Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.040
Filter
1.
Ageing Res Rev ; 99: 102395, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950867

ABSTRACT

The blood brain barrier (BBB) is an indispensable structure that maintains the central nervous system (CNS) microenvironment for a correct neuronal function. It is composed by highly specialized microvessels, surrounded by astrocytes, pericytes, neurons and microglia cells, which tightly control the influx and efflux of substances to the brain parenchyma. During aging, the BBB becomes impaired, and it may contribute to the development of neurodegenerative and neurological disorders including Alzheimer's disease and other dementias. Restoring the BBB can be a strategy to prevent disease onset and development, reducing the symptoms of these conditions. This work critically reviews the major mechanisms underlying BBB breakdown in healthy and unhealthy aging, as well as biomarkers and methodologies that accurately assess its impairment. Complementarily, potential therapeutic targets are discussed as new strategies to restore the normal function of the BBB in aging.


Subject(s)
Blood-Brain Barrier , Dementia , Healthy Aging , Humans , Blood-Brain Barrier/metabolism , Dementia/physiopathology , Dementia/metabolism , Healthy Aging/physiology , Animals , Aging/physiology
2.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000213

ABSTRACT

Dementia and the other neurodegenerative disorders represent a complex pathophysiological process [...].


Subject(s)
Dementia , Humans , Dementia/metabolism , Dementia/etiology , Dementia/pathology , Dementia/genetics , Animals
3.
Int J Mol Sci ; 25(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39063013

ABSTRACT

Ischemic stroke is a leading cause of disability worldwide. While much of post-stroke recovery is focused on physical rehabilitation, post-stroke dementia (PSD) is also a significant contributor to poor functional outcomes. Predictive tools to identify stroke survivors at risk for the development of PSD are limited to brief screening cognitive tests. Emerging biochemical, genetic, and neuroimaging biomarkers are being investigated in an effort to unveil better indicators of PSD. Additionally, acetylcholinesterase inhibitors, NMDA receptor antagonists, dopamine receptor agonists, antidepressants, and cognitive rehabilitation are current therapeutic options for PSD. Focusing on the chronic sequelae of stroke that impair neuroplasticity highlights the need for continued investigative trials to better assess functional outcomes in treatments targeted for PSD.


Subject(s)
Biomarkers , Dementia , Ischemic Stroke , Humans , Ischemic Stroke/metabolism , Ischemic Stroke/therapy , Dementia/etiology , Dementia/metabolism
4.
Neurotox Res ; 42(3): 28, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842585

ABSTRACT

Parkinson's disease with dementia (PDD) is a neurological disorder that clinically and neuropathologically overlaps with Parkinson's disease (PD) and Alzheimer's disease (AD). Although it is assumed that alpha-synuclein ( α -Syn), amyloid beta (A ß ), and the protein Tau might synergistically induce cholinergic neuronal degeneration, presently the pathological mechanism of PDD remains unclear. Therefore, it is essential to delve into the cellular and molecular aspects of this neurological entity to identify potential targets for prevention and treatment strategies. Cholinergic-like neurons (ChLNs) were exposed to rotenone (ROT, 10 µ M) for 24 h. ROT provokes loss of Δ Ψ m , generation of reactive oxygen species (ROS), phosphorylation of leucine-rich repeated kinase 2 (LRRK2 at Ser935) concomitantly with phosphorylation of α -synuclein ( α -Syn, Ser129), induces accumulation of intracellular A ß (iA ß ), oxidized DJ-1 (Cys106), as well as phosphorylation of TAU (Ser202/Thr205), increases the phosphorylation of c-JUN (Ser63/Ser73), and increases expression of proapoptotic proteins TP53, PUMA, and cleaved caspase 3 (CC3) in ChLNs. These neuropathological features resemble those reproduced in presenilin 1 (PSEN1) E280A ChLNs. Interestingly, anti-oxidant and anti-amyloid cannabidiol (CBD), JNK inhibitor SP600125 (SP), TP53 inhibitor pifithrin- α (PFT), and LRRK2 kinase inhibitor PF-06447475 (PF475) significantly diminish ROT-induced oxidative stress (OS), proteinaceous, and cell death markers in ChLNs compared to naïve ChLNs. In conclusion, ROT induces p- α -Syn, iA ß , p-Tau, and cell death in ChLNs, recapitulating the neuropathology findings in PDD. Our report provides an excellent in vitro model to test for potential therapeutic strategies against PDD. Our data suggest that ROT induces a neuropathologic phenotype in ChLNs similar to that caused by the mutation PSEN1 E280A.


Subject(s)
Cholinergic Neurons , Rotenone , Rotenone/toxicity , Cholinergic Neurons/drug effects , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Animals , Parkinson Disease/pathology , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Dementia/pathology , Dementia/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Humans , Cells, Cultured
5.
JAMA Neurol ; 81(8): 845-856, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38857029

ABSTRACT

Importance: An accurate prognosis is especially pertinent in mild cognitive impairment (MCI), when individuals experience considerable uncertainty about future progression. Objective: To evaluate the prognostic value of tau positron emission tomography (PET) to predict clinical progression from MCI to dementia. Design, Setting, and Participants: This was a multicenter cohort study with external validation and a mean (SD) follow-up of 2.0 (1.1) years. Data were collected from centers in South Korea, Sweden, the US, and Switzerland from June 2014 to January 2024. Participant data were retrospectively collected and inclusion criteria were a baseline clinical diagnosis of MCI; longitudinal clinical follow-up; a Mini-Mental State Examination (MMSE) score greater than 22; and available tau PET, amyloid-ß (Aß) PET, and magnetic resonance imaging (MRI) scan less than 1 year from diagnosis. A total of 448 eligible individuals with MCI were included (331 in the discovery cohort and 117 in the validation cohort). None of these participants were excluded over the course of the study. Exposures: Tau PET, Aß PET, and MRI. Main Outcomes and Measures: Positive results on tau PET (temporal meta-region of interest), Aß PET (global; expressed in the standardized metric Centiloids), and MRI (Alzheimer disease [AD] signature region) was assessed using quantitative thresholds and visual reads. Clinical progression from MCI to all-cause dementia (regardless of suspected etiology) or to AD dementia (AD as suspected etiology) served as the primary outcomes. The primary analyses were receiver operating characteristics. Results: In the discovery cohort, the mean (SD) age was 70.9 (8.5) years, 191 (58%) were male, the mean (SD) MMSE score was 27.1 (1.9), and 110 individuals with MCI (33%) converted to dementia (71 to AD dementia). Only the model with tau PET predicted all-cause dementia (area under the receiver operating characteristic curve [AUC], 0.75; 95% CI, 0.70-0.80) better than a base model including age, sex, education, and MMSE score (AUC, 0.71; 95% CI, 0.65-0.77; P = .02), while the models assessing the other neuroimaging markers did not improve prediction. In the validation cohort, tau PET replicated in predicting all-cause dementia. Compared to the base model (AUC, 0.75; 95% CI, 0.69-0.82), prediction of AD dementia in the discovery cohort was significantly improved by including tau PET (AUC, 0.84; 95% CI, 0.79-0.89; P < .001), tau PET visual read (AUC, 0.83; 95% CI, 0.78-0.88; P = .001), and Aß PET Centiloids (AUC, 0.83; 95% CI, 0.78-0.88; P = .03). In the validation cohort, only the tau PET and the tau PET visual reads replicated in predicting AD dementia. Conclusions and Relevance: In this study, tau-PET showed the best performance as a stand-alone marker to predict progression to dementia among individuals with MCI. This suggests that, for prognostic purposes in MCI, a tau PET scan may be the best currently available neuroimaging marker.


Subject(s)
Cognitive Dysfunction , Dementia , Disease Progression , Positron-Emission Tomography , tau Proteins , Humans , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Male , Female , Positron-Emission Tomography/methods , Aged , tau Proteins/metabolism , Dementia/diagnostic imaging , Dementia/metabolism , Cohort Studies , Middle Aged , Aged, 80 and over , Prognosis , Retrospective Studies , Magnetic Resonance Imaging , Predictive Value of Tests , Amyloid beta-Peptides/metabolism
6.
Neuroimage ; 297: 120695, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38942101

ABSTRACT

BACKGROUND: The prediction of Alzheimer's disease (AD) progression from its early stages is a research priority. In this context, the use of Artificial Intelligence (AI) in AD has experienced a notable surge in recent years. However, existing investigations predominantly concentrate on distinguishing clinical phenotypes through cross-sectional approaches. This study aims to investigate the potential of modeling additional dimensions of the disease, such as variations in brain metabolism assessed via [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET), and utilize this information to identify patients with mild cognitive impairment (MCI) who will progress to dementia (pMCI). METHODS: We analyzed data from 1,617 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) who had undergone at least one FDG-PET scan. We identified the brain regions with the most significant hypometabolism in AD and used Deep Learning (DL) models to predict future changes in brain metabolism. The best-performing model was then adapted under a multi-task learning framework to identify pMCI individuals. Finally, this model underwent further analysis using eXplainable AI (XAI) techniques. RESULTS: Our results confirm a strong association between hypometabolism, disease progression, and cognitive decline. Furthermore, we demonstrated that integrating data on changes in brain metabolism during training enhanced the models' ability to detect pMCI individuals (sensitivity=88.4%, specificity=86.9%). Lastly, the application of XAI techniques enabled us to delve into the brain regions with the most significant impact on model predictions, highlighting the importance of the hippocampus, cingulate cortex, and some subcortical structures. CONCLUSION: This study introduces a novel dimension to predictive modeling in AD, emphasizing the importance of projecting variations in brain metabolism under a multi-task learning paradigm.


Subject(s)
Brain , Cognitive Dysfunction , Deep Learning , Disease Progression , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Humans , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Female , Male , Positron-Emission Tomography/methods , Aged , Brain/metabolism , Brain/diagnostic imaging , Fluorodeoxyglucose F18/pharmacokinetics , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Aged, 80 and over , Dementia/diagnostic imaging , Dementia/metabolism , Artificial Intelligence , Neuroimaging/methods
7.
Int J Mol Sci ; 25(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38892378

ABSTRACT

Dementia, a multifaceted neurological syndrome characterized by cognitive decline, poses significant challenges to daily functioning. The main causes of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), and vascular dementia (VD), have different symptoms and etiologies. Genetic regulators, specifically non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are known to play important roles in dementia pathogenesis. MiRNAs, small non-coding RNAs, regulate gene expression by binding to the 3' untranslated regions of target messenger RNAs (mRNAs), while lncRNAs and circRNAs act as molecular sponges for miRNAs, thereby regulating gene expression. The emerging concept of competing endogenous RNA (ceRNA) interactions, involving lncRNAs and circRNAs as competitors for miRNA binding, has gained attention as potential biomarkers and therapeutic targets in dementia-related disorders. This review explores the regulatory roles of ncRNAs, particularly miRNAs, and the intricate dynamics of ceRNA interactions, providing insights into dementia pathogenesis and potential therapeutic avenues.


Subject(s)
Dementia , Gene Expression Regulation , MicroRNAs , RNA, Circular , RNA, Long Noncoding , RNA, Untranslated , Humans , Dementia/genetics , Dementia/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Animals , Biomarkers , Alzheimer Disease/genetics , Alzheimer Disease/metabolism
10.
Genes (Basel) ; 15(5)2024 04 28.
Article in English | MEDLINE | ID: mdl-38790197

ABSTRACT

Currently, more than 55 million people around the world suffer from dementia, and Alzheimer's Disease and Related Dementias (ADRD) accounts for nearly 60-70% of all those cases. The spread of Alzheimer's Disease (AD) pathology and progressive neurodegeneration in the hippocampus and cerebral cortex is strongly correlated with cognitive decline in AD patients; however, the molecular underpinning of ADRD's causality is still unclear. Studies of postmortem AD brains and animal models of AD suggest that elevated endoplasmic reticulum (ER) stress may have a role in ADRD pathology through altered neurocellular homeostasis in brain regions associated with learning and memory. To study the ER stress-associated neurocellular response and its effects on neurocellular homeostasis and neurogenesis, we modeled an ER stress challenge using thapsigargin (TG), a specific inhibitor of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), in the induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) of two individuals from our Mexican American Family Study (MAFS). High-content screening and transcriptomic analysis of the control and ER stress-challenged NSCs showed that the NSCs' ER stress response resulted in a significant decline in NSC self-renewal and an increase in apoptosis and cellular oxidative stress. A total of 2300 genes were significantly (moderated t statistics FDR-corrected p-value ≤ 0.05 and fold change absolute ≥ 2.0) differentially expressed (DE). The pathway enrichment and gene network analysis of DE genes suggests that all three unfolded protein response (UPR) pathways, protein kinase RNA-like ER kinase (PERK), activating transcription factor-6 (ATF-6), and inositol-requiring enzyme-1 (IRE1), were significantly activated and cooperatively regulated the NSCs' transcriptional response to ER stress. Our results show that IRE1/X-box binding protein 1 (XBP1) mediated transcriptional regulation of the E2F transcription factor 1 (E2F1) gene, and its downstream targets have a dominant role in inducing G1/S-phase cell cycle arrest in ER stress-challenged NSCs. The ER stress-challenged NSCs also showed the activation of C/EBP homologous protein (CHOP)-mediated apoptosis and the dysregulation of synaptic plasticity and neurotransmitter homeostasis-associated genes. Overall, our results suggest that the ER stress-associated attenuation of NSC self-renewal, increased apoptosis, and dysregulated synaptic plasticity and neurotransmitter homeostasis plausibly play a role in the causation of ADRD.


Subject(s)
Alzheimer Disease , Endoplasmic Reticulum Stress , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Induced Pluripotent Stem Cells/metabolism , Thapsigargin/pharmacology , Dementia/genetics , Dementia/metabolism , Dementia/pathology , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Male , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Neurogenesis , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Female , Unfolded Protein Response , Transcription Factor CHOP
11.
Medicine (Baltimore) ; 103(18): e38086, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701247

ABSTRACT

BACKGROUND: Dementia is a major public health challenge for aging societies worldwide. Neuroinflammation is thought to be a key factor in dementia development. The aim of this study was to comprehensively assess translocator protein (TSPO) expression by positron emission tomography (PET) imaging to reveal the characteristics of neuroinflammation in dementia. METHODS: We used a meta-analysis to retrieve literature on TSPO expression in dementia using PET imaging technology, including but not limited to the quality of the study design, sample size, and the type of TSPO ligand used in the study. For the included studies, we extracted key data, including TSPO expression levels, clinical characteristics of the study participants, and specific information on brain regions. Meta-analysis was performed using R software to assess the relationship between TSPO expression and dementia. RESULTS: After screening, 12 studies that met the criteria were included. The results of the meta-analysis showed that the expression level of TSPO was significantly elevated in patients with dementia, especially in the hippocampal region. The OR in the hippocampus was 1.50 with a 95% CI of 1.09 to 1.25, indicating a significant increase in the expression of TSPO in this region compared to controls. Elevated levels of inflammation in the prefrontal lobe and cingulate gyrus are associated with cognitive impairment in patients. This was despite an OR of 1.00 in the anterior cingulate gyrus, indicating that TSPO expression in this region did not correlate significantly with the findings. The overall heterogeneity test showed I² = 51%, indicating moderate heterogeneity. CONCLUSION: This study summarizes the existing literature on TSPO expression in specific regions of the brain in patients with dementia, and also provides some preliminary evidence on the possible association between neuroinflammation and dementia. However, the heterogeneity of results and limitations of the study suggest that we need to interpret these findings with caution. Future studies need to adopt a more rigorous and consistent methodological design to more accurately assess the role of neuroinflammation in dementia, thereby providing a more reliable evidence base for understanding pathological mechanisms and developing potential therapeutic strategies.


Subject(s)
Dementia , Neuroinflammatory Diseases , Positron-Emission Tomography , Receptors, GABA , Humans , Positron-Emission Tomography/methods , Dementia/diagnostic imaging , Dementia/metabolism , Receptors, GABA/metabolism , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/metabolism , Brain/diagnostic imaging , Brain/metabolism
12.
Aging (Albany NY) ; 16(10): 9280-9302, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38805248

ABSTRACT

Aging is the greatest non-modifiable risk factor for most diseases, including cardiovascular diseases (CVD), which remain the leading cause of mortality worldwide. Robust evidence indicates that CVD are a strong determinant for reduced brain health and all-cause dementia with advancing age. CVD are also closely linked with peripheral and cerebral vascular dysfunction, common contributors to the development and progression of all types of dementia, that are largely driven by excessive levels of oxidative stress (e.g., reactive oxygen species [ROS]). Emerging evidence suggests that several fundamental aging mechanisms (e.g., "hallmarks" of aging), including chronic low-grade inflammation, mitochondrial dysfunction, cellular senescence and deregulated nutrient sensing contribute to excessive ROS production and are common to both peripheral and cerebral vascular dysfunction. Therefore, targeting these mechanisms to reduce ROS-related oxidative stress and improve peripheral and/or cerebral vascular function may be a promising strategy to reduce dementia risk with aging. Investigating how certain lifestyle strategies (e.g., aerobic exercise and diet modulation) and/or select pharmacological agents (natural and synthetic) intersect with aging "hallmarks" to promote peripheral and/or cerebral vascular health represent a viable option for reducing dementia risk with aging. Therefore, the primary purpose of this review is to explore mechanistic links among peripheral vascular dysfunction, cerebral vascular dysfunction, and reduced brain health with aging. Such insight and assessments of non-invasive measures of peripheral and cerebral vascular health with aging might provide a new approach for assessing dementia risk in older adults.


Subject(s)
Aging , Brain , Oxidative Stress , Humans , Aging/physiology , Brain/metabolism , Brain/physiopathology , Peripheral Vascular Diseases/physiopathology , Reactive Oxygen Species/metabolism , Dementia/physiopathology , Dementia/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Risk Factors , Animals
13.
Alzheimers Dement ; 20(5): 3606-3628, 2024 05.
Article in English | MEDLINE | ID: mdl-38556838

ABSTRACT

INTRODUCTION: Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS: A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS: While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION: In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS: MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.


Subject(s)
Alzheimer Disease , Brain , Protein Isoforms , tau Proteins , Humans , tau Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Brain/metabolism , Brain/pathology , Tauopathies/genetics , Tauopathies/metabolism , Alternative Splicing , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Animals , Dementia/genetics , Dementia/metabolism
14.
Basic Clin Pharmacol Toxicol ; 134(5): 563-573, 2024 May.
Article in English | MEDLINE | ID: mdl-38459754

ABSTRACT

Dementia is an umbrella term for a broad group of age-associated neurodegenerative diseases. It is estimated that dementia affects 50 million people worldwide and that Alzheimer's disease (AD) is responsible for up to 75% of cases. Small extracellular senile plaques composed of filamentous aggregates of amyloid ß (Aß) protein tend to bind to neuronal receptors, affecting cholinergic, serotonergic, dopaminergic and noradrenergic neurotransmission, leading to neuroinflammation, among other pathophysiologic processes and subsequent neuronal death, followed by dementia. The amyloid cascade hypothesis points to a pathological process in the cleavage of the amyloid precursor protein (APP), resulting in pathological Aß. There is a close relationship between the pathologies that lead to dementia and depression. It is estimated that depression is prevalent in up to 90% of individuals diagnosed with Parkinson's disease, with varying severity, and in 20 to 30% of cases of Alzheimer's disease. The hypothalamic pituitary adrenal (HPA) axis is the great intermediary between the pathophysiological mechanisms in neurodegenerative diseases and depression. This review discusses the role of Aß protein in the pathophysiological mechanisms of dementia and depression, considering the HPA axis, neuroinflammation, oxidative stress, signalling pathways and neurotransmission.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Dementia , Neurodegenerative Diseases , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Depression , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/pathology , Neuroinflammatory Diseases , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/pathology , Dementia/metabolism
15.
Exp Neurol ; 374: 114680, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185314

ABSTRACT

Cerebrovascular diseases are a major cause of stroke and dementia, both requiring long-term care. These diseases involve multiple pathophysiologies, with mitochondrial dysfunction being a crucial contributor to the initiation of inflammation, apoptosis, and oxidative stress, resulting in injuries to neurovascular units that include neuronal cell death, endothelial cell death, glial activation, and blood-brain barrier disruption. To maintain brain homeostasis against these pathogenic conditions, brain immune cells, including border-associated macrophages and microglia, play significant roles as brain innate immunity cells in the pathophysiology of cerebrovascular injury. Although microglia have long been recognized as significant contributors to neuroinflammation, attention has recently shifted to border-associated macrophages, such as perivascular macrophages (PVMs), which have been studied based on their crucial roles in the brain. These cells are strategically positioned around the walls of brain vessels, where they mainly perform critical functions, such as perivascular drainage, cerebrovascular flexibility, phagocytic activity, antigen presentation, activation of inflammatory responses, and preservation of blood-brain barrier integrity. Although PVMs act as scavenger and surveillant cells under normal conditions, these cells exert harmful effects under pathological conditions. PVMs detect mitochondrial dysfunction in injured cells and implement pathological changes to regulate brain homeostasis. Therefore, PVMs are promising as they play a significant role in mitochondrial dysfunction and, in turn, disrupt the homeostatic condition. Herein, we summarize the significant roles of PVMs in cerebrovascular diseases, especially ischemic and hemorrhagic stroke and dementia, mainly in correlation with inflammation. A better understanding of the biology and pathobiology of PVMs may lead to new insights on and therapeutic strategies for cerebrovascular diseases.


Subject(s)
Cerebrovascular Disorders , Dementia , Mitochondrial Diseases , Humans , Macrophages/metabolism , Brain/metabolism , Inflammation/metabolism , Dementia/metabolism
16.
Neurosci Res ; 204: 22-33, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38278219

ABSTRACT

Altered cholesterol metabolism is implicated in brain ageing and Alzheimer's disease. We examined whether key genes regulating cholesterol metabolism and levels of brain cholesterol are altered in dementia and Alzheimer's disease neuropathological change (ADNC). Temporal cortex (n = 99) was obtained from the Cognitive Function and Ageing Study. Expression of the cholesterol biosynthesis rate-limiting enzyme HMG-CoA reductase (HMGCR) and its regulator, SREBP2, were detected using immunohistochemistry. Expression of HMGCR, SREBP2, CYP46A1 and ABCA1 were quantified by qPCR in samples enriched for astrocyte and neuronal RNA following laser-capture microdissection. Total cortical cholesterol was measured using the Amplex Red assay. HMGCR and SREBP2 proteins were predominantly expressed in pyramidal neurones, and in glia. Neuronal HMGCR did not vary with ADNC, oxidative stress, neuroinflammation or dementia status. Expression of HMGCR neuronal mRNA decreased with ADNC (p = 0.022) and increased with neuronal DNA damage (p = 0.049), whilst SREBP2 increased with ADNC (p = 0.005). High or moderate tertiles for cholesterol levels were associated with increased dementia risk (OR 1.44, 1.58). APOE ε4 allele was not associated with cortical cholesterol levels. ADNC is associated with gene expression changes that may impair cholesterol biosynthesis in neurones but not astrocytes, whilst levels of cortical cholesterol show a weak relationship to dementia status.


Subject(s)
Alzheimer Disease , Cholesterol , Dementia , Hydroxymethylglutaryl CoA Reductases , Sterol Regulatory Element Binding Protein 2 , Humans , Cholesterol/metabolism , Cholesterol/biosynthesis , Male , Sterol Regulatory Element Binding Protein 2/metabolism , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Female , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Aged , Dementia/metabolism , Dementia/pathology , Aged, 80 and over , Brain/metabolism , Brain/pathology , Cohort Studies , Neurons/metabolism , Cholesterol 24-Hydroxylase/metabolism , Astrocytes/metabolism
17.
Open Biol ; 13(12): 230253, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38052249

ABSTRACT

The mechanisms underlying neurodegenerative sequelae of traumatic brain injury (TBI) are poorly understood. The normal plasma protein, serum amyloid P component (SAP), which is normally rigorously excluded from the brain, is directly neurocytotoxic for cerebral neurones and also binds to Aß amyloid fibrils and neurofibrillary tangles, promoting formation and persistence of Aß fibrils. Increased brain exposure to SAP is common to many risk factors for dementia, including TBI, and dementia at death in the elderly is significantly associated with neocortical SAP content. Here, in 18 of 30 severe TBI cases, we report immunohistochemical staining for SAP in contused brain tissue with blood-brain barrier disruption. The SAP was localized to neurofilaments in a subset of neurones and their processes, particularly damaged axons and cell bodies, and was present regardless of the time after injury. No SAP was detected on astrocytes, microglia, cerebral capillaries or serotoninergic neurones and was absent from undamaged brain. C-reactive protein, the control plasma protein most closely similar to SAP, was only detected within capillary lumina. The appearance of neurocytotoxic SAP in the brain after TBI, and its persistent, selective deposition in cerebral neurones, are consistent with a potential contribution to subsequent neurodegeneration.


Subject(s)
Brain Injuries, Traumatic , Dementia , Humans , Aged , Serum Amyloid P-Component/chemistry , Serum Amyloid P-Component/metabolism , Brain Injuries, Traumatic/metabolism , Brain/metabolism , Blood Proteins/metabolism , Dementia/metabolism , Amyloid beta-Peptides/metabolism
18.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003671

ABSTRACT

The association of diabetes with cognitive dysfunction has at least 60 years of history, which started with the observation that children with type 1 diabetes mellitus (T1D), who had recurrent episodes of hypoglycemia and consequently low glucose supply to the brain, showed a deficit of cognitive capacity. Later, the growing incidence of type 2 diabetes mellitus (T2D) and dementia in aged populations revealed their high association, in which a reduced neuronal glucose supply has also been considered as a key mechanism, despite hyperglycemia. Here, we discuss the role of glucose in neuronal functioning/preservation, and how peripheral blood glucose accesses the neuronal intracellular compartment, including the exquisite glucose flux across the blood-brain barrier (BBB) and the complex network of glucose transporters, in dementia-related areas such as the hippocampus. In addition, insulin resistance-induced abnormalities in the hippocampus of obese/T2D patients, such as inflammatory stress, oxidative stress, and mitochondrial stress, increased generation of advanced glycated end products and BBB dysfunction, as well as their association with dementia/Alzheimer's disease, are addressed. Finally, we discuss how these abnormalities are accompained by the reduction in the expression and translocation of the high capacity insulin-sensitive glucose transporter GLUT4 in hippocampal neurons, which leads to neurocytoglycopenia and eventually to cognitive dysfunction. This knowledge should further encourage investigations into the beneficial effects of promising therapeutic approaches which could improve central insulin sensitivity and GLUT4 expression, to fight diabetes-related cognitive dysfunctions.


Subject(s)
Dementia , Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Child , Humans , Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Neurophysiology , Glucose/metabolism , Insulin Resistance/physiology , Hippocampus/metabolism , Hyperinsulinism/metabolism , Glucose Transport Proteins, Facilitative/metabolism , Dementia/metabolism , Insulin/metabolism
19.
J Neuroimaging ; 33(6): 953-959, 2023.
Article in English | MEDLINE | ID: mdl-37726927

ABSTRACT

BACKGROUND AND PURPOSE: The microtubule-associated protein tau (MAPT) H1 homozygosity (H1/H1 haplotype) is a genetic risk factor for neurodegenerative diseases, such as Parkinson's disease (PD). MAPT H1 homozygosity has been associated with conversion to PD; however, results are conflicting since some studies did not find a strong influence. Cortical hypometabolism is associated with cognitive impairment in PD. In this study, we aimed to evaluate the metabolic pattern in nondemented PD patients MAPT H1/H1 carriers in comparison with MAPT H1/H2 haplotype. In addition, we evaluated domain-specific cognitive differences according to MAPT haplotype. METHODS: We compared a group of 26 H1/H1 and 20 H1/H2 carriers with late-onset PD. Participants underwent a comprehensive neuropsychological cognitive evaluation and a [18F]-Fluorodeoxyglucose PET-MR scan. RESULTS: MAPT H1/H1 carriers showed worse performance in the digit span forward test of attention compared to MAPT H1/H2 carriers. In the [18F]-Fluorodeoxyglucose PET comparisons, MAPT H1/H1 displayed hypometabolism in the frontal cortex, parahippocampal, and cingulate gyrus, as well as in the caudate and globus pallidus. CONCLUSION: PD patients MAPT H1/H1 carriers without dementia exhibit relative hypometabolism in several cortical areas as well as in the basal ganglia, and worse performance in attention than MAPT H1/H2 carriers. Longitudinal studies should assess if lower scores in attention and dysfunction in these areas are predictors of dementia in MAPT H1/H1 homozygotes.


Subject(s)
Dementia , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/genetics , Parkinson Disease/metabolism , Genetic Predisposition to Disease , Brain/diagnostic imaging , Brain/metabolism , Haplotypes , Dementia/genetics , Dementia/metabolism
20.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445910

ABSTRACT

In assessing and managing pain, when obtaining a self-report is impossible, therapeutic decision-making becomes more challenging. This study aimed to investigate whether monocytes and some membrane monocyte proteins, identified as a cluster of differentiation (CD), could be potential non-invasive peripheral biomarkers in identifying and characterizing pain in patients with severe dementia. We used 53 blood samples from non-oncological palliative patients, 44 patients with pain (38 of whom had dementia) and 0 without pain or dementia (controls). We evaluated the levels of monocytes and their subtypes, including classic, intermediate, and non-classic, and characterized the levels of specific phenotypic markers, namely CD11c, CD86, CD163, and CD206. We found that the relative concentrations of monocytes, particularly the percentage of classic monocytes, may be a helpful pain biomarker. Furthermore, the CD11c expression levels were significantly higher in patients with mixed pain, while CD163 and CD206 expression levels were significantly higher in patients with nociceptive pain. These findings suggest that the levels of monocytes, particularly the classic subtype, and their phenotype markers CD11c, CD163, and CD206 could serve as pain biomarkers in patients with severe dementia.


Subject(s)
Dementia , Monocytes , Humans , Monocytes/metabolism , Pilot Projects , Antigens, Differentiation, Myelomonocytic/metabolism , Biomarkers/metabolism , Membrane Proteins/metabolism , Pain/metabolism , Dementia/complications , Dementia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL