Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.666
Filter
1.
Front Immunol ; 15: 1411957, 2024.
Article in English | MEDLINE | ID: mdl-39114656

ABSTRACT

Introduction: CD8+ cytotoxic T lymphocytes (CTLs) are highly effective in defending against viral infections and tumours. They are activated through the recognition of peptide-MHC-I complex by the T-cell receptor (TCR) and co-stimulation. This cognate interaction promotes the organisation of intimate cell-cell connections that involve cytoskeleton rearrangement to enable effector function and clearance of the target cell. This is key for the asymmetric transport and mobilisation of lytic granules to the cell-cell contact, promoting directed secretion of lytic mediators such as granzymes and perforin. Mitochondria play a role in regulating CTL function by controlling processes such as calcium flux, providing the necessary energy through oxidative phosphorylation, and its own protein translation on 70S ribosomes. However, the effect of acute inhibition of cytosolic translation in the rapid response after TCR has not been studied in mature CTLs. Methods: Here, we investigated the importance of cytosolic protein synthesis in human CTLs after early TCR activation and CD28 co-stimulation for the dynamic reorganisation of the cytoskeleton, mitochondria, and lytic granules through short-term chemical inhibition of 80S ribosomes by cycloheximide and 80S and 70S by puromycin. Results: We observed that eukaryotic ribosome function is required to allow proper asymmetric reorganisation of the tubulin cytoskeleton and mitochondria and mTOR pathway activation early upon TCR activation in human primary CTLs. Discussion: Cytosolic protein translation is required to increase glucose metabolism and degranulation capacity upon TCR activation and thus to regulate the full effector function of human CTLs.


Subject(s)
CD8-Positive T-Lymphocytes , Cytosol , Lymphocyte Activation , Mitochondria , Protein Biosynthesis , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Lymphocyte Activation/immunology , Cytosol/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Mitochondria/metabolism , Mitochondria/immunology , Cytoskeleton/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Ribosomes/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125632

ABSTRACT

The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin. This study aims to elucidate the role of PACAP as an actin-regulating polypeptide, its effect on actin filament formation, and the underlying regulatory mechanisms. We examined PACAP27, PACAP38, and PACAP6-38, measuring their binding to actin monomers via fluorescence spectroscopy and steady-state anisotropy. Functional polymerization tests were used to track changes in fluorescent intensity over time. Unlike PACAP27, PACAP38 and PACAP6-38 significantly reduced the fluorescence emission of Alexa488-labeled actin monomers and increased their anisotropy, showing nearly identical dissociation equilibrium constants. PACAP27 showed weak binding to globular actin (G-actin), while PACAP38 and PACAP6-38 exhibited robust interactions. PACAP27 did not affect actin polymerization, but PACAP38 and PACAP6-38 accelerated actin incorporation kinetics. Fluorescence quenching experiments confirmed structural changes upon PACAP binding; however, all studied PACAP fragments exhibited the same effect. Our findings indicate that PACAP38 and PACAP6-38 strongly bind to G-actin and significantly influence actin polymerization. Further studies are needed to fully understand the biological significance of these interactions.


Subject(s)
Actins , Pituitary Adenylate Cyclase-Activating Polypeptide , Spectrometry, Fluorescence , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/chemistry , Actins/metabolism , Actins/chemistry , Animals , Spectrometry, Fluorescence/methods , Cytoskeleton/metabolism , Protein Binding , Actin Cytoskeleton/metabolism , Humans , Kinetics
3.
Proc Natl Acad Sci U S A ; 121(33): e2401816121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39106306

ABSTRACT

Many cytoskeletal networks consist of individual filaments that are organized into elaborate higher-order structures. While it is appreciated that the size and architecture of these networks are critical for their biological functions, much of the work investigating control over their assembly has focused on mechanisms that regulate the turnover of individual filaments through size-dependent feedback. Here, we propose a very different, feedback-independent mechanism to explain how yeast cells control the length of their actin cables. Our findings, supported by quantitative cell imaging and mathematical modeling, indicate that actin cable length control is an emergent property that arises from the cross-linked and bundled organization of the filaments within the cable. Using this model, we further dissect the mechanisms that allow cables to grow longer in larger cells and propose that cell length-dependent tuning of formin activity allows cells to scale cable length with cell length. This mechanism is a significant departure from prior models of cytoskeletal filament length control and presents a different paradigm to consider how cells control the size, shape, and dynamics of higher-order cytoskeletal structures.


Subject(s)
Cytoskeleton , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Cytoskeleton/metabolism , Actins/metabolism , Actin Cytoskeleton/metabolism , Models, Biological , Saccharomyces cerevisiae Proteins/metabolism
4.
Nat Commun ; 15(1): 5841, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992036

ABSTRACT

The swimming device of archaea-the archaellum-presents asparagine (N)-linked glycans. While N-glycosylation serves numerous roles in archaea, including enabling their survival in extreme environments, how this post-translational modification contributes to cell motility remains under-explored. Here, we report the cryo-EM structure of archaellum filaments from the haloarchaeon Halobacterium salinarum, where archaellins, the building blocks of the archaellum, are N-glycosylated, and the N-glycosylation pathway is well-resolved. We further determined structures of archaellum filaments from two N-glycosylation mutant strains that generate truncated glycans and analyzed their motility. While cells from the parent strain exhibited unidirectional motility, the N-glycosylation mutant strain cells swam in ever-changing directions within a limited area. Although these mutant strain cells presented archaellum filaments that were highly similar in architecture to those of the parent strain, N-linked glycan truncation greatly affected interactions between archaellum filaments, leading to dramatic clustering of both isolated and cell-attached filaments. We propose that the N-linked tetrasaccharides decorating archaellins act as physical spacers that minimize the archaellum filament aggregation that limits cell motility.


Subject(s)
Archaeal Proteins , Halobacterium salinarum , Glycosylation , Halobacterium salinarum/metabolism , Halobacterium salinarum/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/chemistry , Polysaccharides/metabolism , Cryoelectron Microscopy , Mutation , Cytoskeleton/metabolism , Protein Processing, Post-Translational , Cell Movement
5.
Nat Commun ; 15(1): 6151, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39034324

ABSTRACT

α-Actinins play crucial roles in cytoskeletal mechanobiology by acting as force-bearing structural modules that orchestrate and sustain the cytoskeletal framework, serving as pivotal hubs for diverse mechanosensing proteins. The mechanical stability of α-actinin dimer, a determinant of its functional state, remains largely unexplored. Here, we directly quantify the force-dependent lifetimes of homo- and hetero-dimers of human α-actinins, revealing an ultra-high mechanical stability of the dimers associated with > 100 seconds lifetime within 40 pN forces under shear-stretching geometry. Intriguingly, we uncover that the strong dimer stability is arisen from much weaker sub-domain pair interactions, suggesting the existence of distinct dimerized functional states of the dimer, spanning a spectrum of mechanical stability, with the spectrin repeats (SRs) in folded or unfolded conformation. In essence, our study supports a potent mechanism for building strength in biomolecular dimers through weak, multiple sub-domain interactions, and illuminates multifaceted roles of α-actinin dimers in cytoskeletal mechanics and mechanotransduction.


Subject(s)
Actinin , Protein Multimerization , Humans , Actinin/metabolism , Actinin/chemistry , Cytoskeleton/metabolism , Mechanotransduction, Cellular , Protein Domains , Single Molecule Imaging/methods
6.
Nat Commun ; 15(1): 5521, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951553

ABSTRACT

The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.


Subject(s)
Actins , Calcium , Cytoskeleton , Ion Channels , Mechanotransduction, Cellular , Humans , Ion Channels/metabolism , Actins/metabolism , HEK293 Cells , Cytoskeleton/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Finite Element Analysis , Animals , Microscopy, Fluorescence/methods
7.
Curr Biol ; 34(14): R693-R696, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39043144

ABSTRACT

Cells experience dynamic internal and external forces during animal development. Two new studies reveal critical and unexpected roles for cytoskeletal regulators and nuclear positioning in maintaining the physical integrity of migrating leader cells during Caenorhabditis elegans organogenesis.


Subject(s)
Caenorhabditis elegans , Cell Movement , Organogenesis , Animals , Caenorhabditis elegans/physiology , Cell Movement/physiology , Organogenesis/physiology , Cytoskeleton/physiology , Cytoskeleton/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics
8.
FASEB J ; 38(14): e23764, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39042395

ABSTRACT

The mosquito, Aedes aegypti, is the principal vector for several arboviruses. The mosquito midgut is the initial tissue that gets infected with an arbovirus acquired along with a blood meal from a vertebrate host. Blood meal ingestion leads to midgut tissue distention thereby increasing the pore size of the surrounding basal lamina. This allows newly synthesized virions to exit the midgut by traversing the distended basal lamina to infect secondary tissues of the mosquito. We conducted a quantitative label-free proteomic time course analysis with saline meal-fed Ae. aegypti females to identify host factors involved in midgut tissue distention. Around 2000 proteins were detected during each of the seven sampling time points and 164 of those were uniquely expressed. Forty-five of 97 differentially expressed proteins were upregulated during the 96-h time course and most of those were involved in cytoskeleton modulation, metabolic activity, and vesicle/vacuole formation. The F-actin-modulating Ae. aegypti (Aa)-gelsolin was selected for further functional studies. Stable knockout of Aa-gelsolin resulted in a mosquito line, which showed distorted actin filaments in midgut-associated tissues likely due to diminished F-actin processing by gelsolin. Zika virus dissemination from the midgut of these mosquitoes was diminished and delayed. The loss of Aa-gelsolin function was associated with an increased induction of apoptosis in midgut tissue indicating an involvement of Aa-gelsolin in apoptotic signaling in mosquitoes. Here, we used proteomics to discover a novel host factor, Aa-gelsolin, which affects the midgut escape barrier for arboviruses in mosquitoes and apoptotic signaling in the midgut.


Subject(s)
Aedes , Arboviruses , Gelsolin , Insect Proteins , Animals , Aedes/virology , Aedes/metabolism , Gelsolin/metabolism , Gelsolin/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Arboviruses/physiology , Cytoskeleton/metabolism , Female , Mosquito Vectors/virology , Mosquito Vectors/metabolism , Proteomics/methods , Zika Virus/physiology
9.
Nat Commun ; 15(1): 5711, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977673

ABSTRACT

The cell cortex is a dynamic assembly formed by the plasma membrane and underlying cytoskeleton. As the main determinant of cell shape, the cortex ensures its integrity during passive and active deformations by adapting cytoskeleton topologies through yet poorly understood mechanisms. The spectrin meshwork ensures such adaptation in erythrocytes and neurons by adopting different organizations. Erythrocytes rely on triangular-like lattices of spectrin tetramers, whereas in neurons they are organized in parallel, periodic arrays. Since spectrin is ubiquitously expressed, we exploited Expansion Microscopy to discover that, in fibroblasts, distinct meshwork densities co-exist. Through biophysical measurements and computational modeling, we show that the non-polarized spectrin meshwork, with the intervention of actomyosin, can dynamically transition into polarized clusters fenced by actin stress fibers that resemble periodic arrays as found in neurons. Clusters experience lower mechanical stress and turnover, despite displaying an extension close to the tetramer contour length. Our study sheds light on the adaptive properties of spectrin, which participates in the protection of the cell cortex by varying its densities in response to key mechanical features.


Subject(s)
Spectrin , Spectrin/metabolism , Animals , Fibroblasts/metabolism , Actomyosin/metabolism , Mice , Cytoskeleton/metabolism , Stress, Mechanical , Cell Membrane/metabolism , Cell Shape , Actins/metabolism , Stress Fibers/metabolism , Humans
10.
Methods Mol Biol ; 2811: 207-220, 2024.
Article in English | MEDLINE | ID: mdl-39037661

ABSTRACT

Tumor cells often leave the primary tumor mass and get settled in a foreign tissue years before the development of overt metastases, exhibiting the highly inefficient nature of metastatic colony formation. In fact, the tumor cells that disseminate into distant organs and subsequently invade the parenchyma of these organs rarely proceed to found actively growing metastatic colonies. Instead, the majority of these tumor cells undergo prolonged proliferative arrest unless they are swiftly eliminated by the immune system. Together, these observations indicate that the proliferative capacity of the disseminated tumor cells (DTCs) serves as a key determinant of the efficiency of metastasis, highlighting the need to better understand the mechanism governing the proliferation of these cells. Recent studies are unveiling the importance of the interactions between DTCs and the microenvironment of the host tissue in regulating the proliferation of DTCs. However, the details of such interactions remain to be fully delineated. Here I describe the methods for visualizing and analyzing the interactions between DTCs and the extracellular matrix (ECM) components of the host tissue as well as the cytoskeleton of the DTCs that support these interactions. The methods described here will facilitate the study of how DTCs interact with the ECM of their host tissue, which will be crucial for elucidating the mechanism that underlies the regulation of DTC proliferation by the DTC-ECM interactions.


Subject(s)
Cytoskeleton , Extracellular Matrix , Cytoskeleton/metabolism , Humans , Extracellular Matrix/metabolism , Animals , Cell Line, Tumor , Tumor Microenvironment , Mice , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Cell Proliferation , Neoplasms/pathology , Neoplasms/metabolism , Neoplasm Metastasis , Cell-Matrix Junctions/metabolism
11.
Proc Natl Acad Sci U S A ; 121(30): e2405114121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012825

ABSTRACT

Large cells often rely on cytoplasmic flows for intracellular transport, maintaining homeostasis, and positioning cellular components. Understanding the mechanisms of these flows is essential for gaining insights into cell function, developmental processes, and evolutionary adaptability. Here, we focus on a class of self-organized cytoplasmic stirring mechanisms that result from fluid-structure interactions between cytoskeletal elements at the cell cortex. Drawing inspiration from streaming flows in late-stage fruit fly oocytes, we propose an analytically tractable active carpet theory. This model deciphers the origins and three-dimensional spatiotemporal organization of such flows. Through a combination of simulations and weakly nonlinear theory, we establish the pathway of the streaming flow to its global attractor: a cell-spanning vortical twister. Our study reveals the inherent symmetries of this emergent flow, its low-dimensional structure, and illustrates how complex fluid-structure interaction aligns with classical solutions in Stokes flow. This framework can be easily adapted to elucidate a broad spectrum of self-organized, cortex-driven intracellular flows.


Subject(s)
Cytoplasm , Cytoskeleton , Animals , Cytoplasm/metabolism , Cytoskeleton/metabolism , Models, Biological , Oocytes/metabolism , Cytoplasmic Streaming/physiology
12.
PLoS Comput Biol ; 20(7): e1011879, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39074138

ABSTRACT

Collective alignment of cell populations is a commonly observed phenomena in biology. An important example are aligning fibroblasts in healthy or scar tissue. In this work we derive and simulate a mechanistic agent-based model of the collective behaviour of actively moving and interacting cells, with a focus on understanding collective alignment. The derivation strategy is based on energy minimisation. The model ingredients are motivated by data on the behaviour of different populations of aligning fibroblasts and include: Self-propulsion, overlap avoidance, deformability, cell-cell junctions and cytoskeletal forces. We find that there is an optimal ratio of self-propulsion speed and overlap avoidance that maximises collective alignment. Further we find that deformability aids alignment, and that cell-cell junctions by themselves hinder alignment. However, if cytoskeletal forces are transmitted via cell-cell junctions we observe strong collective alignment over large spatial scales.


Subject(s)
Computer Simulation , Cytoskeleton , Intercellular Junctions , Models, Biological , Cytoskeleton/physiology , Intercellular Junctions/physiology , Humans , Fibroblasts/physiology , Fibroblasts/cytology , Cell Movement/physiology , Computational Biology , Animals , Cell Communication/physiology
13.
J Cell Sci ; 137(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38995113

ABSTRACT

Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.


Subject(s)
Lymphocyte Activation , Mechanotransduction, Cellular , Humans , Lymphocyte Activation/immunology , Animals , Lymphocytes/immunology , Lymphocytes/metabolism , Cytoskeleton/metabolism
14.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2223-2234, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044586

ABSTRACT

Heterotypic cell-in-cell (heCIC) structures represent a unique intercellular interaction where tumor cells internalize immune cells to enhance the killing efficiency of immune cells. However, the mechanism of heCIC structure formation remains to be fully elucidated. In this study, we explored the role of epithelial membrane protein 3 (EMP3), a PMP-22/EMP/MP20 protein family member highly expressed in the patients with hepatocellular carcinoma and poor prognosis, in the formation of the heCIC structure formed by natural killer cells and hepatocellular carcinoma cells. The analysis of monoclonal hepatocellular carcinoma cell lines revealed that EMP3 presented low expression in the cells with high capability to form heCIC structure and high expression in those with low capability. Knocking down the expression of EMP3 by gene editing promoted the formation of heCIC structures, while overexpression of EMP3 significantly inhibited this process. Additionally, the expression of factors involved in the heCIC structure formation suggested that EMP3 inhibited the formation of heCIC structures by modulating the adhesion ability and cytoskeleton of tumor cells. The findings lay a foundation for enhancing the heCIC-mediated tumor immunotherapy by targeting EMP3.


Subject(s)
Carcinoma, Hepatocellular , Cell Adhesion , Killer Cells, Natural , Liver Neoplasms , Membrane Glycoproteins , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Cell Communication/immunology , Killer Cells, Natural/immunology , Cell Line, Tumor , Cell Adhesion/immunology , Cytoskeleton/immunology , Immunotherapy , Humans , Gene Knockdown Techniques , Gene Editing
15.
Science ; 384(6700): eadk5511, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843314

ABSTRACT

Fundamental limits of cellular deformations, such as hyperextension of a living cell, remain poorly understood. Here, we describe how the single-celled protist Lacrymaria olor, a 40-micrometer cell, is capable of reversibly and repeatably extending its necklike protrusion up to 1200 micrometers in 30 seconds. We discovered a layered cortical cytoskeleton and membrane architecture that enables hyperextensions through the folding and unfolding of cellular-scale origami. Physical models of this curved crease origami display topological singularities, including traveling developable cones and cytoskeletal twisted domain walls, which provide geometric control of hyperextension. Our work unravels how cell geometry encodes behavior in single cells and provides inspiration for geometric control in microrobotics and deployable architectures.


Subject(s)
Cell Shape , Cell Surface Extensions , Ciliophora , Cytoskeleton , Cell Membrane/ultrastructure , Cytoskeleton/ultrastructure , Ciliophora/cytology , Ciliophora/physiology , Cell Surface Extensions/ultrastructure , Microtubules/ultrastructure
16.
Bone Res ; 12(1): 35, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849345

ABSTRACT

DNAX-associated protein 12 kD size (DAP12) is a dominant immunoreceptor tyrosine-based activation motif (ITAM)-signaling adaptor that activates costimulatory signals essential for osteoclastogenesis. Although several DAP12-associated receptors (DARs) have been identified in osteoclasts, including triggering receptor expressed on myeloid cells 2 (TREM-2), C-type lectin member 5 A (CLEC5A), and sialic acid-binding Ig-like lectin (Siglec)-15, their precise role in the development of osteoclasts and bone remodeling remain poorly understood. In this study, mice deficient in Trem-2, Clec5a, Siglec-15 were generated. In addition, mice double deficient in these DAR genes and FcεRI gamma chain (FcR)γ, an alternative ITAM adaptor to DAP12, were generated. Bone mass analysis was conducted on all mice. Notably, Siglec-15 deficient mice and Siglec-15/FcRγ double deficient mice exhibited mild and severe osteopetrosis respectively. In contrast, other DAR deficient mice showed normal bone phenotype. Likewise, osteoclasts from Siglec-15 deficient mice failed to form an actin ring, suggesting that Siglec-15 promotes bone resorption principally by modulating the cytoskeletal organization of osteoclasts. Furthermore, biochemical analysis revealed that Sigelc-15 activates macrophage colony-stimulating factor (M-CSF)-induced Ras-associated protein-1 (RAP1)/Ras-related C3 botulinum toxin substrate 1 (Rac1) pathway through formation of a complex with p130CAS and CrkII, leading to cytoskeletal remodeling of osteoclasts. Our data provide genetic and biochemical evidence that Siglec-15 facilitates M-CSF-induced cytoskeletal remodeling of the osteoclasts.


Subject(s)
Macrophage Colony-Stimulating Factor , Osteoclasts , Signal Transduction , rap1 GTP-Binding Proteins , Animals , Osteoclasts/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophage Colony-Stimulating Factor/genetics , rap1 GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/genetics , Mice , Cytoskeleton/metabolism , Mice, Knockout , Mice, Inbred C57BL , Membrane Proteins/metabolism , Membrane Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac GTP-Binding Proteins/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Immunoglobulins
17.
Commun Biol ; 7(1): 708, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851810

ABSTRACT

Robotically assisted proteomics provides insights into the regulation of multiple proteins achieving excellent spatial resolution. However, developing an effective method for spatially resolved quantitative proteomics of formalin fixed paraffin embedded tissue (FFPE) in an accessible and economical manner remains challenging. We introduce non-robotic In-insert FFPE proteomics approach, combining glass insert FFPE tissue processing with spatial quantitative data-independent mass spectrometry (DIA). In-insert approach identifies 450 proteins from a 5 µm thick breast FFPE tissue voxel with 50 µm lateral dimensions covering several tens of cells. Furthermore, In-insert approach associated a keratin series and moesin (MOES) with prolactin-induced protein (PIP) indicating their prolactin and/or estrogen regulation. Our data suggest that PIP is a spatial biomarker for hormonally triggered cytoskeletal remodeling, potentially useful for screening hormonally affected hotspots in breast tissue. In-insert proteomics represents an alternative FFPE processing method, requiring minimal laboratory equipment and skills to generate spatial proteotype repositories from FFPE tissue.


Subject(s)
Biomarkers , Cytoskeleton , Paraffin Embedding , Proteomics , Tissue Fixation , Humans , Proteomics/methods , Cytoskeleton/metabolism , Female , Biomarkers/metabolism , Tissue Fixation/methods , Prolactin/metabolism , Formaldehyde/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/metabolism , Membrane Transport Proteins
18.
Science ; 384(6700): 1064-1065, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843349

ABSTRACT

Lacrymaria olor cytoskeleton and membrane "origami" enables rapid cell hyperextension.


Subject(s)
Ciliophora , Cytoskeleton , Cell Membrane/ultrastructure , Cytoskeleton/ultrastructure , Ciliophora/physiology , Ciliophora/ultrastructure
19.
World J Surg Oncol ; 22(1): 152, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849867

ABSTRACT

BACKGROUND: Although sorafenib has been consistently used as a first-line treatment for advanced hepatocellular carcinoma (HCC), most patients will develop resistance, and the mechanism of resistance to sorafenib needs further study. METHODS: Using KAS-seq technology, we obtained the ssDNA profiles within the whole genome range of SMMC-7721 cells treated with sorafenib for differential analysis. We then intersected the differential genes obtained from the analysis of hepatocellular carcinoma patients in GSE109211 who were ineffective and effective with sorafenib treatment, constructed a PPI network, and obtained hub genes. We then analyzed the relationship between the expression of these genes and the prognosis of hepatocellular carcinoma patients. RESULTS: In this study, we identified 7 hub ERGs (ACTB, CFL1, ACTG1, ACTN1, WDR1, TAGLN2, HSPA8) related to drug resistance, and these genes are associated with the cytoskeleton. CONCLUSIONS: The cytoskeleton is associated with sorafenib resistance in hepatocellular carcinoma. Using KAS-seq to analyze the early changes in tumor cells treated with drugs is feasible for studying the drug resistance of tumors, which provides reference significance for future research.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Liver Neoplasms , Sorafenib , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Prognosis , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Cytoskeleton/drug effects , Cytoskeleton/pathology , Cytoskeleton/metabolism , Biomarkers, Tumor/genetics , Tumor Cells, Cultured , Cell Line, Tumor , Cell Proliferation/drug effects , Gene Expression Profiling
20.
In Vivo ; 38(4): 1571-1578, 2024.
Article in English | MEDLINE | ID: mdl-38936915

ABSTRACT

BACKGROUND/AIM: Cold physical plasma (CPP) has emerged as an effective therapy in oncology by inducing cytotoxic effects in various cancer cells, including chondrosarcoma (CS), Ewing's sarcoma (ES), and osteosarcoma (OS). The current study investigated the impact of CPP on cell motility in CS (CAL-78), ES (A673), and OS (U2-OS) cell lines, focusing on the actin cytoskeleton. MATERIALS AND METHODS: The CASY Cell Counter and Analyzer was used to study cell proliferation and determine the optimal concentrations of fetal calf serum to maintain viability without stimulation of cell proliferation. CellTiter-BlueCell viability assay was used to determine the effects of CPP on the viability of bone sarcoma cells. The Radius assay was used to determine cell migration. Staining for Deoxyribonuclease I, G-actin, and F-actin was used to assay for the effects on the cytoskeleton. RESULTS: Reductions in cell viability and motility were observed across all cell lines following CPP treatment. CPP induced changes in the actin cytoskeleton, leading to decreased cell motility. CONCLUSION: CPP effectively reduces the motility of bone sarcoma cells by altering the actin cytoskeleton. These findings underscore CPP's potential as a therapeutic tool for bone sarcomas and highlight the need for further research in this area.


Subject(s)
Actin Cytoskeleton , Bone Neoplasms , Cell Movement , Cell Proliferation , Cell Survival , Cytoskeleton , Plasma Gases , Humans , Cell Movement/drug effects , Plasma Gases/pharmacology , Cell Line, Tumor , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Cell Survival/drug effects , Cell Proliferation/drug effects , Cytoskeleton/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/drug effects , Osteosarcoma/pathology , Osteosarcoma/metabolism , Actins/metabolism , Sarcoma/pathology , Sarcoma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL