Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.486
Filter
1.
Sci Rep ; 14(1): 18586, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127716

ABSTRACT

Astrocytes display context-specific diversity in their functions and respond to noxious stimuli between brain regions. Astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on ATP generation and Ca2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca2+ signaling in astrocytes, the extent of this regulation in astrocytes from different brain regions remains unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for astrocyte function, however, possible diverse responses to this noxious stimulus between brain areas were not reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI expressing the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two brain regions, the dorsolateral striatum and dentate gyrus, and we show that Mito-PstI induces astrocytic mtDNA loss in vivo, but with remarkable brain-region-dependent differences on mitochondrial dynamics, Ca2+ fluxes, and astrocytic and microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca2+ signaling in a brain-region-selective manner.


Subject(s)
Astrocytes , DNA Damage , DNA, Mitochondrial , Mitochondria , Astrocytes/metabolism , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mice , Mitochondria/metabolism , Dependovirus/genetics , Calcium/metabolism , Brain/metabolism , Male , Calcium Signaling , Mice, Inbred C57BL , Mitochondrial Dynamics , Dentate Gyrus/metabolism
2.
Nat Commun ; 15(1): 5805, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987240

ABSTRACT

Fear memory is essential for survival and adaptation, yet excessive fear memories can lead to emotional disabilities and mental disorders. Despite previous researches have indicated that histamine H1 receptor (H1R) exerts critical and intricate effects on fear memory, the role of H1R is still not clarified. Here, we show that deletion of H1R gene in medial septum (MS) but not other cholinergic neurons selectively enhances contextual fear memory without affecting cued memory by differentially activating the dentate gyrus (DG) neurons in mice. H1R in cholinergic neurons mediates the contextual fear retrieval rather than consolidation by decreasing acetylcholine release pattern in DG. Furthermore, selective knockdown of H1R in the MS is sufficient to enhance contextual fear memory by manipulating the retrieval-induced neurons in DG. Our results suggest that H1R in MS cholinergic neurons is critical for contextual fear retrieval, and could be a potential therapeutic target for individuals with fear-related disorders.


Subject(s)
Cholinergic Neurons , Dentate Gyrus , Fear , Receptors, Histamine H1 , Animals , Fear/physiology , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Receptors, Histamine H1/metabolism , Receptors, Histamine H1/genetics , Dentate Gyrus/metabolism , Mice , Male , Mice, Inbred C57BL , Memory/physiology , Mice, Knockout , Acetylcholine/metabolism , Septal Nuclei/metabolism , Septal Nuclei/physiology , Septal Nuclei/cytology
3.
PLoS Biol ; 22(7): e3002706, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950066

ABSTRACT

Episodic memory is essential to navigate in a changing environment by recalling past events, creating new memories, and updating stored information from experience. Although the mechanisms for acquisition and consolidation have been profoundly studied, much less is known about memory retrieval. Hippocampal spatial representations are key for retrieval of contextually guided episodic memories. Indeed, hippocampal place cells exhibit stable location-specific activity which is thought to support contextual memory, but can also undergo remapping in response to environmental changes. It is unclear if remapping is directly related to the expression of different episodic memories. Here, using an incidental memory recognition task in rats, we showed that retrieval of a contextually guided memory is reflected by the levels of CA3 remapping, demonstrating a clear link between external cues, hippocampal remapping, and episodic memory retrieval that guides behavior. Furthermore, we describe NMDARs as key players in regulating the balance between retrieval and memory differentiation processes by controlling the reactivation of specific memory traces. While an increase in CA3 NMDAR activity boosts memory retrieval, dentate gyrus NMDAR activity enhances memory differentiation. Our results contribute to understanding how the hippocampal circuit sustains a flexible balance between memory formation and retrieval depending on the environmental cues and the internal representations of the individual. They also provide new insights into the molecular mechanisms underlying the contributions of hippocampal subregions to generate this balance.


Subject(s)
CA3 Region, Hippocampal , Hippocampus , Receptors, N-Methyl-D-Aspartate , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , Male , Rats , CA3 Region, Hippocampal/physiology , Hippocampus/physiology , Hippocampus/metabolism , Mental Recall/physiology , Memory, Episodic , Dentate Gyrus/physiology , Dentate Gyrus/metabolism , Rats, Long-Evans , Cues , Memory/physiology
4.
Sci Adv ; 10(27): eadj4433, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38959322

ABSTRACT

Memory processes rely on a molecular signaling system that balances the interplay between positive and negative modulators. Recent research has focused on identifying memory-regulating genes and their mechanisms. Phospholipase C beta 1 (PLCß1), highly expressed in the hippocampus, reportedly serves as a convergence point for signal transduction through G protein-coupled receptors. However, the detailed role of PLCß1 in memory function has not been elucidated. Here, we demonstrate that PLCß1 in the dentate gyrus functions as a memory suppressor. We reveal that mice lacking PLCß1 in the dentate gyrus exhibit a heightened fear response and impaired memory extinction, and this excessive fear response is repressed by upregulation of PLCß1 through its overexpression or activation using a newly developed optogenetic system. Last, our results demonstrate that PLCß1 overexpression partially inhibits exaggerated fear response caused by traumatic experience. Together, PLCß1 is crucial in regulating contextual fear memory formation and potentially enhancing the resilience to trauma-related conditions.


Subject(s)
Dentate Gyrus , Fear , Memory , Neurons , Phospholipase C beta , Animals , Phospholipase C beta/metabolism , Phospholipase C beta/genetics , Fear/physiology , Dentate Gyrus/metabolism , Dentate Gyrus/physiology , Memory/physiology , Mice , Neurons/metabolism , Neurons/physiology , Mice, Knockout , Male , Optogenetics , Mice, Inbred C57BL
5.
Neuroscience ; 552: 142-151, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38960088

ABSTRACT

Hippocampus is a critical component of the central nervous system. SRSF10 is expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in hippocampus development is unknown. In this study, using SRSF10 conditional knock-out mice in neural progenitor cells (NPCs), we found that dysfunction of SRSF10 leads to developmental defects in the dentate gyrus of hippocampus, which manifests as the reduced length and wider suprapyramidal blade and infrapyramidal blade.Furthermore, we proved that loss of SRSF10 in NPCs caused inhibition of the differentiation activity and the abnormal migration of NPCs and granule cells, resulting in reduced granule cells and more ectopic granule cells dispersed in the molecular layer and hilus. Finally, we found that the abnormal migration may be caused by the radial glia scaffold and the reduced DISC1 expression in NPCs. Together, our results indicate that SRSF10 is required for the cell migration and formation of dentate gyrus during the development of hippocampus.


Subject(s)
Cell Movement , Dentate Gyrus , Mice, Knockout , Neural Stem Cells , Serine-Arginine Splicing Factors , Animals , Neural Stem Cells/metabolism , Dentate Gyrus/metabolism , Cell Movement/physiology , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Neurons/metabolism , Hippocampus/metabolism , Mice , Neurogenesis/physiology , Cell Differentiation/physiology , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice, Inbred C57BL
6.
Neurobiol Dis ; 199: 106591, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969233

ABSTRACT

Gain-of-function mutations in SCN8A cause developmental and epileptic encephalopathy (DEE), a disorder characterized by early-onset refractory seizures, deficits in motor and intellectual functions, and increased risk of sudden unexpected death in epilepsy. Altered activity of neurons in the corticohippocampal circuit has been reported in mouse models of DEE. We examined the effect of chronic seizures on gene expression in the hippocampus by single-nucleus RNA sequencing in mice expressing the patient mutation SCN8A-p.Asn1768Asp (N1768D). One hundred and eighty four differentially expressed genes were identified in dentate gyrus granule cells, many more than in other cell types. Electrophysiological recording from dentate gyrus granule cells demonstrated an elevated firing rate. Targeted reduction of Scn8a expression in the dentate gyrus by viral delivery of an shRNA resulted in doubling of median survival time from 4 months to 8 months, whereas delivery of shRNA to the CA1 and CA3 regions did not result in lengthened survival. These data indicate that granule cells of the dentate gyrus are a specific locus of pathology in SCN8A-DEE.


Subject(s)
Dentate Gyrus , NAV1.6 Voltage-Gated Sodium Channel , Neurons , Animals , NAV1.6 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Dentate Gyrus/pathology , Dentate Gyrus/metabolism , Mice , Neurons/metabolism , Neurons/pathology , Mice, Transgenic , Male , Mutation
7.
Nat Commun ; 15(1): 5674, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971831

ABSTRACT

Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.


Subject(s)
Dentate Gyrus , Epigenesis, Genetic , Hippocampus , Histone-Lysine N-Methyltransferase , Neural Stem Cells , Neurogenesis , Animals , Female , Male , Mice , Adult Stem Cells/metabolism , Adult Stem Cells/cytology , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Histone Demethylases/metabolism , Histone Demethylases/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neurogenesis/genetics
8.
EMBO Rep ; 25(8): 3678-3706, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39080439

ABSTRACT

Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.


Subject(s)
Hippocampus , Homeostasis , Membrane Proteins , Neural Stem Cells , Neurogenesis , STAT5 Transcription Factor , Animals , Neurogenesis/genetics , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Hippocampus/metabolism , Hippocampus/cytology , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Knockout , Seizures/metabolism , Seizures/genetics , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Signal Transduction , Cell Proliferation
9.
Behav Pharmacol ; 35(5): 253-262, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38869040

ABSTRACT

INTRODUCTION: Acute stress, as a protective mechanism to respond to an aversive stimulus, can often be accompanied by suppressing pain perception via promoting consistent burst firing of dopamine neurons. Besides, sensitive and advanced research techniques led to the recognition of the mesohippocampal dopaminergic terminals, particularly in the hippocampal dentate gyrus (DG). Moreover, previous studies have shown that dopamine receptors within the hippocampal DG play a critical role in induced antinociceptive responses by forced swim stress (FSS) in the presence of inflammatory pain. Since different pain states can trigger various mechanisms and transmitter systems, the present experiments aimed to investigate whether dopaminergic receptors within the DG have the same role in the presence of acute thermal pain. METHODS: Ninety-seven adult male albino Wistar rats underwent stereotaxic surgery, and a stainless steel guide cannula was unilaterally implanted 1 mm above the DG. Different doses of SCH23390 or sulpiride as D1- and D2-like dopamine receptor antagonists were microinjected into the DG 5-10 min before exposure to FSS, and 5 min after FSS exposure, the tail-flick test evaluated the effect of stress on the nociceptive response at the time-set intervals. RESULTS: The results demonstrated that exposure to FSS could significantly increase the acute pain perception threshold, while intra-DG administration of SCH23390 and sulpiride reduced the antinociceptive effect of FSS in the tail-flick test. DISCUSSION: Additionally, it seems the D2-like dopamine receptor within the DG plays a more prominent role in FSS-induced analgesia in the acute pain model.


Subject(s)
Benzazepines , Dentate Gyrus , Receptors, Dopamine D1 , Receptors, Dopamine D2 , Stress, Psychological , Sulpiride , Animals , Male , Rats , Analgesia/methods , Benzazepines/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dopamine Antagonists/pharmacology , Dopamine D2 Receptor Antagonists/pharmacology , Pain/metabolism , Pain/drug therapy , Pain/physiopathology , Pain Measurement/methods , Pain Measurement/drug effects , Rats, Wistar , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Sulpiride/pharmacology
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230221, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38853554

ABSTRACT

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and is the leading known single-gene cause of autism spectrum disorder. Patients with FXS display varied behavioural deficits that include mild to severe cognitive impairments in addition to mood disorders. Currently, there is no cure for this condition; however, there is an emerging focus on therapies that inhibit mechanistic target of rapamycin (mTOR)-dependent protein synthesis owing to the clinical effectiveness of metformin for alleviating some behavioural symptoms in FXS. Adiponectin (APN) is a neurohormone that is released by adipocytes and provides an alternative means to inhibit mTOR activation in the brain. In these studies, we show that Fmr1 knockout mice, like patients with FXS, show reduced levels of circulating APN and that both long-term potentiation (LTP) and long-term depression (LTD) in the dentate gyrus (DG) are impaired. Brief (20 min) incubation of hippocampal slices in APN (50 nM) was able to rescue both LTP and LTD in the DG and increased both the surface expression and phosphorylation of GluA1 receptors. These results provide evidence for reduced APN levels in FXS playing a role in decreasing bidirectional synaptic plasticity and show that therapies which enhance APN levels may have therapeutic potential for this and related conditions.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Subject(s)
Adiponectin , Dentate Gyrus , Disease Models, Animal , Fragile X Mental Retardation Protein , Fragile X Syndrome , Mice, Knockout , Neuronal Plasticity , Animals , Fragile X Syndrome/physiopathology , Fragile X Syndrome/drug therapy , Fragile X Syndrome/metabolism , Dentate Gyrus/metabolism , Dentate Gyrus/drug effects , Mice , Neuronal Plasticity/drug effects , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Adiponectin/metabolism , Long-Term Potentiation/drug effects , Male , Receptors, AMPA/metabolism
11.
Elife ; 122024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904658

ABSTRACT

Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.


Subject(s)
Alzheimer Disease , Choline , Dietary Supplements , Disease Models, Animal , Animals , Alzheimer Disease/metabolism , Choline/administration & dosage , Choline/metabolism , Mice , Female , Mice, Transgenic , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Neurons/metabolism , Neurons/drug effects , Male , Dentate Gyrus/metabolism , Dentate Gyrus/drug effects , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , DNA-Binding Proteins
12.
Cells ; 13(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891031

ABSTRACT

Apolipoprotein E (ApoE) is a lipid carrier in both the peripheral and the central nervous systems (CNSs). Lipid-loaded ApoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and brain injury repair. In the brain, ApoE is produced predominantly by astrocytes, but it is also abundantly expressed in most neurons of the CNS. In this study, we addressed the role of ApoE in the hippocampus in mice, focusing on its role in response to radiation injury. To this aim, 8-week-old, wild-type, and ApoE-deficient (ApoE-/-) female mice were acutely whole-body irradiated with 3 Gy of X-rays (0.89 Gy/min), then sacrificed 150 days post-irradiation. In addition, age-matching ApoE-/- females were chronically whole-body irradiated (20 mGy/d, cumulative dose of 3 Gy) for 150 days at the low dose-rate facility at the Institute of Environmental Sciences (IES), Rokkasho, Japan. To seek for ApoE-dependent modification during lineage progression from neural stem cells to neurons, we have evaluated the cellular composition of the dentate gyrus in unexposed and irradiated mice using stage-specific markers of adult neurogenesis. Our findings indicate that ApoE genetic inactivation markedly perturbs adult hippocampal neurogenesis in unexposed and irradiated mice. The effect of ApoE inactivation on the expression of a panel of miRNAs with an established role in hippocampal neurogenesis, as well as its transcriptional consequences in their target genes regulating neurogenic program, have also been analyzed. Our data show that the absence of ApoE-/- also influences synaptic functionality and integration by interfering with the regulation of mir-34a, mir-29b, and mir-128b, leading to the downregulation of synaptic markers PSD95 and synaptophysin mRNA. Finally, compared to acute irradiation, chronic exposure of ApoE null mice yields fewer consequences except for the increased microglia-mediated neuroinflammation. Exploring the function of ApoE in the hippocampus could have implications for developing therapeutic approaches to alleviate radiation-induced brain injury.


Subject(s)
Apolipoproteins E , Hippocampus , MicroRNAs , Radiation, Ionizing , Animals , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Hippocampus/metabolism , Hippocampus/radiation effects , Mice , Female , MicroRNAs/metabolism , MicroRNAs/genetics , Mice, Inbred C57BL , Neurons/metabolism , Neurons/radiation effects , Neurogenesis/radiation effects , Whole-Body Irradiation , Radiation Exposure/adverse effects , Dentate Gyrus/metabolism , Dentate Gyrus/radiation effects , Dentate Gyrus/pathology
13.
Cell Rep ; 43(6): 114339, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38852158

ABSTRACT

Quiescent adult neural stem cells (NSCs) in the mammalian brain arise from proliferating NSCs during development. Beyond acquisition of quiescence, an adult NSC hallmark, little is known about the process, milestones, and mechanisms underlying the transition of developmental NSCs to an adult NSC state. Here, we performed targeted single-cell RNA-seq analysis to reveal the molecular cascade underlying NSC development in the early postnatal mouse dentate gyrus. We identified two sequential steps, first a transition to quiescence followed by further maturation, each of which involved distinct changes in metabolic gene expression. Direct metabolic analysis uncovered distinct milestones, including an autophagy burst before NSC quiescence acquisition and cellular reactive oxygen species level elevation along NSC maturation. Functionally, autophagy is important for the NSC transition to quiescence during early postnatal development. Together, our study reveals a multi-step process with defined milestones underlying establishment of the adult NSC pool in the mammalian brain.


Subject(s)
Autophagy , Hippocampus , Neural Stem Cells , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Animals , Mice , Hippocampus/metabolism , Hippocampus/cytology , Neurogenesis , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Dentate Gyrus/growth & development , Cell Differentiation , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Adult Stem Cells/metabolism , Adult Stem Cells/cytology , Single-Cell Analysis , Cell Proliferation
14.
Cell Rep ; 43(7): 114382, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38905101

ABSTRACT

Retrograde signaling at the synapse is a fundamental way by which neurons communicate and neuronal circuit function is fine-tuned upon activity. While long-term changes in neurotransmitter release commonly rely on retrograde signaling, the mechanisms remain poorly understood. Here, we identified adenosine/A2A receptor (A2AR) as a retrograde signaling pathway underlying presynaptic long-term potentiation (LTP) at a hippocampal excitatory circuit critically involved in memory and epilepsy. Transient burst activity of a single dentate granule cell induced LTP of mossy cell synaptic inputs, a BDNF/TrkB-dependent form of plasticity that facilitates seizures. Postsynaptic TrkB activation released adenosine from granule cells, uncovering a non-conventional BDNF/TrkB signaling mechanism. Moreover, presynaptic A2ARs were necessary and sufficient for LTP. Lastly, seizure induction released adenosine in a TrkB-dependent manner, while removing A2ARs or TrkB from the dentate gyrus had anti-convulsant effects. By mediating presynaptic LTP, adenosine/A2AR retrograde signaling may modulate dentate gyrus-dependent learning and promote epileptic activity.


Subject(s)
Adenosine , Long-Term Potentiation , Receptor, Adenosine A2A , Seizures , Signal Transduction , Synaptic Transmission , Animals , Seizures/metabolism , Seizures/physiopathology , Receptor, Adenosine A2A/metabolism , Adenosine/metabolism , Synaptic Transmission/physiology , Long-Term Potentiation/physiology , Mice , Dentate Gyrus/metabolism , Male , Receptor, trkB/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Mice, Inbred C57BL , Hippocampus/metabolism
15.
Neurobiol Learn Mem ; 213: 107952, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906243

ABSTRACT

The ability to learn and remember, which is fundamental for behavioral adaptation, is susceptible to stressful experiences during the early postnatal period, such as abnormal levels of maternal care. The exact mechanisms underlying these effects still remain elusive. This study examined whether early life stress (ELS) alters memory and brain activation patterns in male mice. Therefore, we examined the expression of the immediate early genes (IEGs) c-Fos and Arc in the dentate gyrus (DG) and basolateral amygdala (BLA) after training and memory retrieval in a fear conditioning task. Furthermore, we examined the potential of RU38486 (RU486), a glucocorticoid receptor antagonist, to mitigate ELS-induced memory deficits by blocking stress signalling during adolescence. Arc::dVenus reporter mice, which allow investigating experience-dependent expression of the immediate early gene Arc also at more remote time points, were exposed to ELS by housing dams and offspring with limited bedding and nesting material (LBN) between postnatal days (PND) 2-9 and trained in a fear conditioning task at adult age. We found that ELS reduced both fear acquisition and contextual memory retrieval. RU486 did not prevent these effects. ELS reduced the number of Arc::dVenus+ cells in DG and BLA after training, while the number of c-Fos+ cells were left unaffected. After memory retrieval, ELS decreased c-Fos+ cells in the ventral DG and BLA. ELS also altered the colocalization of c-Fos+ cells with Arc::dVenus+ cells in the ventral DG, possibly indicating impaired engram allocation in the ventral DG after memory retrieval. In conclusion, this study shows that ELS alters neuronal activation patterns after fear acquisition and retrieval, which may provide mechanistic insights into enduring impact of ELS on the processing of fear memories, possibly via changes in cell (co-) activation and engram cell allocation.


Subject(s)
Basolateral Nuclear Complex , Dentate Gyrus , Fear , Mifepristone , Stress, Psychological , Animals , Fear/physiology , Male , Stress, Psychological/metabolism , Mice , Basolateral Nuclear Complex/metabolism , Dentate Gyrus/metabolism , Mifepristone/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Female , Memory/physiology , Conditioning, Classical/physiology , Nerve Tissue Proteins/metabolism , Genes, Immediate-Early/physiology , Cytoskeletal Proteins/metabolism , Mental Recall/physiology , Mice, Inbred C57BL
16.
J Comp Neurol ; 532(7): e25645, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38943486

ABSTRACT

Dendritic spines are sites of synaptic plasticity and their head size correlates with the strength of the corresponding synapse. We recently showed that the distribution of spine head sizes follows a lognormal-like distribution even after blockage of activity or plasticity induction. As the cytokine tumor necrosis factor (TNF) influences synaptic transmission and constitutive TNF and receptor (TNF-R)-deficiencies cause changes in spine head size distributions, we tested whether these genetic alterations disrupt the lognormality of spine head sizes. Furthermore, we distinguished between spines containing the actin-modulating protein synaptopodin (SP-positive), which is present in large, strong and stable spines and those lacking it (SP-negative). Our analysis revealed that neither TNF-deficiency nor the absence of TNF-R1, TNF-R2 or TNF-R 1 and 2 (TNF-R1/R2) degrades the general lognormal-like, skewed distribution of spine head sizes (all spines, SP-positive spines, SP-negative spines). However, TNF, TNF-R1 and TNF-R2-deficiency affected the width of the lognormal distribution, and TNF-R1/2-deficiency shifted the distribution to the left. Our findings demonstrate the robustness of the lognormal-like, skewed distribution, which is maintained even in the face of genetic manipulations that alter the distribution of spine head sizes. Our observations are in line with homeostatic adaptation mechanisms of neurons regulating the distribution of spines and their head sizes.


Subject(s)
Dendritic Spines , Dentate Gyrus , Mice, Inbred C57BL , Mice, Knockout , Receptors, Tumor Necrosis Factor, Type II , Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha , Animals , Dendritic Spines/metabolism , Mice , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Tumor Necrosis Factor-alpha/metabolism , Receptors, Tumor Necrosis Factor, Type II/deficiency , Receptors, Tumor Necrosis Factor, Type II/metabolism , Receptors, Tumor Necrosis Factor, Type II/genetics , Neurons/metabolism , Male , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/deficiency
17.
Nat Commun ; 15(1): 4047, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744873

ABSTRACT

Human hippocampal organoids (hHOs) derived from human induced pluripotent stem cells (hiPSCs) have emerged as promising models for investigating neurodegenerative disorders, such as schizophrenia and Alzheimer's disease. However, obtaining the electrical information of these free-floating organoids in a noninvasive manner remains a challenge using commercial multi-electrode arrays (MEAs). The three-dimensional (3D) MEAs developed recently acquired only a few neural signals due to limited channel numbers. Here, we report a hippocampal cyborg organoid (cyb-organoid) platform coupling a liquid metal-polymer conductor (MPC)-based mesh neuro-interface with hHOs. The mesh MPC (mMPC) integrates 128-channel multielectrode arrays distributed on a small surface area (~2*2 mm). Stretchability (up to 500%) and flexibility of the mMPC enable its attachment to hHOs. Furthermore, we show that under Wnt3a and SHH activator induction, hHOs produce HOPX+ and PAX6+ progenitors and ZBTB20+PROX1+ dentate gyrus (DG) granule neurons. The transcriptomic signatures of hHOs reveal high similarity to the developing human hippocampus. We successfully detect neural activities from hHOs via the mMPC from this cyb-organoid. Compared with traditional planar devices, our non-invasive coupling offers an adaptor for recording neural signals from 3D models.


Subject(s)
Hippocampus , Induced Pluripotent Stem Cells , Organoids , Humans , Organoids/metabolism , Organoids/cytology , Hippocampus/cytology , Hippocampus/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Neurons/cytology , Metals/chemistry , Transcriptome , Dentate Gyrus/cytology , Dentate Gyrus/metabolism
18.
Behav Brain Res ; 468: 115042, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38723676

ABSTRACT

Hippocampus is essential for episodic memory formation, lesion studies demonstrating its role especially in processing spatial and temporal information. Further, adult hippocampal neurogenesis (AHN) in the dentate gyrus (DG) has also been linked to learning. To study hippocampal neuronal activity during events like learning, in vivo calcium imaging has become increasingly popular. It relies on the use of adeno-associated viral (AAV) vectors, which seem to lead to a decrease in AHN when applied on the DG. More notably, imaging requires the implantation of a relatively large lens into the tissue. Here, we examined how injection of an AAV vector and implantation of a 1-mm-diameter lens into the dorsal DG routinely used to image calcium activity impact the behavior of adult male C57BL/6 mice. To this aim, we conducted open-field, object-recognition and object-location tasks at baseline, after AAV vector injection, and after lens implantation. Finally, we determined AHN from hippocampal slices using a doublecortin-antibody. According to our results, the operations needed for in vivo imaging of the dorsal DG did not have adverse effects on behavior, although we noticed a decrease in AHN ipsilaterally to the operations. Thus, our results suggest that in vivo imaging can be safely used to, for example, correlate patterns of calcium activity with learned behavior. One should still keep in mind that the defects on the operated side might be functionally compensated by the (hippocampus in the) contralateral hemisphere.


Subject(s)
Hippocampus , Mice, Inbred C57BL , Neurogenesis , Animals , Neurogenesis/physiology , Male , Hippocampus/metabolism , Mice , Calcium/metabolism , Behavior, Animal/physiology , Recognition, Psychology/physiology , Dentate Gyrus/metabolism , Dentate Gyrus/physiology , Dependovirus , Genetic Vectors/administration & dosage , Functional Laterality/physiology
19.
Brain Res Bull ; 213: 110975, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734185

ABSTRACT

Chronic restraint stress induces cognitive abnormalities through changes in synapses and oxidant levels in the amygdala and hippocampus. Given the neuroprotective effects of fruit of Terminalia chebula (Halileh) in different experimental models, the present investigation aimed to address whether Terminalia chebula is able to reduce chronic restraint stress-induced behavioral, synaptic and oxidant markers in the rat model. Thirty-two male Wistar rats were randomly divided into four groups as follows: control (did not receive any treatment and were not exposed to stress), stress (restraint stress for 2 h a day for 14 consecutive days), Terminalia chebula (received 200 mg/kg hydroalcoholic extract of Terminalia chebula), and stress + Terminalia chebula groups (received 200 mg/kg extract of Terminalia chebula twenty minutes before stress) (n = 8 in each group). We used the shuttle box test to assess learning and memory, Golgi-Cox staining to examine dendritic spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala, and total antioxidant capacity (TAC) and total oxidant status (TOS) in the brain. The shuttle box test results demonstrated that Terminalia chebula treatment had a profound positive effect on memory parameters, including step-through latency (STL) and time spent in the dark room, when compared to the stress group. Daily oral treatment with Terminalia chebula effectively suppressed the loss of neural spine density in the dentate gyrus region of the hippocampus and the basolateral and central nuclei of the amygdala caused by chronic restraint stress, as demonstrated by Golgi-Cox staining. Additionally, the results indicate that Terminalia chebula significantly reduced the TOS and increased TAC in the brain compared to the stress group. In conclusion, our results suggest that Terminalia chebula improved memory impairment and synaptic loss in the dentate gyrus of the hippocampus and the basolateral and central nuclei of the amygdala induced by restraint stress via inhibiting oxidative damage.


Subject(s)
Dentate Gyrus , Memory Disorders , Oxidative Stress , Plant Extracts , Rats, Wistar , Restraint, Physical , Stress, Psychological , Terminalia , Animals , Terminalia/chemistry , Male , Stress, Psychological/metabolism , Rats , Oxidative Stress/drug effects , Oxidative Stress/physiology , Dentate Gyrus/metabolism , Plant Extracts/pharmacology , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/drug effects , Central Amygdaloid Nucleus/metabolism , Central Amygdaloid Nucleus/drug effects , Neuroprotective Agents/pharmacology , Dendritic Spines/drug effects , Amygdala/metabolism
20.
Sci Rep ; 14(1): 10622, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724691

ABSTRACT

Reduced hippocampal volume occurs in major depressive disorder (MDD), potentially due to elevated glucocorticoids from an overactivated hypothalamus-pituitary-adrenal (HPA) axis. To examine this in humans, hippocampal volume and hypothalamus (HPA axis) metabolism was quantified in participants with MDD before and after antidepressant treatment. 65 participants (n = 24 males, n = 41 females) with MDD were treated in a double-blind, randomized clinical trial of escitalopram. Participants received simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) before and after treatment. Linear mixed models examined the relationship between hippocampus/dentate gyrus volume and hypothalamus metabolism. Chi-squared tests and multivariable logistic regression examined the association between hippocampus/dentate gyrus volume change direction and hypothalamus activity change direction with treatment. Multiple linear regression compared these changes between remitter and non-remitter groups. Covariates included age, sex, and treatment type. No significant linear association was found between hippocampus/dentate gyrus volume and hypothalamus metabolism. 62% (38 of 61) of participants experienced a decrease in hypothalamus metabolism, 43% (27 of 63) of participants demonstrated an increase in hippocampus size (51% [32 of 63] for the dentate gyrus) following treatment. No significant association was found between change in hypothalamus activity and change in hippocampus/dentate gyrus volume, and this association did not vary by sex, medication, or remission status. As this multimodal study, in a cohort of participants on standardized treatment, did not find an association between hypothalamus metabolism and hippocampal volume, it supports a more complex pathway between hippocampus neurogenesis and hypothalamus metabolism changes in response to treatment.


Subject(s)
Depressive Disorder, Major , Hippocampus , Hypothalamus , Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/pathology , Male , Female , Hypothalamus/metabolism , Hypothalamus/diagnostic imaging , Adult , Hippocampus/metabolism , Hippocampus/diagnostic imaging , Hippocampus/pathology , Middle Aged , Double-Blind Method , Positron-Emission Tomography/methods , Dentate Gyrus/metabolism , Dentate Gyrus/diagnostic imaging , Dentate Gyrus/pathology , Citalopram/therapeutic use , Hypothalamo-Hypophyseal System/metabolism , Organ Size
SELECTION OF CITATIONS
SEARCH DETAIL