromosome count was observed to be (60), consisting of (29) pairs of acrocentric autosomes and one pair of allosomes, specifically the X and Y chromosomes. The acrocentric nature of the X-chromosome and the sub-metacentric nature of the Y-chromosome were identified through scientific investigation. The study observed a variation in the relative length of autosomal chromosomes in Meriz goats, with females ranging from 4.49% to 1.89% and males ranging from (4.53%) to (1.75%). The X-chromosome had a relative length of 3.96 in females, while the Y-chromosome displayed a relative length of (5.05). The findings of this karyological investigation suggest that the chromosomal composition seen in the Meriz goats under examination was within the expected range of normalcy. It is recommended that more cytogenetic analyses be conducted at the population level in order to identify individuals within the Meriz breed population who possesses numerical and/or structural chromosome abnormalities. This research is crucial for enhancing the efficiency of production and reproduction in this breed.


Subject(s)
Breeding , Goats , Karyotyping , Animals , Goats/genetics , Female , Iraq , Male , Karyotype , Cytogenetic Analysis , Y Chromosome/genetics , X Chromosome/genetics
3.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063182

ABSTRACT

Endothelial cells (ECs) maintain vessel tone and barrier integrity, regulate blood homeostasis, and prevent the extravasation of leukocytes under normal physiological conditions. Because of the limited lifespans and batch-to-batch differences with respect to the genetic make-up of primary ECs, established immortal EC lines are extensively used for studying endothelial biology. To address this issue, the immortal endothelial cell line EA.hy926 was developed by fusing primary human umbilical vein endothelial cells (HUVECs) with human lung carcinoma A549 cells. EA.hy926 cells share a number of similar endothelial properties with HUVECs and are considered the immortal counterpart to primary HUVECs. However, the cytogenetic integrity of EA.hy926 cells is not fully elucidated. We characterized EA.hy926 cells with conventional G-banding and molecular cytogenetic techniques such as spectral karyotyping and subtelomeric fluorescence in situ hybridization. Cytogenetic analysis revealed an array of numerical and stable structural chromosomal rearrangements including one deletion, one duplication, one isochromosome, seven simple translocations, and five complex translocations in Ea.hy926 cells. These findings will advance comprehension of EA.hy926 cell biology and augment future endothelial studies, specifically in comparison studies between HUVECs and EA.hy926 cells.


Subject(s)
Chromosome Banding , Human Umbilical Vein Endothelial Cells , In Situ Hybridization, Fluorescence , Translocation, Genetic , Humans , In Situ Hybridization, Fluorescence/methods , Human Umbilical Vein Endothelial Cells/metabolism , Cytogenetic Analysis/methods , Endothelial Cells/metabolism , Chromosome Aberrations , A549 Cells
4.
Int J Radiat Biol ; 100(8): 1155-1164, 2024.
Article in English | MEDLINE | ID: mdl-38991111

ABSTRACT

INTRODUCTION: For Hiroshima and Nagasaki survivors, it has not been possible to calculate individual doses from the cytogenetic data and compare them with the physically estimated doses. This is because the cytogenetic studies used solid Giemsa staining which only provides the percent of cells bearing at least one stable-type aberration (most of the unstable-type aberrations had already disappeared), and a gamma-ray dose plus a 10-times neutron dose was used to integrate the data for both cities. OBJECTIVES: To compare the FISH-derived gamma-ray dose with the DS02R1-derived gamma-ray dose after correcting for a contribution of the neutron dose. It was also an attempt to determine if the frequency of stable-type aberrations had remained unchanged after the exposure. METHODS: Stable exchange-type aberration data was obtained using the 2-color FISH method from 1,868 atomic bomb survivors in Hiroshima and Nagasaki. The collected frequency was first extended to a genome-equivalent frequency. Then, by using known induction rates of exchange-type aberrations in vitro caused by neutrons and gamma-rays, respectively, and the mean relationship between the neutron and gamma-ray doses in the DS02R1 estimates for the survivors, the gamma-ray effect was estimated from the total yield of translocations. RESULTS: It was found that over 95% of individual cytogenetic gamma-ray doses fell within the expected range of plus/minus about 1 Gy from the DS02R1 dose and the mean slope for the linear regression was 0.98, which reassures us of the validity of the DS02R1 study. CONCLUSIONS: The present results demonstrate the validity of the individual DS02R1 doses, and that the frequency of stable-type aberrations in blood lymphocytes did not decay over the years, and thus is useful for retrospective dose evaluations of exposures which took place in the distant past.


Subject(s)
Atomic Bomb Survivors , Gamma Rays , In Situ Hybridization, Fluorescence , Radiation Dosage , Humans , Japan , Chromosome Aberrations/radiation effects , Male , Adult , Female , Dose-Response Relationship, Radiation , Middle Aged , Neutrons , Cytogenetic Analysis , Nuclear Warfare , Survivors
5.
Rom J Morphol Embryol ; 65(2): 203-208, 2024.
Article in English | MEDLINE | ID: mdl-39020534

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in childhood and rare in adults, while acute myeloid leukemia (AML) is less common in children and more common in older adults. The aim of the study was to present our experience for the diagnostic of leukemia by using the classic and molecular cytogenetic methods. The study was conducted between 2009 and 2019 within the Classic and Molecular Genetic Laboratory of the Oncohematology Department from the Louis Turcanu Emergency Hospital for Children, Timisoara, Romania. The study group included 337 children and adults, evaluated between 2009 and 2019. By using the conventional and molecular cytogenetic technique, the cytogenetic anomalies found were 35 numerical chromosomal abnormalities, 10 (9;22)(q34;q11) [four ALL, one AML, five chronic myeloid leukemia (CML)] translocations, nine (15;17)(q24;q21) translocations, three (14;14)(q11;q32) translocations, two (4;11)(q21;q23) translocations, one (1;14)(p32;q11) translocation, one (7;14)(qter;q11) translocation, one (8;21)(q22;q22) translocation, one (9;14)(p12;q32) translocation, seven rearrangements of the MLL gene and two rearrangements of the core-binding factor subunit beta∕myosin heavy chain 11 (CBFB∕MYH11) gene. The use of conventional and molecular cytogenetic analysis is one of the most important prognostic indicators in acute leukemia patients, allowing the identification of biologically distinct subtypes of disease and selection of appropriate treatment approaches.


Subject(s)
Leukemia , Humans , Romania , Female , Male , Adult , Child , Adolescent , Child, Preschool , Leukemia/genetics , Leukemia/pathology , Leukemia/diagnosis , Cytogenetic Analysis/methods , Middle Aged , Young Adult , Aged , Chromosome Aberrations , Infant
6.
Blood Rev ; 66: 101209, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852016

ABSTRACT

Since the discovery of the Philadelphia chromosome in 1960, cytogenetic studies have been instrumental in detecting chromosomal abnormalities that can inform cancer diagnosis, treatment, and risk assessment efforts. The initial expansion of cancer cytogenetics was with fluorescence in situ hybridization (FISH) to assess submicroscopic alterations in dividing or non-dividing cells and has grown into the incorporation of chromosomal microarrays (CMA), and next generation sequencing (NGS). These molecular technologies add additional dimensions to the genomic assessment of cancers by uncovering cytogenetically invisible molecular markers. Rapid technological and bioinformatic advances in NGS are so promising that the idea of performing whole genome sequencing as part of routine patient care may soon become economically and logistically feasible. However, for now cytogenetic studies continue to play a major role in the diagnostic testing and subsequent assessments in leukemia with other genomic studies serving as complementary testing options for detection of actionable genomic abnormalities. In this review, we discuss the role of conventional cytogenetics (karyotyping, chromosome analysis) and FISH studies in hematological malignancies, highlighting the continued clinical utility of these techniques, the subtleties and complexities that are relevant to treating physicians and the unique strengths of cytogenetics that cannot yet be paralleled by the current high-throughput molecular technologies. Additionally, we describe how CMA, optical genome mapping (OGM), and NGS detect abnormalities that were beyond the capacity of cytogenetic studies and how an integrated approach (broad molecular testing) can contribute to the detection of actionable targets and variants in malignancies. Finally, we discuss advances in the field of genomic testing that are bridging the advantages of individual (single) cell based cytogenetic testing and broad genomic testing.


Subject(s)
Chromosome Aberrations , Genomics , Neoplasms , Humans , Genomics/methods , Neoplasms/genetics , Neoplasms/diagnosis , Neoplasms/therapy , Cytogenetic Analysis/methods , Cytogenetics/methods , In Situ Hybridization, Fluorescence , High-Throughput Nucleotide Sequencing
7.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927599

ABSTRACT

The sex chromosomes of skinks are usually poorly differentiated and hardly distinguished by cytogenetic methods. Therefore, identifying sex chromosomes in species lacking easily recognizable heteromorphic sex chromosomes is necessary to fully understand sex chromosome diversity. In this paper, we employed cytogenetics, sex quantification of genes, and transcriptomic approaches to characterize the sex chromosomes in Plestiodon elegans. Cytogenetic examination of metaphases revealed a diploid number of 2n = 26, consisting of 12 macrochromosomes and 14 microchromosomes, with no significant heteromorphic chromosome pairs, speculating that the sex chromosomes may be homomorphic or poorly differentiated. The results of the sex quantification of genes showed that Calumenin (calu), COPI coat complex subunit γ 2 (copg2), and Smoothened (smo) were at half the dose in males as in females, suggesting that they are on the X chromosome. Transcriptomic data analysis from the gonads yielded the excess expression male-specific genes (n = 16), in which five PCR molecular markers were developed. Restricting the observed heterozygosity to males suggests the presence of homomorphic sex chromosomes in P. elegans, XX/XY. This is the first breakthrough in the study of the sex chromosomes of Plestiodon.


Subject(s)
Transcriptome , Animals , Male , Female , Transcriptome/genetics , Sex Chromosomes/genetics , X Chromosome/genetics , Gonads/metabolism , Cytogenetic Analysis/methods
8.
Methods Mol Biol ; 2825: 79-111, 2024.
Article in English | MEDLINE | ID: mdl-38913304

ABSTRACT

Cytogenetic analysis has traditionally focused on the clonal chromosome aberrations, or CCAs, and considered the large number of diverse non-clonal chromosome aberrations, or NCCAs, as insignificant noise. Our decade-long karyotype evolutionary studies have unexpectedly demonstrated otherwise. Not only the baseline of NCCAs is associated with fuzzy inheritance, but the frequencies of NCCAs can also be used to reliably measure genome or chromosome instability (CIN). According to the Genome Architecture Theory, CIN is the common driver of cancer evolution that can unify diverse molecular mechanisms, and genome chaos, including chromothripsis, chromoanagenesis, and polypoidal giant nuclear and micronuclear clusters, and various sizes of chromosome fragmentations, including extrachromosomal DNA, represent some extreme forms of NCCAs that play a key role in the macroevolutionary transition. In this chapter, the rationale, definition, brief history, and current status of NCCA research in cancer are discussed in the context of two-phased cancer evolution and karyotype-coded system information. Finally, after briefly describing various types of NCCAs, we call for more research on NCCAs in future cytogenetics.


Subject(s)
Chromosome Aberrations , Neoplasms , Humans , Neoplasms/genetics , Chromosomal Instability , Cytogenetic Analysis/methods , Karyotyping/methods
9.
Methods Mol Biol ; 2825: 127-135, 2024.
Article in English | MEDLINE | ID: mdl-38913306

ABSTRACT

Hematological neoplasms are heterogeneous diseases with various subtypes, each with its unique genomic features. Cell culture and slide preparation are essential steps to enrich and collect sufficient neoplastic cells for cytogenetic studies of the neoplasms. This chapter describes methods that are commonly used for culturing hematological neoplastic cells and preparing cytogenetic slides for clinical diagnosis and research of the neoplasms.


Subject(s)
Cytogenetic Analysis , Hematologic Neoplasms , Humans , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Cytogenetic Analysis/methods , Cell Culture Techniques/methods
10.
Methods Mol Biol ; 2825: 361-391, 2024.
Article in English | MEDLINE | ID: mdl-38913321

ABSTRACT

The dynamic growth of technological capabilities at the cellular and molecular level has led to a rapid increase in the amount of data on the genes and genomes of organisms. In order to store, access, compare, validate, classify, and understand the massive data generated by different researchers, and to promote effective communication among research communities, various genome and cytogenetic online databases have been established. These data platforms/resources are essential not only for computational analyses and theoretical syntheses but also for helping researchers select future research topics and prioritize molecular targets. Furthermore, they are valuable for identifying shared recurrent genomic patterns related to human diseases and for avoiding unnecessary duplications among different researchers. The website interface, menu, graphics, animations, text layout, and data from databases are displayed by a front end on the screen of a monitor or smartphone. A database front-end refers to the user interface or application that enables accessing tabular, structured, or raw data stored in the database. The Internet makes it possible to reach a greater number of users around the world and gives them quick access to information stored in databases. The number of ways of presenting this data by front-ends increases as well. This requires unifying the ways of operating and presenting information by front-ends and ensuring contextual switching between front-ends of different databases. This chapter aims to present selected cytogenetic and cytogenomic Internet resources in terms of obtaining the needed information and to indicate how to increase the efficiency of access to stored information. Through a brief introduction of these databases and by providing examples of their usage in cytogenetic analyses, we aim to bridge the gap between cytogenetics and molecular genomics by encouraging their utilization.


Subject(s)
Databases, Genetic , Genomics , Internet , Humans , Genomics/methods , User-Computer Interface , Cytogenetic Analysis/methods , Cytogenetics/methods , Computational Biology/methods , Web Browser
11.
Indian J Public Health ; 68(1): 21-25, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38847628

ABSTRACT

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Immunophenotype (IPT) and cytogenetics are essential for diagnosis, risk stratification, and management for ALL. OBJECTIVES: Evaluating the burden of immunophenotypic and cytogenetic profile of pediatric ALL patients. MATERIALS AND METHODS: A descriptive cross-sectional study was conducted on 100 patients of ALL (1-18 completed years) attending a tertiary-care center in Kolkata, Eastern India. RESULTS: Ninety-six percent of patients had B-cell ALL (94.00% pre-B ALL and 2.00% Pro-B ALL) and 4.0% had T-ALL. 60% B-cell ALL were CD19/CD10 positive, 10% were CD79a positive, 9% were only CD19 positive, and 7% were only CD10 positive. Thirty-three percent of T-ALL were CD3+, whereas 22% were positive each for CD4 and CD7. 51.0% of patients had diploid, 46.0% hyperdiploid, and 3.0% hypodiploid karyotype. Among hyperdiploids, 98% had good prednisolone response and 89% had measurable residual disease (MRD) <0.01. CONCLUSION: The most commonly diagnosed ALL by IPT was pre-B ALL. Among the detectable cytogenetic abnormalities, t(12; 21) ETV6-RUNX1 was the most common. ZNF-384 gene arrangement was also detected in our study. t(12;21) ETV6-RUNX1 had a good treatment response, while t(9;22) BCR-ABL, t(1;19) TCF3-PBX1, iAMP-21, MLL gene rearrangement, and ZNF-384 gene arrangement had poor treatment response in terms of MRD.


Subject(s)
Immunophenotyping , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , India/epidemiology , Child , Male , Female , Child, Preschool , Adolescent , Cross-Sectional Studies , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Infant , Cytogenetic Analysis
12.
Methods Mol Biol ; 2825: 3-37, 2024.
Article in English | MEDLINE | ID: mdl-38913301

ABSTRACT

The promises of the cancer genome sequencing project, combined with various -omics technologies, have raised questions about the importance of cancer cytogenetic analyses. It is suggested that DNA sequencing provides high resolution, speed, and automation, potentially replacing cytogenetic testing. We disagree with this reductionist prediction. On the contrary, various sequencing projects have unexpectedly challenged gene theory and highlighted the importance of the genome or karyotype in organizing gene network interactions. Consequently, profiling the karyotype can be more meaningful than solely profiling gene mutations, especially in cancer where karyotype alterations mediate cellular macroevolution dominance. In this chapter, recent studies that illustrate the ultimate importance of karyotype in cancer genomics and evolution are briefly reviewed. In particular, the long-ignored non-clonal chromosome aberrations or NCCAs are linked to genome or chromosome instability, genome chaos is linked to genome reorganization under cellular crisis, and the two-phased cancer evolution reconciles the relationship between genome alteration-mediated punctuated macroevolution and gene mutation-mediated stepwise microevolution. By further synthesizing, the concept of karyotype coding is discussed in the context of information management. Altogether, we call for a new era of cancer cytogenetics and cytogenomics, where an array of technical frontiers can be explored further, which is crucial for both basic research and clinical implications in the cancer field.


Subject(s)
Chromosome Aberrations , Genomics , Neoplasms , Humans , Cytogenetic Analysis/methods , Cytogenetics/methods , Genomics/methods , Karyotyping/methods , Mutation , Neoplasms/genetics
13.
Gac Med Mex ; 160(1): 76-85, 2024.
Article in English | MEDLINE | ID: mdl-38753554

ABSTRACT

BACKGROUND: Chromosomal abnormalities are present in 50 to 60% of miscarriages and in 6 to 19% of stillbirths. Although microarrays are preferred for studying chromosomal abnormalities, many hospitals cannot offer this methodology. OBJECTIVE: To present the results of the cytogenetic analysis of 303 products of conception (POC), which included 184 miscarriages, 49 stillbirths and 17 cases of undefined age. MATERIAL AND METHODS: Karyotyping, fluorescence in situ hybridization, short tandem repeats and microarrays were used, depending on the type of loss and available sample. RESULTS: In 29 POCs we found maternal tissue and were eliminated from the analyses. Informative results were obtained in 250 (91.2 %)/274 cases; the karyotyping success rate was 80.7%; that of single nucleotide polymorphism microarrays, 94.5%; and that of fluorescence in situ hybridization and short tandem repeat, 100%. Cytogenetic abnormalities were observed in 57.6% of miscarriages and in 24.5% of stillbirths; 94% of total anomalies were numerical and 6% were submicroscopic. CONCLUSIONS: Karyotyping with simultaneous short tandem repeat study to rule out contamination of maternal cells is effective for studying miscarriages; in stillbirths, microarrays are recommended.


ANTECEDENTES: Las alteraciones cromosómicas están presentes en 50 a 60 % de los abortos espontáneos y en 6 a 19 % de los mortinatos. Aunque se prefieren los microarreglos para estudiarlos, numerosos hospitales no pueden ofrecerlos. OBJETIVO: Presentar los resultados del estudio citogenético de 303 productos de la concepción (POC), 184 se obtuvieron de abortos espontáneos, 49 fueron mortinatos y en 17 no se identificó la de edad gestacional. MATERIAL Y MÉTODOS: Se empleó cariotipo, hibridación in situ con fluorescencia, secuencias cortas repetidas en tándem y microarreglos, según el tipo de pérdida y la muestra disponible. RESULTADOS: En 29 POC se encontró tejido materno, por lo que fueron eliminados de los análisis. En 250 (91.2 %)/274 casos se obtuvieron resultados informativos; la tasa de éxito del cariotipo fue de 80.7 %; la de los microarreglos de SNP, de 94.5 %; y la de la hibridación fluorescente in situ y la repetición corta en tándem, de 100 %. Se observaron anomalías citogenéticas en 57.6 % de los abortos espontáneos y en 24.5 % de los mortinatos; 94 % de las anomalías fueron numéricas y 6 %, submicroscópicas. CONCLUSIONES: El cariotipo en conjunto con el estudio de secuencias cortas repetidas en tándem para descartar contaminación de células maternas es efectivo para estudiar abortos espontáneos; los microarreglos se recomiendan en los mortinatos.


Subject(s)
Abortion, Spontaneous , Chromosome Aberrations , In Situ Hybridization, Fluorescence , Karyotyping , Humans , Female , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/genetics , Mexico/epidemiology , Pregnancy , Karyotyping/methods , Stillbirth/genetics , Stillbirth/epidemiology , Adult , Cytogenetic Analysis/methods , Microsatellite Repeats , Polymorphism, Single Nucleotide , Young Adult
14.
J Obstet Gynaecol ; 44(1): 2348085, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38708796

ABSTRACT

BACKGROUND: Primary amenorrhoea (PA) refers to an ailment when adolescent girls do not attain menarche naturally. It is one of the most common gynaecological disorders specified. Chromosomal abnormalities play a pivotal role in PA. Cytogenetic analysis is an indispensable diagnostic tool to determine the abnormality of the chromosome. In an emerging country like India, cytogenetic analysis is at a nascent stage. There are very few studies on Cytogenetics present in eastern India, including West Bengal. In rural and suburban areas PA sufferers often experience late diagnosis and struggle to access suitable curative management. The aim of the study is to evaluate the various types of chromosomal abnormalities in patients suffering from PA for accurate, better management of the same and further counselling. METHODS: A total of 40 PA cases were referred by obstetricians and gynaecologists to the Department of Genetics of Nirnayan Health Care, Kolkata. To screen the chromosomal abnormalities, human leukocyte culture was accomplished with their peripheral venous blood followed by G-banding and then karyotyping was executed according to ISCN-2020. RESULT: Out of 40 patients, 29 were normal among which 46,XX was found in 70% cases (n = 28) and 46,XX,9qh + in 2.5% (n = 1). The remaining 11 showed different types of abnormalities. 45,X was found in 10% (n = 4), 46,X,i(X)(q10) in 2.5% (n = 1), 46,X,del(X)(p11.2) in 2.5% (n = 1), 46,X,del(X)(p22.1) in 2.5% (n = 1), 46,X,del(X)(q24) in 2.5% (n = 1), 46,XY in 2.5% (n = 1), mos 45,X[22]/46,Xi(X)(q.10)[8] in 2.5% (n = 1) and mos 45,X[16]/46,XY[14] (2.5%) in 2.5% (n = 1). CONCLUSION: This study indicates the importance of chromosomal study which must be included in early diagnosis of PA. Karyotyping at the appropriate phase of life will not only help in the judicial management of this disorder but will also give young girls a better lifestyle.


Primary amenorrhoea is a common gynecological disorder reported in adolescent girls, often linked to chromosomal abnormalities. In Eastern India, including West Bengal, where cytogenetic analysis is still in its nascent stage, late diagnosis and limited access to curative management are prevalent issues. A study conducted from January 2021 to May 2023 at Nirnayan Healthcare, Kolkata aimed to evaluate chromosomal abnormalities in 40 PA cases. Out of these, 28 exhibited normal karyotypes (46,XX); one patient was reported with 46,XX,9qh + which is considered a normal karyotype, while the remaining 11 revealed diverse abnormalities, including 45,X; sex reversal & several structural variations. The study underscores the significance of cytogenetic analysis in the early diagnosis of Primary Amenorrhoea. Early karyotyping not only facilitates judicious management but also ensures a better lifestyle for affected girls.


Subject(s)
Amenorrhea , Chromosome Aberrations , Cytogenetic Analysis , Karyotyping , Humans , Female , India , Amenorrhea/genetics , Adolescent , Adult , Chromosome Aberrations/statistics & numerical data , Young Adult
15.
Genes (Basel) ; 15(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38790188

ABSTRACT

Cytogenetic studies are essential in the diagnosis and follow up of patients with bone marrow failure syndromes (BMFSs), but obtaining good quality results is often challenging due to hypocellularity. Optical Genome Mapping (OGM), a novel technology capable of detecting most types chromosomal structural variants (SVs) at high resolution, is being increasingly used in many settings, including hematologic malignancies. Herein, we compared conventional cytogenetic techniques to OGM in 20 patients with diverse BMFSs. Twenty metaphases for the karyotype were only obtained in three subjects (15%), and no SVs were found in any of the samples. One patient with culture failure showed a gain in chromosome 1q by fluorescence in situ hybridization, which was confirmed by OGM. In contrast, OGM provided good quality results in all subjects, and SVs were detected in 14 of them (70%), mostly corresponding to cryptic submicroscopic alterations not observed by standard techniques. Therefore, OGM emerges as a powerful tool that provides complete and evaluable results in hypocellular BMFSs, reducing multiple tests into a single assay and overcoming some of the main limitations of conventional techniques. Furthermore, in addition to confirming the abnormalities detected by conventional techniques, OGM found new alterations beyond their detection limits.


Subject(s)
In Situ Hybridization, Fluorescence , Humans , Male , Female , Middle Aged , Adult , Aged , In Situ Hybridization, Fluorescence/methods , Chromosome Mapping/methods , Bone Marrow Failure Disorders/genetics , Chromosome Aberrations , Adolescent , Cytogenetic Analysis/methods , Bone Marrow Diseases/genetics , Karyotyping/methods , Young Adult
16.
Int J Radiat Biol ; 100(7): 1029-1040, 2024.
Article in English | MEDLINE | ID: mdl-38787719

ABSTRACT

PURPOSE: To analyze the effects of extending lymphocyte cultivation time on the Mitotic Index, frequency of first-division cells, and dose estimation after irradiating blood samples with different doses of radiation. MATERIALS AND METHODS: Blood samples from two healthy male volunteers were separately irradiated with three doses (3, 5, and 6 Gy) using a 60Co gamma source (average dose rate: 1.48 kGy.h-1) and cultivated in vitro for conventional (48 h) and extended (56, 68, and 72 h) amounts of time. Colcemid (0.01 µg.mL-1) was added at the beginning of the culture period. Cells were fixed, stained with fluorescence plus Giemsa (FPG), and analyzed under a light microscope. The effects of prolonged culture duration on the Mitotic Index (MI), frequency of first-division cells (M1 cells), and the First-Division Mitotic Index (FDMI) were investigated. The estimation of delivered doses was conducted using a conventional 48h-culture calibration curve. RESULTS: Overall, cells presented higher MI (up to 12-fold) with the extension of culture, while higher radiation doses led to lower MI values (up to 80% reduction at 48 h). Cells irradiated with higher doses (5 and 6 Gy) had the most significant increase (5- to 12-fold) of MI as the cultivation was prolonged. The frequency of M1 cells decreased with the prolongation of culture for all doses (up to 75% reduction), while irradiated cells presented higher frequencies of M1 cells than non-irradiated ones. FDMI increased for all irradiated cultures but most markedly in those irradiated with higher doses (up to 10-fold). The conventional 48h-culture calibration curve proved adequate for assessing the delivered dose based on dicentric frequency following a 72-hour culture. CONCLUSION: Compared to the conventional 48-hour protocol, extending the culture length to 72 hours significantly increased the Mitotic Index and the number of first-division metaphases of irradiated lymphocytes, providing slides with a better scorable metaphase density. Extending the culture time to 72 hours, combined with FPG staining to score exclusively first-division metaphases, improved the counting of dicentric chromosomes. The methodology presented and discussed in this study can be a powerful tool for dicentric-based biodosimetry, especially when exposure to high radiation doses is involved.


Subject(s)
Dose-Response Relationship, Radiation , Lymphocytes , Mitotic Index , Radiometry , Humans , Male , Lymphocytes/radiation effects , Lymphocytes/cytology , Cytogenetic Analysis , Adult , Time Factors , Radiation Dosage , Cells, Cultured , Cell Culture Techniques/methods
17.
Equine Vet J ; 56(4): 786-795, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38785417

ABSTRACT

BACKGROUND: Chromosomal abnormalities occur in the equine population at a rate of approximately 2%. The use of molecular cytogenetic techniques allows a more accurate identification of chromosomal abnormalities, especially those with a low rate of abnormal metaphases, demonstrating that the actual incidence in equine populations is higher. OBJECTIVES: Estimation of the number of carriers of karyotypic abnormalities in a sample from a population of young horses of various breeds, using molecular cytogenetic techniques. STUDY DESIGN: Cross-sectional. METHODS: Venous blood samples were collected from 500 young horses representing 5 breeds (Purebred Arabian, Hucul, Polish primitive horse [Konik], Malopolska, Coldblood, Silesian). Chromosomes and DNA were obtained from blood lymphocytes and evaluated by fluorescence in situ hybridisation (FISH) and PCR, using probes and markers for the sex chromosomes and select autosomes. RESULTS: Nineteen horses, 18 mares and 1 stallion, were diagnosed with different chromosomal abnormalities: 17 cases of mosaic forms of sex chromosome aneuploidies with a very low incidence (0.6%-4.7%), one case of a SRY-negative 64,XY sex reversal mare, and one mare with X-autosome translocation. The percentage of sex chromosomal aberrations was established as 3.8% in the whole population, 6.08% in females and 0.49% in males. MAIN LIMITATIONS: Limited sample size, confined to horses from Poland. CONCLUSIONS: The rate of sex chromosomal abnormalities we identified was almost double that reported in previous population studies that used classical chromosome staining techniques. FISH allowed the detection of aneuploid cell lines which had a very low incidence. The FISH technique is a faster and more precise method for karyotype examination; however, it is usually focused on only one or two chromosomes while banding karyotyping includes the entire chromosome set.


Subject(s)
Sex Chromosome Aberrations , Animals , Horses/genetics , Female , Male , Sex Chromosome Aberrations/veterinary , Horse Diseases/genetics , Horse Diseases/diagnosis , Cytogenetic Analysis/veterinary , In Situ Hybridization, Fluorescence/veterinary
18.
Genes (Basel) ; 15(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38674364

ABSTRACT

Satellite DNA (satDNA) consists of sequences of DNA that form tandem repetitions across the genome, and it is notorious for its diversity and fast evolutionary rate. Despite its importance, satDNA has been only sporadically studied in reptile lineages. Here, we sequenced genomic DNA and PCR-amplified microdissected W chromosomes on the Illumina platform in order to characterize the monomers of satDNA from the Henkel's leaf-tailed gecko U. henkeli and to compare their topology by in situ hybridization in the karyotypes of the closely related Günther's flat-tail gecko U. guentheri and gold dust day gecko P. laticauda. We identified seventeen different satDNAs; twelve of them seem to accumulate in centromeres, telomeres and/or the W chromosome. Notably, centromeric and telomeric regions seem to share similar types of satDNAs, and we found two that seem to accumulate at both edges of all chromosomes in all three species. We speculate that the long-term stability of all-acrocentric karyotypes in geckos might be explained from the presence of specific satDNAs at the centromeric regions that are strong meiotic drivers, a hypothesis that should be further tested.


Subject(s)
Centromere , Cytogenetic Analysis , DNA, Satellite , Karyotype , Lizards , Telomere , Animals , Lizards/genetics , Centromere/genetics , DNA, Satellite/genetics , Telomere/genetics , Cytogenetic Analysis/methods , In Situ Hybridization, Fluorescence
19.
Int J Radiat Biol ; 100(6): 875-889, 2024.
Article in English | MEDLINE | ID: mdl-38647504

ABSTRACT

PURPOSE: To examine the distortion of the linear quadratic (LQ) model of in vitro cytogenetic dose response over an extended range of γ-ray doses by analyzing the available literature data, and to establish the dose ranges, in which the LQ dose response curve (DRC) can be most accurately fitted for biological dosimetry. MATERIALS AND METHODS: Data on yields of dicentrics (Dic) or dicentrics plus centric rings (Dic + CR) induced in vitro in human lymphocytes by acute γ-rays were extracted from 108 open sources. The overall dose response dataset in the dose range up to 50 Gy was fitted to a fractional-rational (FR) model, which included a 'basic' LQ function in the numerator, and a reduction factor dependent on the square of the dose in the denominator. Cytogenetic dose response data obtained at Grigoriev Institute for Medical Radiology, Kharkiv, Ukraine (GIMRO) in the range 0.1 - 20.3 Gy acute γ-rays were fitted to the LQ model with the progressive changing minimum or maximum radiation dose. RESULTS: The overall dose response, as expected, followed the LQ function in the dose range ≤5 Gy, but in the extended dose range appeared to be S-shaped, with intensive saturation and a plateau at doses ≥22 Gy. Coefficients of the 'basic' LQ equation in FR model were very close to many published DRCs; calculated asymptote was 17. Fitting of the GIMRO dataset to the LQ model with the shift of the dose range showed the increase in linear coefficient with the increment of either minimum or maximum radiation dose, while the decline of the quadratic coefficient was regulated mostly by the increase of the highest dose. The best goodness of fit, assessed by lower χ2 values, occurred for dose ranges 0.1 - 1.0 Gy; 0.5 - 5.9 Gy; 1.0 - 7.8 Gy; 2.0 - 9.6 Gy, 3.9 - 16.4 Gy and 5.9 - 20.3 Gy. The 'see-saw' effect in changes of LQ coefficients was confirmed by re-fitting datasets published by other laboratories. CONCLUSIONS: The classical LQ model with fixed coefficients appears to have limited applicability for cytogenetic dosimetry at radiation doses >5 Gy due to the saturation of the dose response. Different response of the LQ coefficients to the changes of the dose range must be considered during the DRC construction. Proper selection of minimum and maximum dose in calibration experiments makes it possible to improve the goodness of fit of the LQ DRC.


Subject(s)
Chromosome Aberrations , Dose-Response Relationship, Radiation , Gamma Rays , Humans , Chromosome Aberrations/radiation effects , Cytogenetic Analysis , Lymphocytes/radiation effects , Radiation Dosage , Radiometry/methods
20.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612873

ABSTRACT

The Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs) are a heterogeneous group of clonal hematopoietic malignancies that include polycythemia vera (PV), essential thrombocythemia (ET), and the prefibrotic form of primary myelofibrosis (prePMF). In this study, we retrospectively reviewed the karyotypes from conventional cytogenetics (CC) and array Comparative Genomic Hybridization + Single Nucleotide Polymorphism (aCGH + SNP) in patients with ET or prePMF to determine whether the combined analysis of both methodologies can identify patients who may be at a higher risk of disease progression. We performed a comprehensive genomic review on 169 patients with a clinical diagnosis of ET (154 patients) or prePMF (15 patients). Genomic alterations detected by CC or array-CGH + SNP were detected in 36% of patients. In patients who progressed, 68% had an abnormal genomic finding by either technology. There was a shorter progression-free survival (PFS) among patients who were cytogenetically abnormal or who were cytogenetically normal but had an abnormal aCGH + SNP result. Leveraging the ability to detect submicroscopic copy number alterations and regions of copy neutral-loss of heterozygosity, we identified a higher number of patients harboring genomic abnormalities than previously reported. These results underscore the importance of genomic analysis in prognostication and provide valuable information for clinical management and treatment decisions.


Subject(s)
Primary Myelofibrosis , Thrombocythemia, Essential , Humans , Comparative Genomic Hybridization , Thrombocythemia, Essential/diagnosis , Thrombocythemia, Essential/genetics , Polymorphism, Single Nucleotide , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/genetics , Retrospective Studies , Cytogenetic Analysis , Disease Progression
SELECTION OF CITATIONS
SEARCH DETAIL