Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.532
Filter
1.
Methods Mol Biol ; 2848: 269-297, 2025.
Article in English | MEDLINE | ID: mdl-39240529

ABSTRACT

Dynamic interactions between transcription factors govern changes in gene expression that mediate changes in cell state accompanying injury response and regeneration. Transcription factors frequently function as obligate dimers whose activity is often modulated by post-translational modifications. These critical and often transient interactions are not easily detected by traditional methods to investigate protein-protein interactions. This chapter discusses the design and validation of a fusion protein involving a transcription factor tethered to a proximity labeling ligase, APEX2. In this technique, proteins are biotinylated within a small radius of the transcription factor of interest, regardless of time of interaction. Here we discuss the validations required to ensure proper functioning of the transcription factor proximity labeling tool and the sample preparation of biotinylated proteins for mass spectrometry analysis of putative protein interactors.


Subject(s)
Biotinylation , DNA-(Apurinic or Apyrimidinic Site) Lyase , Protein Interaction Mapping , Transcription Factors , Protein Interaction Mapping/methods , Humans , Transcription Factors/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Protein Binding , Mass Spectrometry/methods , Protein Processing, Post-Translational , Endonucleases , Multifunctional Enzymes
2.
Methods Enzymol ; 705: 347-376, 2024.
Article in English | MEDLINE | ID: mdl-39389669

ABSTRACT

Apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1, APEX1, REF1, HAP1) is an abasic site-specific endonuclease holding critical roles in numerous biological functions including base excision repair, the DNA damage response, redox regulation of transcription factors, RNA processing, and gene regulation. Pathologically, APE1 expression and function is linked with numerous human diseases including cancer, highlighting the importance of sensitive and quantitative assays to measure APE1 activity. Here, we summarize biochemical and biological roles for APE1 and expand on the discovery of APE1 inhibitors. Finally, we highlight the development of assays to monitor APE1 activity, detailing a recently improved and stabilized DNA Repair Molecular Beacon assay to analyze APE1 activity. The assay is amenable to analysis of purified protein, to measure changes in APE1 activity in cell lysates, to monitor human patient samples for defects in APE1 function, or the cellular and biochemical response to APE1 inhibitors.


Subject(s)
DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Enzyme Assays , Enzyme Inhibitors , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , Humans , Enzyme Inhibitors/pharmacology , Enzyme Assays/methods , DNA Damage
3.
Anal Chem ; 96(40): 15915-15923, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39324376

ABSTRACT

Accurate monitoring of base excision repair (BER) activity in cancer cells is critical for advancing the comprehension of DNA repair processes, gaining insights into cancer development, and guiding treatment strategies. However, current assay techniques for assessing BER activity in cancer cells face challenges due to the heterogeneous origins and diversity of BER enzymes. In this work, we present a highly reliable triple loop-interlocked DNA codec (GATED) that enables precise assessment of BER activity in cancer cells through signal amplification mediated by multienzyme orthogonal activation. The GATED device features a dumbbell-shaped DNA probe to encode two BER enzymes for BER-related signal conversion as well as two bound circular DNA to decode the apurinic/apyrimidinic sites for apurinic/apyrimidinic endonuclease 1 (APE1)-mediated signal amplification. Importantly, GATED is orthogonally activated by multiple target BER enzymes (i.e., uracil DNA glycosylase, thymine DNA glycosylase, and APE1), resulting in a unified fluorescent signal that significantly improves the detection specificity and sensitivity to BER enzymes. Additionally, we demonstrate that the GATED has exceptional biostability within complex biological systems, where it was successfully employed to monitor BER activity in cancer cells with high specificity and enabled cell-based high-throughput screening for BER inhibitors. The GATED provides a much-needed tool for the real-time monitoring of BER activity and the screening of BER inhibitors in cancer cells, potentially advancing both the investigation and clinical application of BER biology.


Subject(s)
DNA Repair , Humans , DNA/chemistry , DNA/metabolism , Neoplasms/diagnostic imaging , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Cell Line, Tumor , Optical Imaging , Excision Repair
4.
Chem Commun (Camb) ; 60(82): 11782-11785, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39324355

ABSTRACT

Highly sensitive and specific imaging of ATP in living cells remains a challenge. Here, a novel aptasensor based endogenous enzyme-powered DNA walker for imaging ATP was proposed. The strategy leverages the highly expressed APE1 in tumor cells as the driving force of the DNA walker, achieving high sensitivity and superior imaging contrast. The method can detect ATP as low as 3.43 µM within 1 h. The approach can also effectively monitor intracellular ATP expression fluctuations and successfully differentiate between normal and cancer cells with high contrast.


Subject(s)
Adenosine Triphosphate , Aptamers, Nucleotide , DNA , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/analysis , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Humans , DNA/chemistry , DNA/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/analysis , Biosensing Techniques , HeLa Cells , Optical Imaging , Cell Line, Tumor
5.
Anal Methods ; 16(36): 6220-6228, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39193784

ABSTRACT

In contrast to the unipedal DNA walker, a bipedal DNA walker features a broader walking area and exhibits faster walking kinetics, leading to enhanced amplification efficiency. In this study, we designed a stochastic three-dimensional (3D) bipedal DNA walker, capable of navigating AuNP-based 3D tracks, driven by exonuclease III (Exo III). This detection system enables the linear detection of the non-invasive biomarker apurinic/apyrimidinic endonuclease 1 (APE1) activity across a range of 0 to 120 U per mL, with a detection limit of 0.03 U per mL. The platform not only offers a novel DNA walker for sensitive APE1 detection in cell lysate but also facilitates the precise assessment of NCA's inhibitory effect on APE1. This research holds promise for future screening of other potential APE1 inhibitors.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Humans , DNA/chemistry , DNA/analysis , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Biosensing Techniques/methods
6.
Nat Commun ; 15(1): 7197, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169038

ABSTRACT

Templated DNA repair that occurs during homologous recombination and replication stress relies on RAD51. RAD51 activity is positively regulated by BRCA2 and the RAD51 paralogs. The Shu complex is a RAD51 paralog-containing complex consisting of SWSAP1, SWS1, and SPIDR. We demonstrate that SWSAP1-SWS1 binds RAD51, maintains RAD51 filament stability, and enables strand exchange. Using single-molecule confocal fluorescence microscopy combined with optical tweezers, we show that SWSAP1-SWS1 decorates RAD51 filaments proficient for homologous recombination. We also find SWSAP1-SWS1 enhances RPA diffusion on ssDNA. Importantly, we show human sgSWSAP1 and sgSWS1 knockout cells are sensitive to pharmacological inhibition of PARP and APE1. Lastly, we identify cancer variants in SWSAP1 that alter Shu complex formation. Together, we show that SWSAP1-SWS1 stimulates RAD51-dependent high-fidelity repair and may be an important new cancer therapeutic target.


Subject(s)
DNA, Single-Stranded , Rad51 Recombinase , Replication Protein A , Humans , DNA Repair , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Homologous Recombination , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Binding , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Single Molecule Imaging , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
7.
Biomed Pharmacother ; 179: 117332, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39191031

ABSTRACT

The global growth of the aging population has resulted in an increased prevalence of neurodegenerative diseases, characterized by the progressive loss of central nervous system (CNS) structure and function. Given the high incidence and debilitating nature of neurodegenerative diseases, there is an urgent need to identify potential biomarkers and novel therapeutic targets thereof. Apurinic/apyrimidinic endonuclease 1 (APE1), has been implicated in several neurodegenerative diseases, as having a significant role. Abnormal APE1 expression has been observed in conditions including Alzheimer's disease, stroke, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and epilepsy. However, whether this dysregulation is protective or harmful remains unclear. This review aims to comprehensively review the current understanding of the involvement of APE1 in neurodegenerative diseases.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Animals
8.
Talanta ; 280: 126758, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39180877

ABSTRACT

DNA walkers have emerged as a powerful tool in various biosensors, enabling the detection of low-abundance analytes with their precise programmability and efficient signal amplification capacity. However, many existing approaches are hampered by limited reaction kinetics. Herein, we designed a stochastic bipedal dual-DNA walkers (SBDW) that can traverse at high speed on AuNP-based three-dimensional (3D) tracks powered by Exo III. The SBDW exhibited superior reaction kinetics and are up to least 2.25 times faster than traditional DNA walkers, reaching a plateau within 40 min. This advancement allows for rapid and highly sensitive fluorescence detection of a significant base excision repair enzyme of APE1 with a detection limit of 0.001 U/mL. In comparison to traditional DNA walkers, this platform enables highly sensitive and specific APE1 assays in cell lysate and facilitates rapid and accurate screening of APE1 inhibitors. Given its rapid, sensitive, specific, and reliable analysis features, the strategy shows great promise in drug discovery and clinical diagnosis.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA , Enzyme Inhibitors , Stochastic Processes , DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Humans , DNA/chemistry , DNA/analysis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Biosensing Techniques/methods , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Kinetics
9.
Biomolecules ; 14(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39199297

ABSTRACT

Mitochondrial dysfunction and genomic instability are key hallmarks of aging. The aim of this study was to evaluate whether maintenance of physical capacities at very old age is associated with key hallmarks of aging. To investigate this, we measured mitochondrial bioenergetics, mitochondrial DNA (mtDNA) copy number and DNA repair capacity in peripheral blood mononuclear cells from centenarians. In addition, circulating levels of NAD+/NADH, brain-derived neurotrophic factor (BDNF) and carbonylated proteins were measured in plasma and these parameters were correlated to physical capacities. Centenarians without physical disabilities had lower mitochondrial respiration values including ATP production, reserve capacity, maximal respiration and non-mitochondrial oxygen-consumption rate and had higher mtDNA copy number than centenarians with moderate and severe disabilities (p < 0.05). In centenarian females, grip strength had a positive association with mtDNA copy number (p < 0.05), and a borderline positive trend for activity of the central DNA repair enzyme, APE 1 (p = 0.075), while a negative trend was found with circulating protein carbonylation (p = 0.07) in the entire cohort. Lastly, a trend was observed for a negative association between BDNF and activity of daily living disability score (p = 0.06). Our results suggest that mechanisms involved in maintaining mitochondrial function and genomic stability may be associated with maintenance of physical function in centenarians.


Subject(s)
Brain-Derived Neurotrophic Factor , DNA Repair , DNA, Mitochondrial , Mitochondria , Humans , Female , DNA Repair/genetics , DNA, Mitochondrial/genetics , Male , Aged, 80 and over , Mitochondria/metabolism , Mitochondria/genetics , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA Copy Number Variations , Biomarkers/blood , Leukocytes, Mononuclear/metabolism , Energy Metabolism/genetics , Aging/genetics , NAD/metabolism , NAD/blood , Protein Carbonylation , Hand Strength , Oxygen Consumption/genetics
10.
Talanta ; 280: 126773, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39197313

ABSTRACT

APE1, an essential enzyme for DNA repair, is overexpressed in various cancers and has been identified as a potential biomarker for cancer diagnosis. However, detecting APE1 at low expression levels in the early stage of cancer presents a significant obstacle. Here, we introduced a novel localized Cas12a-based cascade amplification (LCas12a-CA) method. This method confined both the terminal deoxynucleotidyl transferase and the crRNA/Cas12a complex onto the surfaces of gold nanoparticles (AuNPs). This confinement not only boosts the stability of the multiple enzymes but also induces a substrate channeling effect. As a result, it significantly accelerates the reaction rate and enhances the sensitivity of APE1 detection. Upon the addition of APE1, the AP sites within the APE1 primer can be recognized and cleaved by APE1, exposing the 3'-OH ends. In the presence of LCas12a-CA, polyA sequences are generated at 3'-OH ends with the help of TdT and dATP. The sequences directly enter the Cas12a system, activating the trans-cleavage activity of Cas12a, thereby cutting the reporters on the surface of AuNPs and releasing fluorescence. Our platform demonstrates a detection limit (LOD) as low as 2.51 × 10-6 U/mL, which is more than 60 times lower than that of free Cas12a-CA. Furthermore, the LCas12a-CA exhibits enhanced resistance ability in extreme environments and has been proven effective for the detection of APE1 in clinical samples. Overall, this work offers a promising platform for robust biosensing in cancer diagnosis and prognosis.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Gold , Metal Nanoparticles , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Humans , Metal Nanoparticles/chemistry , Gold/chemistry , Endodeoxyribonucleases/chemistry , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Biosensing Techniques/methods , CRISPR-Associated Proteins , Bacterial Proteins/genetics
11.
Nat Commun ; 15(1): 6517, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112456

ABSTRACT

In response to DNA double-strand breaks or oxidative stress, ATM-dependent DNA damage response (DDR) is activated to maintain genome integrity. However, it remains elusive whether and how DNA single-strand breaks (SSBs) activate ATM. Here, we provide direct evidence in Xenopus egg extracts that ATM-mediated DDR is activated by a defined SSB structure. Our mechanistic studies reveal that APE1 promotes the SSB-induced ATM DDR through APE1 exonuclease activity and ATM recruitment to SSB sites. APE1 protein can form oligomers to activate the ATM DDR in Xenopus egg extracts in the absence of DNA and can directly stimulate ATM kinase activity in vitro. Our findings reveal distinct mechanisms of the ATM-dependent DDR activation by SSBs in eukaryotic systems and identify APE1 as a direct activator of ATM kinase.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , DNA Breaks, Single-Stranded , DNA-(Apurinic or Apyrimidinic Site) Lyase , Signal Transduction , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Animals , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Humans , Xenopus laevis , DNA Repair
12.
Asian Pac J Cancer Prev ; 25(8): 2645-2654, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39205561

ABSTRACT

BACKGROUND: Radiotherapy (RT) is a crucial treatment for head and neck cancer however, it causes adverse reactions to the normal tissue and organs adjacent to target tumor. The present study was carried out to investigate possible association of single nucleotide polymorphism in DNA repair genes with toxicity effects of radiotherapy on normal tissue. METHODS: Three hundred and fifty head and neck cancer patients receiving radiotherapy treatment were enrolled in this study. The adverse after effects of radiotherapy on the normal tissue in the form of skin reactions were recorded. Single nucleotide polymorphisms of APE1 (rs1130409), hOGG1 (rs1052133) and Rad51 (rs1801320, rs1801321) genes were studied by polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) and direct DNA sequencing methods and their association with development of severe radio-toxicity effects was evaluated logistic regression analysis. RESULTS: The 172G/T polymorphism of Rad51 was 2.85 times higher and significantly associated with skin reactions (OR=2.85, 95% CI: 1.50-5.41; p=0.001) and severe oral mucositis (OR=4.96, 95% CI: 2.40-10.25; p<0.0001). These results suggested that the polymorphic nature of Rad51 is responsible for risk of radiotherapy adverse effects in HNC patients. The variant 326Cys and heterozygous 326Ser/Cys genotype of hOGG1 was significantly associated with high tumor grade (OR=3.16 95% CI: 1.66-5.99; p=0.0004, and OR=3.97 95% CI: 2.15-7.34; p=<0.0001 respectively). The homozygous variant 172TT genotype of Rad51 showed positive association with poor response of both tumor and nodes towards radiotherapy treatment (p=0.007 and p=0.022). CONCLUSIONS: Interpretation of our results revealed significant association of rs1801321 SNP of Rad51 with development of adverse toxicity reactions in normal tissue of head and neck cancer patients treated with radiotherapy.


Subject(s)
DNA Glycosylases , DNA-(Apurinic or Apyrimidinic Site) Lyase , Head and Neck Neoplasms , Polymorphism, Single Nucleotide , Rad51 Recombinase , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Male , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Female , Rad51 Recombinase/genetics , Middle Aged , DNA Glycosylases/genetics , Follow-Up Studies , Prognosis , Radiation Injuries/genetics , Radiation Injuries/etiology , Aged , Adult , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/pathology , Genotype , DNA Repair/genetics , Biomarkers, Tumor/genetics , Radiotherapy/adverse effects
13.
BMC Cancer ; 24(1): 816, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977966

ABSTRACT

Anaplastic thyroid carcinoma (ATC) is a rare but highly aggressive thyroid cancer with poor prognosis. Killing cancer cells by inducing DNA damage or blockage of DNA repair is a promising strategy for chemotherapy. It is reported that aldehyde-reactive alkoxyamines can capture the AP sites, one of the most common DNA lesions, and inhibit apurinic/apyrimidinic endonuclease 1(APE1)-mediated base excision repair (BER), leading to cell death. Whether this strategy can be employed for ATC treatment is rarely investigated. The aim of this study is to exploit GSH-responsive AP site capture reagent (AP probe-net), which responses to the elevated glutathione (GSH) levels in the tumor micro-environment (TME), releasing reactive alkoxyamine to trap AP sites and block the APE1-mediated BER for targeted anti-tumor activity against ATC. In vitro experiments, including MTT andγ-H2AX assays, demonstrate their selective cytotoxicity towards ATC cells over normal thyroid cells. Flow cytometry analysis suggests that AP probe-net arrests the cell cycle in the G2/M phase and induces apoptosis. Western blotting (WB) results show that the expression of apoptotic protein increased with the increased concentration of AP probe-net. Further in vivo experiments reveal that the AP probe-net has a good therapeutic effect on subcutaneous tumors of the ATC cells. In conclusion, taking advantage of the elevated GSH in TME, our study affords a new strategy for targeted chemotherapy of ATC with high selectivity and reduced adverse effects.


Subject(s)
Apoptosis , Glutathione , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Thyroid Carcinoma, Anaplastic/drug therapy , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/metabolism , Humans , Glutathione/metabolism , Animals , Mice , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Xenograft Model Antitumor Assays , DNA Repair/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA Damage/drug effects , Cell Proliferation/drug effects , Tumor Microenvironment/drug effects
14.
Biosens Bioelectron ; 262: 116566, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39018981

ABSTRACT

To achieve highly sensitive and reliable detection of apurinic/apyrimidinic endonuclease 1 (APE1), a critical cancer diagnostic biomarker, we designed a DNA walker-based dual-mode biosensor, utilizing cellular endogenous dual enzymes (APE 1 and Flap endonuclease 1 (FEN 1)) to collaborate in activating and propelling DNA walker motion on DNA-functionalized Au nanoparticles. Incorporating both fluorescence and electrochemical detection modes, this system leverages signal amplification from DNA walker movement and cascade amplification through tandem hybridization chain reactions (HCR), achieving highly sensitive detection of APE 1. In the fluorescence mode, continuous DNA walker movement, initiated by APE1 and driven by FEN1, generates a robust signal response within a concentration range of 0.01-500 U mL-1, presenting a good linearity in the concentration range of 0.01-10 U mL-1, with a detection limit of 0.01 U mL-1. In the electrochemical detection module, the cascade upstream DNA walker and downstream HCR dual signal amplification strategy further enhances the sensitivity of APE1 detection, extending the linear range to 0.01-50 U mL-1 and reducing the detection limit to 0.002 U mL-1. Rigorous validation demonstrates the biosensor's specificity and anti-interference capability against multiple enzymes. Moreover, it effectively distinguishes cancer cells from normal cell lysates, exhibiting excellent stability and consistency in the dual-modes. Overall, our findings underscore the efficacy of the developed dual-mode biosensor for detecting APE1 in serum and cell lysates samples, indicating its potential for clinical applications in disease diagnosis.


Subject(s)
Biosensing Techniques , DNA-(Apurinic or Apyrimidinic Site) Lyase , DNA , Flap Endonucleases , Gold , Limit of Detection , Metal Nanoparticles , Biosensing Techniques/methods , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , DNA-(Apurinic or Apyrimidinic Site) Lyase/analysis , DNA/chemistry , Flap Endonucleases/chemistry , Flap Endonucleases/metabolism , Metal Nanoparticles/chemistry , Gold/chemistry , Electrochemical Techniques/methods
15.
Methods Mol Biol ; 2814: 119-131, 2024.
Article in English | MEDLINE | ID: mdl-38954202

ABSTRACT

Largely due to its simplicity, while being more like human cells compared to other experimental models, Dictyostelium continues to be of great use to discover basic molecular mechanisms and signaling pathways underlying evolutionarily conserved biological processes. However, the identification of new protein interactions implicated in signaling pathways can be particularly challenging in Dictyostelium due to its extremely fast signaling kinetics coupled with the dynamic nature of signaling protein interactions. Recently, the proximity labeling method using engineered ascorbic acid peroxidase 2 (APEX2) in mammalian cells was shown to allow the detection of weak and/or transient protein interactions and also to obtain spatial and temporal resolution. Here, we describe a protocol for successfully using the APEX2-proximity labeling method in Dictyostelium. Coupled with the identification of the labeled proteins by mass spectrometry, this method expands Dictyostelium's proteomics toolbox and should be widely useful for identifying interacting partners involved in a variety of biological processes in Dictyostelium.


Subject(s)
Ascorbate Peroxidases , Dictyostelium , Proteomics , Dictyostelium/metabolism , Ascorbate Peroxidases/metabolism , Ascorbate Peroxidases/genetics , Proteomics/methods , Protein Interaction Mapping/methods , Mass Spectrometry/methods , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Humans , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Signal Transduction , Staining and Labeling/methods , Endonucleases , Multifunctional Enzymes
16.
Nat Commun ; 15(1): 6349, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39068156

ABSTRACT

Companion diagnostics using biomarkers have gained prominence in guiding radiotherapy. However, biopsy-based techniques fail to account for real-time variations in target response and tumor heterogeneity. Herein, we design an activated afterglow/MRI probe as a companion diagnostics tool for dynamically assessing biomarker apurinic/apyrimidinic endonuclease 1(APE1) during radiotherapy in vivo. We employ ultrabright afterglow nanoparticles and ultrasmall FeMnOx nanoparticles as dual contrast agents, significantly broadening signal change range and enhancing the sensitivity of APE1 imaging (limit of detection: 0.0092 U/mL in afterglow imaging and 0.16 U/mL in MRI). We devise longitudinally and transversely subtraction-enhanced imaging (L&T-SEI) strategy to markedly enhance MRI contrast and signal-to-noise ratio between tumor and normal tissue of living female mice. The combined afterglow and MRI facilitate both anatomical and functional imaging of APE1 activity. This probe enables correlation of afterglow and MRI signals with APE1 expression, radiation dosage, intratumor ROS, and DNA damage, enabling early prediction of radiotherapy outcomes (as early as 3 h), significantly preceding tumor size reduction (6 days). By monitoring APE1 levels, this probe allows for early and sensitive detection of liver organ injury, outperforming histopathological analysis. Furthermore, MRI evaluates APE1 expression in radiation-induced abscopal effects provides insights into underlying mechanisms, and supports the development of treatment protocols.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Magnetic Resonance Imaging , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Animals , Magnetic Resonance Imaging/methods , Female , Mice , Humans , Cell Line, Tumor , Contrast Media , Neoplasms/radiotherapy , Neoplasms/diagnostic imaging , Mice, Nude , Nanoparticles/chemistry , Mice, Inbred BALB C , Radiotherapy, Image-Guided/methods
17.
Sci Rep ; 14(1): 15506, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969725

ABSTRACT

Relatively low levels of antioxidant enzymes coupled with high oxygen metabolism result in the formation of numerous oxidative DNA damages in the tissues of the central nervous system. Recently, kynurenic acid (KYNA), knowns for its neuroprotective properties, has gained increasing attention in this context. Therefore, our hypothesis assumed that increased KYNA levels in the brain would positively influence mRNA expression of selected enzymes of the base excision repair pathway as well as enhance their efficiency in excising damaged nucleobases in specific areas of the sheep brain. The study was conducted on adult anestrous sheep (n = 18), in which two different doses of KYNA (20 and 100 µg/day) were infused into the third brain ventricle for three days. Molecular and biochemical analysis included the hypothalamus (preoptic and mediol-basal areas), hippocampus (CA3 field) and amygdala (central amygdaloid nucleus), dissected from the brain of sheep euthanized immediately after the last infusion. The results revealed a significant increase P < 0.001) in the relative mRNA abundance of N-methylpurine DNA glycosylase (MPG) following administration of both dose of KYNA across all examined tissues. The transcription of thymine-DNA glycosylase (TDG) increased significantly (P < 0.001) in all tissues in response to the lower KYNA dose compared to the control group. Moreover, 8-oxoguanine (8-oxoG) DNA glycosylase (OGG1) mRNA levels were also higher in both animal groups (P < 0.001). In addition, in the hypothalamus, hippocampus and amygdala, AP endonuclease 1 (APE1) mRNA expression increased under both doses of KYNA. Moreover, the both dose of KYNA significantly stimulated the efficiency of 8-oxoG excision in hypothalamus and amygdala (P < 0.05-0.001). The lower and higher doses of KYNA significantly influenced the effectiveness of εA and εC in all structures (P < 0.01-0.001). In conclusion, the favorable effect of KYNA in the brain may include the protection of genetic material in nerve and glial cells by stimulating the expression and efficiency of BER pathway enzymes.


Subject(s)
Brain , DNA Glycosylases , DNA Repair , Kynurenic Acid , Animals , DNA Repair/drug effects , Sheep , Kynurenic Acid/metabolism , DNA Glycosylases/metabolism , DNA Glycosylases/genetics , Brain/metabolism , Brain/drug effects , Hypothalamus/metabolism , Hypothalamus/drug effects , RNA, Messenger/metabolism , RNA, Messenger/genetics , DNA Damage/drug effects , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Female , Hippocampus/metabolism , Hippocampus/drug effects , Excision Repair
18.
Eur J Cell Biol ; 103(3): 151439, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38968704

ABSTRACT

Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.


Subject(s)
Centrosome , Mouse Embryonic Stem Cells , Protein Serine-Threonine Kinases , Animals , Mice , Centrosome/metabolism , Histone Chaperones/metabolism , Histone Chaperones/genetics , Mouse Embryonic Stem Cells/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism
19.
Nat Commun ; 15(1): 6343, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068174

ABSTRACT

Clinical success with poly (ADP-ribose) polymerase inhibitors (PARPi) is impeded by inevitable resistance and associated cytotoxicity. Depletion of Amplified in Liver Cancer 1 (ALC1), a chromatin-remodeling enzyme, can overcome these limitations by hypersensitizing BReast CAncer genes 1/2 (BRCA1/2) mutant cells to PARPi. Here, we demonstrate that PARPi hypersensitivity upon ALC1 loss is reliant on its role in promoting the repair of chromatin buried abasic sites. We show that ALC1 enhances the ability of the abasic site processing enzyme, Apurinic/Apyrimidinic endonuclease 1 (APE1) to cleave nucleosome-occluded abasic sites. However, unrepaired abasic sites in ALC1-deficient cells are readily accessed by APE1 at the nucleosome-free replication forks. APE1 cleavage leads to fork breakage and trapping of PARP1/2 upon PARPi treatment, resulting in hypersensitivity. Collectively, our studies reveal how cells overcome the chromatin barrier to repair abasic lesions and uncover cleavage of abasic sites as a mechanism to overcome limitations of PARPi.


Subject(s)
BRCA1 Protein , BRCA2 Protein , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , Cell Line, Tumor , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , DNA Repair/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Female , Chromatin/metabolism , Mutation , DNA Damage/drug effects , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , DNA Replication/drug effects , Nucleosomes/metabolism , DNA Helicases , DNA-Binding Proteins
20.
Breast Cancer Res Treat ; 208(2): 283-292, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38969945

ABSTRACT

PURPOSE: In East Asia, the incidence of breast cancer has been increasing rapidly, particularly among premenopausal women. An elevated ratio of estrogen-DNA adducts was linked to a higher risk of breast cancer. The present study explored the influence of the interaction between base excision repair (BER) gene polymorphisms and estrogen-DNA adducts on breast cancer risk. METHODS: We conducted a case-control study comprising healthy volunteers and individuals with benign breast disease (control arm, n = 176) and patients with invasive carcinoma or carcinoma in situ (case arm, n = 177). Genotyping for BER-related genes, including SMUG1, OGG1, ERCC5, and APEX1, was performed. A logistic regression model, incorporating interactions between gene polymorphisms, estrogen-DNA adduct ratio, and clinical variables, was used to identify the risk factors for breast cancer. RESULTS: Univariate analysis indicated marginal associations between breast cancer risk and APEX1 rs1130409 T > G (P = 0.057) and APEX1 rs1760944 T > G (P = 0.065). Multivariate regression analysis revealed significant associations with increased breast cancer risk for APEX1_rs1130409 (GT/GG versus TT) combined with a natural logarithmic value of the estrogen-DNA adduct ratio (estimated OR 1.164, P = 0.023) and premenopausal status with an estrogen-DNA adduct ratio > 2.93 (estimated OR 2.433, P = 0.001). CONCLUSION: APEX1_rs1130409 (GT/GG versus TT) polymorphisms, which are related to decreased BER activity, combined with an increased ratio of estrogen-DNA adducts, increase the risk of breast cancer in East Asian women.


Subject(s)
Breast Neoplasms , DNA Adducts , DNA Repair , Estrogens , Adult , Female , Humans , Middle Aged , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Case-Control Studies , DNA Adducts/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , East Asian People/genetics , Estrogens/metabolism , Excision Repair , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL