Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.401
Filter
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 712-719, 2024 Apr 20.
Article in Chinese | MEDLINE | ID: mdl-38708505

ABSTRACT

OBJECTIVE: To explore the mechanism underlying the protective effect of α2-macroglobulin (A2M) against glucocorticoid-induced femoral head necrosis. METHODS: In a human umbilical vein endothelial cell (HUVEC) model with injuries induced by gradient concentrations of dexamethasone (DEX; 10-8-10-5 mol/L), the protective effects of A2M at 0.05 and 0.1 mg/mL were assessed by examining the changes in cell viability, migration, and capacity of angiogenesis using CCK-8 assay, Transwell and scratch healing assays and angiogenesis assay. The expressions of CD31 and VEGF-A proteins in the treated cells were detected using Western blotting. In BALB/c mouse models of avascular necrosis of the femoral head induced by intramuscular injections of methylprednisolone, the effects of intervention with A2M on femoral trabecular structure, histopathological characteristics, and CD31 expression were examined with Micro-CT, HE staining and immunohistochemical staining. RESULTS: In cultured HUVECs, DEX treatment significantly reduced cell viability, migration and angiogenic ability in a concentration- and time-dependent manner (P<0.05), and these changes were obviously reversed by treatment with A2M in positive correlation with A2M concentration (P<0.05). DEX significantly reduced the expression of CD31 and VEGF-A proteins in HUVECs, while treatment with A2M restored CD31 and VEGF-A expressions in the cells (P<0.05). The mouse models of femoral head necrosis showed obvious trabecular damages in the femoral head, where a large number of empty lacunae and hypertrophic fat cells could be seen and CD31 expression was significantly decreased (P<0.05). A2M treatment of the mouse models significantly improved trabecular damages, maintained normal bone tissue structures, and increased CD31 expression in the femoral head (P<0.05). CONCLUSION: A2M promotes proliferation, migration, and angiogenesis of DEX-treated HUVECs and alleviates methylprednisolone-induced femoral head necrosis by improving microcirculation damages and maintaining microcirculation stability in the femoral head.


Subject(s)
Cell Movement , Cell Proliferation , Dexamethasone , Femur Head Necrosis , Glucocorticoids , Human Umbilical Vein Endothelial Cells , Mice, Inbred BALB C , Animals , Mice , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Glucocorticoids/adverse effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Dexamethasone/adverse effects , Dexamethasone/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Cell Survival/drug effects , Femur Head/pathology , Femur Head/blood supply , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Angiogenesis
2.
Crit Care ; 28(1): 185, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38807178

ABSTRACT

BACKGROUND: Streptococcus pneumoniae is the most common bacterial cause of community acquired pneumonia and the acute respiratory distress syndrome (ARDS). Some clinical trials have demonstrated a beneficial effect of corticosteroid therapy in community acquired pneumonia, COVID-19, and ARDS, but the mechanisms of this benefit remain unclear. The primary objective of this study was to investigate the effects of corticosteroids on the pulmonary biology of pneumococcal pneumonia in a mouse model. A secondary objective was to identify shared transcriptomic features of pneumococcal pneumonia and steroid treatment in the mouse model and clinical samples. METHODS: We carried out comprehensive physiologic, biochemical, and histological analyses in mice to identify the mechanisms of lung injury in Streptococcus pneumoniae with and without adjunctive steroid therapy. We also studied lower respiratory tract gene expression from a cohort of 15 mechanically ventilated patients (10 with Streptococcus pneumoniae and 5 controls) to compare with the transcriptional studies in the mice. RESULTS: In mice with pneumonia, dexamethasone in combination with ceftriaxone reduced (1) pulmonary edema formation, (2) alveolar protein permeability, (3) proinflammatory cytokine release, (4) histopathologic lung injury score, and (5) hypoxemia but did not increase bacterial burden. Transcriptomic analyses identified effects of steroid therapy in mice that were also observed in the clinical samples. CONCLUSIONS: In combination with appropriate antibiotic therapy in mice, treatment of pneumococcal pneumonia with steroid therapy reduced hypoxemia, pulmonary edema, lung permeability, and histologic criteria of lung injury, and also altered inflammatory responses at the protein and gene expression level. The transcriptional studies in patients suggest that the mouse model replicates some of the features of pneumonia in patients with Streptococcus pneumoniae and steroid treatment. Overall, these studies provide evidence for the mechanisms that may explain the beneficial effects of glucocorticoid therapy in patients with community acquired pneumonia from Streptococcus Pneumoniae.


Subject(s)
Adrenal Cortex Hormones , Disease Models, Animal , Pneumonia, Pneumococcal , Animals , Pneumonia, Pneumococcal/drug therapy , Mice , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/pharmacology , Humans , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Female , Male , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity
3.
J Biomed Mater Res B Appl Biomater ; 112(6): e35411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38773758

ABSTRACT

The ultimate goal of tissue engineering is to repair and regenerate damaged tissue or organ. Achieving this goal requires blood vessel networks to supply oxygen and nutrients to new forming tissues. Macrophages are part of the immune system whose behavior plays a significant role in angiogenesis and blood vessel formation. On the other hand, macrophages are versatile cells that change their behavior in response to environmental stimuli. Given that implantation of a biomaterial is followed by inflammation; therefore, we reasoned that this inflammatory condition in tissue spaces modulates the final phenotype of macrophages. Also, we hypothesized that anti-inflammatory glucocorticoid dexamethasone improves modulating macrophages behavior. To check these concepts, we investigated the macrophages that had matured in an inflammatory media. Furthermore, we examined macrophages' behavior after maturation on a dexamethasone-containing scaffold and analyzed how the behavioral change of maturing macrophages stimulates other macrophages in the same environment. In this study, the expression of pro-inflammatory markers TNFa and NFκB1 along with pro-healing markers IL-10 and CD163 were investigated to study the behavior of macrophages. Our results showed that macrophages that were matured in the inflammatory media in vitro increase expression of IL-10, which in turn decreased the expression of pro-inflammatory markers TNFa and NFκB in maturing macrophages. Also, macrophages that were matured on dexamethasone-containing scaffolds decreased the expression of IL-10, TNFa, and NFκB and increase the expression of CD163 compared to the control group. Moreover, the modulation of anti-inflammatory response in maturing macrophages on dexamethasone-containing scaffold resulted in increased expression of TNFa and CD163 by other macrophages in the same media. The results obtained in this study, proposing strategies to improve healing through controlling the behavior of maturing macrophages and present a promising perspective for inflammation control using tissue engineering scaffolds.


Subject(s)
Dexamethasone , Interleukin-10 , Macrophages , Polyesters , Tissue Scaffolds , Dexamethasone/pharmacology , Interleukin-10/metabolism , Macrophages/metabolism , Macrophages/drug effects , Tissue Scaffolds/chemistry , Polyesters/chemistry , Polyesters/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans , Animals , Inflammation/metabolism , Mice
4.
J Nanobiotechnology ; 22(1): 276, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778385

ABSTRACT

With the increasing trend of global aging, sarcopenia has become a significant public health issue. Goji berry, also known as "Gou qi zi" in China, is a traditional Chinese herb that can enhance the structure and function of muscles and bones. Otherwise, previous excellent publications illustrated that plant-derived exosome-like nanoparticles can exert good bioactive functions in different aging or disease models. Thus, we issued the hypothesis that Gouqi-derived nanovesicles (GqDNVs) may also have the ability to improve skeletal muscle health, though the effect and its mechanism need to be explored. Hence, we have extracted GqDNVs from fresh berries of Lycium barbarum L. (goji) and found that the contents of GqDNVs are rich in saccharides and lipids. Based on the pathway annotations and predictions in non-targeted metabolome analysis, GqDNVs are tightly associated with the pathways in metabolism. In muscle atrophy model mice, intramuscular injection of GqDNVs improves the cross-sectional area of the quadriceps muscle, grip strength and the AMPK/SIRT1/PGC1α pathway expression. After separately inhibiting AMPK or PGC1α in C2C12 cells with dexamethasone administration, we have found that the activated AMPK plays the chief role in improving cell proliferation induced by GqDNVs. Furthermore, the energy-targeted metabolome analysis in the quadriceps muscle demonstrates that the GqDNVs up-regulate the metabolism of amino sugar and nucleotide sugar, autophagy and oxidative phosphorylation process, which indicates the activation of muscle regeneration. Besides, the Spearman rank analysis shows close associations between the quality and function of skeletal muscle, metabolites and expression levels of AMPK and SIRT1. In this study, we provide a new founding that GqDNVs can improve the quality and function of skeletal muscle accompanying the activated AMPK/SIRT1/PGC1α signaling pathway. Therefore, GqDNVs have the effect of anti-aging skeletal muscle as a potential adjuvant or complementary method or idea in future therapy and research.


Subject(s)
AMP-Activated Protein Kinases , Dexamethasone , Muscular Atrophy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mice , Signal Transduction/drug effects , Dexamethasone/pharmacology , AMP-Activated Protein Kinases/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/chemically induced , Cell Line , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Mice, Inbred C57BL , Nanoparticles/chemistry , Exosomes/metabolism , Exosomes/drug effects
5.
Bull Exp Biol Med ; 176(5): 617-619, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38730108

ABSTRACT

We studied the effect of the HSP27 inhibitor, 5-(5-ethyl-2-hydroxy-4-methoxyphenyl)-4-(4-methoxyphenyl)-isoxazole, at a final concentration of 0.1 µM and/or the apoptosis inducer dexamethasone at a final concentration of 10 µM on the content of hydroxyl radical, reduced and oxidized glutathione, HSP27, activity of glutathione reductase, glutathione peroxidase, caspase-3, and the number of Annexin+ Jurkat tumor cells. The involvement of HSP27 in apoptosis of Jurkat tumor cells was demonstrated. Simultaneous exposure to the HSP27 inhibitor and dexamethasone resulted in an increase in the level of HSP27 against the background of developing oxidative stress (increase in the concentration of hydroxyl radicals and changes in the state of the glutathione system).


Subject(s)
Apoptosis , Caspase 3 , Dexamethasone , Glutathione , HSP27 Heat-Shock Proteins , Oxidative Stress , Humans , Dexamethasone/pharmacology , Jurkat Cells , Apoptosis/drug effects , HSP27 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/genetics , Glutathione/metabolism , Caspase 3/metabolism , Caspase 3/genetics , Oxidative Stress/drug effects , Glutathione Reductase/metabolism , Glutathione Peroxidase/metabolism , Hydroxyl Radical/metabolism
6.
Iran J Med Sci ; 49(5): 322-331, 2024 May.
Article in English | MEDLINE | ID: mdl-38751871

ABSTRACT

Background: Cytokine release syndrome (CRS) is the leading cause of mortality in advanced stages of coronavirus patients. This study examined the prophylactic effects of fraxin, quercetin, and a combination of fraxin+quercetin (FQ) on lipopolysaccharide-induced mice. Methods: Sixty mice were divided into six groups (n=10) as follows: control, LPS only, fraxin (120 mg/Kg), quercetin (100 mg/Kg), dexamethasone (5 mg/Kg), and FQ. All treatments were administered intraperitoneally (IP) one hour before induction by LPS (5 mg/Kg) IP injection. Twenty-four hours later, the mice were euthanized. Interleukin one beta (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were quantified using an enzyme-linked immunosorbent assay (ELISA), and lung and kidney tissues were examined for histopathological alterations. This study was conducted at Al-Nahrain University, Baghdad, Iraq, in 2022. Results: FQ reduced IL-1ß (P<0.001). All treatments significantly suppressed IL-6, fraxin, quercetin, dexamethasone, and FQ, all with P<0.001. The TNF-α level was reduced more with dexamethasone (P<0.001) and quercetin (P<0.001). Histopathological scores were significantly reduced mainly by quercetin and FQ in the lungs with scores of 12.30±0.20 (P=0.093), and 15.70±0.20 (P=0.531), respectively. The scores were 13±0.26 (P=0.074) and 15±0.26 (P=0.222) for quercetin and FQ in the kidneys, respectively. Conclusion: All used treatments reduced proinflammatory cytokine levels and protected against LPS-induced tissue damage.


Subject(s)
Cytokine Release Syndrome , Lipopolysaccharides , Quercetin , Animals , Quercetin/pharmacology , Quercetin/therapeutic use , Mice , Cytokine Release Syndrome/drug therapy , Lipopolysaccharides/pharmacology , COVID-19 Drug Treatment , Male , COVID-19 , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Interleukin-6/blood , Interleukin-6/analysis , Cytokines/drug effects , Interleukin-1beta , Tumor Necrosis Factor-alpha , Disease Models, Animal , Lung/drug effects , Lung/pathology , Coumarins
7.
J Orthop Surg Res ; 19(1): 294, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745231

ABSTRACT

BACKGROUND: Osteonecrosis of the femoral head caused by glucocorticoids (GIONFH) is a significant issue resulting from prolonged or excessive clinical glucocorticoid use. Astaxanthin, an orange-red carotenoid present in marine organisms, has been the focus of this study to explore its impact and mechanism on osteoblast apoptosis induced by dexamethasone (Dex) and GIONFH. METHODS: In this experiment, bioinformatic prediction, molecular docking and dynamics simulation, cytotoxicity assay, osteogenic differentiation, qRT-PCR analysis, terminal uridine nickend labeling (TUNEL) assay, determination of intracellular ROS, mitochondrial function assay, immunofluorescence, GIONFH rat model construction, micro-computed tomography (micro-CT) scans were performed. RESULTS: Our research demonstrated that a low dose of astaxanthin was non-toxic to healthy osteoblasts and restored the osteogenic function of Dex-treated osteoblasts by reducing oxidative stress, mitochondrial dysfunction, and apoptosis. Furthermore, astaxanthin rescued the dysfunction in poor bone quality, bone metabolism and angiogenesis of GIONFH rats. The mechanism behind this involves astaxanthin counteracting Dex-induced osteogenic damage by activating the Nrf2 pathway. CONCLUSION: Astaxanthin shields osteoblasts from glucocorticoid-induced oxidative stress and mitochondrial dysfunction via Nrf2 pathway activation, making it a potential therapeutic agent for GIONFH treatment.


Subject(s)
Femur Head Necrosis , Glucocorticoids , Mitochondria , NF-E2-Related Factor 2 , Osteoblasts , Osteogenesis , Oxidative Stress , Xanthophylls , Animals , Xanthophylls/pharmacology , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/toxicity , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Osteogenesis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Rats , Osteoblasts/drug effects , Osteoblasts/metabolism , Male , Dexamethasone/pharmacology , Dexamethasone/adverse effects , Rats, Sprague-Dawley , Apoptosis/drug effects , Disease Models, Animal
8.
Sci Rep ; 14(1): 10798, 2024 05 11.
Article in English | MEDLINE | ID: mdl-38734777

ABSTRACT

The nucleation of carbonate-containing apatite on the biomaterials surface is regarded as a significant stage in bone healing process. In this regard, composites contained hydroxyapatite (Ca10(PO4)6(OH)2, HA), wollastonite (CaSiO3, WS) and polyethersulfone (PES) were synthesized via a simple solvent casting technique. The in-vitro bioactivity of the prepared composite films with different weight ratios of HA and WS was studied by placing the samples in the simulated body fluid (SBF) for 21 days. The results indicated that the the surface of composites containing 2 wt% HA and 4 wt% WS was completely covered by a thick bone-like apatite layer, which was characterized by Grazing incidence X-ray diffraction, attenuated total reflectance-Fourier transform infrared spectrometer, field emission electron microscopy and energy dispersive X-ray analyzer (EDX). The degradation study of the samples showed that the concentration of inorganic particles could not influence the degradability of the polymeric matrix, where all samples expressed similar dexamethasone (DEX) release behavior. Moreover, the in-vitro cytotoxicity results indicated the significant cyto-compatibility of all specimens. Therefore, these findings revealed that the prepared composite films composed of PES, HA, WS and DEX could be regarded as promising bioactive candidates with low degradation rate for bone tissue engineering applications.


Subject(s)
Biocompatible Materials , Bone Substitutes , Durapatite , Nanocomposites , Silicates , Durapatite/chemistry , Nanocomposites/chemistry , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Silicates/chemistry , Biocompatible Materials/chemistry , Calcium Compounds/chemistry , Drug Liberation , Dexamethasone/chemistry , Dexamethasone/pharmacology , Polymers/chemistry , Humans , X-Ray Diffraction , Materials Testing , Spectroscopy, Fourier Transform Infrared , Animals
9.
ACS Nano ; 18(20): 13249-13265, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720584

ABSTRACT

The therapeutic application of mesenchymal stem cells (MSCs) has good potential as a treatment strategy for systemic lupus erythematosus (SLE), but traditional MSC therapy still has limitations in effectively modulating immune cells. Herein, we present a promising strategy based on dexamethasone liposome-integrated MSCs (Dexlip-MSCs) for treating SLE via multiple immunomodulatory pathways. This therapeutic strategy prolonged the circulation time of dexamethasone liposomes in vivo, restrained CD4+T-cell proliferation, and inhibited the release of proinflammatory mediators (IFN-γ and TNF-α) by CD4+T cells. In addition, Dexlip-MSCs initiated cellular reprogramming by activating the glucocorticoid receptor (GR) signaling pathway to upregulate the expression of anti-inflammatory factors such as cysteine-rich secretory protein LCCL-containing domain 2 (CRISPLD2) and downregulate the expression of proinflammatory factors. In addition, Dexlip-MSCs synergistically increased the anti-inflammatory inhibitory effect of CD4+T cells through the release of dexamethasone liposomes or Dex-integrated MSC-derived exosomes (Dex-MSC-EXOs). Based on these synergistic biological effects, we demonstrated that Dexlip-MSCs alleviated disease progression in MRL/lpr mice more effectively than Dexlip or MSCs alone. These features indicate that our stem cell delivery strategy is a promising therapeutic approach for clinical SLE treatment.


Subject(s)
Dexamethasone , Lupus Erythematosus, Systemic , Mesenchymal Stem Cells , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Dexamethasone/pharmacology , Dexamethasone/chemistry , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/immunology , Mice , Liposomes/chemistry , Mesenchymal Stem Cell Transplantation , Cell Proliferation/drug effects , Female , Mice, Inbred MRL lpr , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
10.
J Colloid Interface Sci ; 669: 835-843, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749222

ABSTRACT

Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.


Subject(s)
Dexamethasone , Psoriasis , Wearable Electronic Devices , Animals , Mice , Psoriasis/drug therapy , Psoriasis/pathology , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Delayed-Action Preparations/chemistry , Tannins/chemistry , Tannins/pharmacology , Drug Liberation , Hydrogels/chemistry , Drug Delivery Systems , Transdermal Patch , Polyamines
11.
J Appl Oral Sci ; 32: e20240017, 2024.
Article in English | MEDLINE | ID: mdl-38775598

ABSTRACT

OBJECTIVE: To compare the effect of submucosal cryotherapy using cold saline to dexamethasone sodium phosphate and diclofenac sodium injections on substance P and interleukin 6 release in experimentally induced pulpal inflammation in rabbits' molar teeth. METHODOLOGY: Fifteen rabbits were randomly classified into 3 groups according to the submucosal injection given: cold saline, dexamethasone sodium phosphate, and diclofenac sodium. A split-mouth design was adopted, the right mandibular molars were experimental, and the left molars served as the control without injections. Intentional pulp exposures were created and left for 6 hours to induce pulpitis. Pulpal tissue was extracted and examined for SP and IL-6 levels using ELISA. Within each group, the level of cytokines released was measured for both control and experimental groups for intragroup comparison to determine the effect of injection. The percentage reduction of each mediator was calculated compared with the control side for intergroup comparison then the correlation between SP and IL-6 levels was analyzed using Spearman's rank order correlation coefficient. Statistical analysis was performed, and the significance level was set at p<0.05. RESULTS: Submucosal cryotherapy, dexamethasone sodium phosphate, and diclofenac sodium significantly reduced SP and IL-6 pulpal release. Submucosal cryotherapy significantly reduced SP more than and IL-6 more than dexamethasone sodium phosphate and diclofenac sodium. Pulpal reduction of SP and IL-6 showed a strong positive significant correlation. CONCLUSIONS: Submucosal cryotherapy reduces the pulpal release of SP and IL-6 and could be tested as an alternative to premedication to potentiate the effect of anesthesia and control postoperative endodontic pain.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Cryotherapy , Dental Pulp , Dexamethasone , Diclofenac , Enzyme-Linked Immunosorbent Assay , Interleukin-6 , Pulpitis , Random Allocation , Substance P , Animals , Rabbits , Pulpitis/therapy , Diclofenac/pharmacology , Dexamethasone/pharmacology , Dexamethasone/analogs & derivatives , Interleukin-6/analysis , Cryotherapy/methods , Substance P/analysis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Dental Pulp/drug effects , Time Factors , Reproducibility of Results , Treatment Outcome , Male , Statistics, Nonparametric , Disease Models, Animal , Anti-Inflammatory Agents/pharmacology , Saline Solution , Reference Values
12.
Sci Total Environ ; 933: 173007, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740206

ABSTRACT

Dexamethasone (DEX) is a hormone drug that is often detected in wastewater treatment plants, but its impact on activated sludge systems is unknown. This study explored the long-term effects of DEX on nutrient removal, microbial activities, microbial assembly, and microbial interactions in the activated sludge system. During the 90-day DEX exposure experiment, both chemical oxygen demand and total nitrogen removal efficiencies were initially inhibited and then recovered. Microbial activities, i.e., specific oxygen uptake rate and denitrification, did not differ significantly from that of the control reactor (p > 0.05), possibly due to the secretion of extracellular polymers that act as a protective barrier against excess reactive oxygen species induced by DEX. This barrier protects cell membrane integrity and ensures stable treatment performance. Analysis of microbial assembly identified the drift of stochastic processes (from 92.7 % to 51.8 %) and homogeneous selection of deterministic processes (from 1.6 % to 38.7 %) as the main driving forces of microbial community structure succession under long-term DEX stress. Although long-term exposure to 1000 µg/L DEX did not significantly increase the abundance levels of functional bacteria (Nitrosomonas and 996-1) and key genes (AmoCAB and Hao), the ammonia oxidation capacity of the activated sludge system was enhanced. Analysis of microbial interactions indicated that streamlining of functional subnetworks and increased cooperation were the primary reasons. This is the first study to explore the long-term effects of DEX on activated sludge and provide insights into microbial interaction and assembly. Moreover, the findings of this study broaden our knowledge and lay an experimental foundation for reducing risks associated with hormone drugs.


Subject(s)
Dexamethasone , Sewage , Waste Disposal, Fluid , Sewage/microbiology , Dexamethasone/pharmacology , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Water Pollutants, Chemical , Wastewater
13.
Aging (Albany NY) ; 16(9): 7928-7945, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38696318

ABSTRACT

Recently, there has been growing interest in using cell therapy through core decompression (CD) to treat osteonecrosis of the femoral head (ONFH). Our study aimed to investigate the effectiveness and mechanism of human umbilical cord mesenchymal stem cells (hUCMSCs) in treating steroid-induced ONFH. We constructed a steroid-induced ONFH rabbit model as well as dexamethasone (Dex)-treated bone microvascular endothelial cells (BMECs) model of human femoral head. We injected hUCMSCs into the rabbit femoral head via CD. The effects of hUCMSCs on steroid-induced ONFH rabbit model and Dex-treated BMECs were evaluated via micro-CT, microangiography, histology, immunohistochemistry, wound healing, tube formation, and western blotting assay. Furthermore, we conducted single-cell RNA sequencing (scRNA-seq) to examine the characteristics of endothelial cells, the activation of signaling pathways, and inter-cellular communication in ONFH. Our data reveal that hUCMSCs improved the femoral head microstructure and bone repair and promoted angiogenesis in the steroid-induced ONFH rabbit model. Importantly, hUCMSCs improved the migration ability and angioplasty of Dex-treated BMECs by secreting COL6A2 to activate FAK/PI3K/AKT signaling pathway via integrin α1ß1.


Subject(s)
Dexamethasone , Endothelial Cells , Femur Head Necrosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Rabbits , Femur Head Necrosis/chemically induced , Femur Head Necrosis/therapy , Femur Head Necrosis/pathology , Humans , Mesenchymal Stem Cells/metabolism , Endothelial Cells/metabolism , Mesenchymal Stem Cell Transplantation/methods , Dexamethasone/pharmacology , Umbilical Cord/cytology , Femur Head/pathology , Disease Models, Animal , Neovascularization, Physiologic , Signal Transduction
14.
Nanomedicine ; 55: 102716, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38738529

ABSTRACT

Rheumatoid arthritis is a chronic inflammatory autoimmune disease caused by alteration of the immune system. Current therapies have several limitations and the use of nanomedicines represents a promising strategy to overcome them. By employing a mouse model of adjuvant induced arthritis, we aimed to evaluate the biodistribution and therapeutic effects of glucocorticoid dexamethasone conjugated to a nanocarrier based on biocompatible N-(2-hydroxypropyl) methacrylamide copolymers. We observed an increased accumulation of dexamethasone polymer nanomedicines in the arthritic mouse paw using non-invasive fluorescent in vivo imaging and confirmed it by the analysis of tissue homogenates. The dexamethasone conjugate exhibited a dose-dependent healing effect on arthritis and an improved therapeutic outcome compared to free dexamethasone. Particularly, significant reduction of accumulation of RA mediator RANKL was observed. Overall, our data suggest that the conjugation of dexamethasone to a polymer nanocarrier by means of stimuli-sensitive spacer is suitable strategy for improving rheumatoid arthritis therapy.


Subject(s)
Arthritis, Rheumatoid , Dexamethasone , Polymers , Animals , Dexamethasone/chemistry , Dexamethasone/pharmacokinetics , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/pathology , Mice , Tissue Distribution , Polymers/chemistry , Polymers/pharmacokinetics , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Nanoparticles/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
15.
Sci Immunol ; 9(95): eabq1558, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701190

ABSTRACT

Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (TH17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1ß (IL-1ß) induced a signal transducer and activator of transcription 5 (STAT5)-mediated steroid-resistant transcriptional program in TH17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. TH17-specific deletion of STAT5 ablated the IL-1ß-induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1ß synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)-resident CD69+ TH17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident TH17 cells, reduced EAE severity, and prevented relapse. CD69+ tissue-resident TH17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1ß-STAT5 signaling in TH17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in TH17-mediated CNS autoimmunity.


Subject(s)
Dexamethasone , Encephalomyelitis, Autoimmune, Experimental , Interleukin-1beta , STAT5 Transcription Factor , Th17 Cells , Animals , Th17 Cells/immunology , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/immunology , Mice , Interleukin-1beta/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Mice, Inbred C57BL , Drug Resistance , Signal Transduction/immunology , Mice, Knockout , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/drug therapy , Female , Humans
16.
Nutrients ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794746

ABSTRACT

BACKGROUND: Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. OBJECTIVE: Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. METHODS: Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. RESULTS: Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. CONCLUSIONS: Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages.


Subject(s)
Lacticaseibacillus rhamnosus , Macrophages , Oxidative Stress , Pulmonary Disease, Chronic Obstructive , Receptors, G-Protein-Coupled , Animals , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Oxidative Stress/drug effects , Receptors, G-Protein-Coupled/metabolism , Mice , Humans , Macrophages/drug effects , Macrophages/metabolism , Male , Cytokines/metabolism , Inflammation Mediators/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Smoke/adverse effects , Dexamethasone/pharmacology , Butyrates/pharmacology , Lung/drug effects , Lung/metabolism
17.
Theriogenology ; 223: 22-28, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38657436

ABSTRACT

This study assessed the effects of dexamethasone treatment on farrowing performance and piglet traits in the first 5 days of life in multiparous sows, a high-risk group for stillbirths and prolonged farrowing. In this study, 185 multiparous sows (parity 4.25 ± 0.14) were selected on the day of farrowing and divided into three treatments: CON - control, without dexamethasone treatment; DexaPF - treatment with dexamethasone (20 mg im per female) at the time of copious colostrum secretion (pre-farrowing); and DexaFO - treatment with dexamethasone (20 mg im per female) when the first piglet was born (farrowing onset). All sows and their litters were monitored for farrowing duration, obstetric interventions, colostrum yield and intake, newborn piglet traits, and piglet performance until 5 d of age. A subsample of 106 females (∼35 per treatment) had their blood glucose concentration checked hourly shortly after the first piglet was born until the end of farrowing. Additionally, blood samples from 42 litters were collected for immunocrit evaluation. The results showed no differences regarding farrowing duration (CON = 258.02 ± 13.81 min; DexaPF = 251.29 ± 13.60 min; DexaFO = 294.92 ± 13.89 min; P = 0.06) and obstetric intervention rates among treatments (CON = 36.58 ± 6.78 %; DexaPF = 42.16 ± 6.89 %; DexaFO = 48.05 ± 7.08 %; P = 0.45). The blood glucose concentration during farrowing was higher in DexaPF (94.56 ± 1.57 mg/dL; P < 0.001) than in CON (73.50 ± 1.72 mg/dL) and DexaFO (87.94 ± 1.80 mg/dL). No differences were observed regarding total piglets born and born alive, stillborn, newborn piglet vitality, colostrum intake, immunocrit, colostrum yield, and glycemia and rectal temperature at 24 h of age (P ≥ 0.13). Regarding meconium staining, higher percentages of piglets born without meconium staining were observed in DexaFO (54.77 ± 5.21 %; P = 0.02) compared with CON (48.58 ± 5.26 %), and no difference was observed for the DexaPF group (53.23 ± 5.21 %). In addition, a higher unbroken umbilical cord rate was observed in DexaFO (92.41 ± 1.31 %; P < 0.01) than the CON or DexaPF (86.91 ± 1.97 % and 89.31 ± 1.67 %, respectively). However, the treatments did not affect piglet performance (weight gain and survival) until 5 d of age (P ≥ 0.15). In summary, dexamethasone treatment in periparturient multiparous sows did not improve farrowing performance and key production parameters, such as the piglet weight gain and survival up to 5 d of age.


Subject(s)
Animals, Newborn , Dexamethasone , Animals , Female , Dexamethasone/pharmacology , Dexamethasone/administration & dosage , Swine/physiology , Pregnancy , Parity , Parturition/drug effects , Peripartum Period , Colostrum/chemistry
18.
Front Biosci (Landmark Ed) ; 29(4): 163, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38682179

ABSTRACT

BACKGROUND: Glucocorticoids (GCs) are commonly used as the primary chemotherapy for lymphoid malignancies, including acute lymphoblastic leukemia (ALL). However, the development of GC resistance limits their prolonged use. METHODS: In this study, we investigated the potential of a newly synthesized indole derivative called LWX-473, in combination with the classic GC Dexamethasone (DEX), to enhance the responsiveness of Jurkat cells to GC treatment. RESULTS: Our findings demonstrate that LWX-473 alone or in combination with DEX significantly improves GC-induced cell apoptosis and arrests the cell cycle in the G1 phase. Notably, the combination of LWX-473 and DEX exhibits superior efficacy in killing Jurkat cells compared to LWX-473 alone. Importantly, this compound demonstrates reduced toxicity towards normal cells. CONCLUSIONS: Our study reveals that LWX-473 has the ability to restore the sensitivity of Jurkat cells to DEX by modulating the mitochondrial membrane potential, activating the expression of DEX-liganded glucocorticoid receptor (GR), and inhibiting key molecules in the JAK/STAT signaling pathway. These findings suggest that LWX-473 could be a potential therapeutic agent for overcoming GC resistance in lymphoid malignancies.


Subject(s)
Apoptosis , Dexamethasone , Drug Resistance, Neoplasm , Glucocorticoids , Indoles , Membrane Potential, Mitochondrial , Receptors, Glucocorticoid , Humans , Jurkat Cells , Apoptosis/drug effects , Dexamethasone/pharmacology , Drug Resistance, Neoplasm/drug effects , Glucocorticoids/pharmacology , Indoles/pharmacology , Receptors, Glucocorticoid/metabolism , Membrane Potential, Mitochondrial/drug effects , Signal Transduction/drug effects
19.
Nat Commun ; 15(1): 3563, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670969

ABSTRACT

Synthetic glucocorticoids (GC), such as dexamethasone, are extensively used to treat chronic inflammation and autoimmune disorders. However, long-term treatments are limited by various side effects, including muscle atrophy. GC activities are mediated by the glucocorticoid receptor (GR), that regulates target gene expression in various tissues in association with cell-specific co-regulators. Here we show that GR and the lysine-specific demethylase 1 (LSD1) interact in myofibers of male mice, and that LSD1 connects GR-bound enhancers with NRF1-associated promoters to stimulate target gene expression. In addition, we unravel that LSD1 demethylase activity is required for triggering starvation- and dexamethasone-induced skeletal muscle proteolysis in collaboration with GR. Importantly, inhibition of LSD1 circumvents muscle wasting induced by pharmacological levels of dexamethasone, without affecting their anti-inflammatory activities. Thus, our findings provide mechanistic insights into the muscle-specific GC activities, and highlight the therapeutic potential of targeting GR co-regulators to limit corticotherapy-induced side effects.


Subject(s)
Dexamethasone , Glucocorticoids , Histone Demethylases , Muscle, Skeletal , Muscular Atrophy , Receptors, Glucocorticoid , Animals , Male , Histone Demethylases/metabolism , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/genetics , Glucocorticoids/pharmacology , Dexamethasone/pharmacology , Receptors, Glucocorticoid/metabolism , Mice , Muscular Atrophy/chemically induced , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/drug therapy , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Mice, Inbred C57BL , Gene Expression Regulation/drug effects
20.
Anticancer Res ; 44(5): 1829-1835, 2024 May.
Article in English | MEDLINE | ID: mdl-38677733

ABSTRACT

BACKGROUND/AIM: Glioblastoma multiforme (GBM)-induced oedema is a major cause of morbidity and mortality among patients with GBM. Dexamethasone (Dex) is the most common corticosteroid used pre-operatively to control cerebral oedema in patients with GBM. Dex is associated with many side effects, and shorter overall survival and progression-free survival of patients with GBM. These negative effects of Dex highlight the need for combinational therapy. Riluzole (Ril), a drug used to treat amyotrophic lateral sclerosis (ALS), is thought to have potential as a treatment for various cancers, with clinical trials underway. Here, we investigated whether Ril could reverse some of the undesirable effects of Dex. MATERIALS AND METHODS: The effect of Dex, Ril, and Ril-Dex treatment on cell migration was monitored using the xCELLigence system. Cell viability assays were performed using 3-(4, 5-dimethylthiazol)-2, 5-diphenyltetrazolium bromide (MTT). The expression of genes involved in migration, glucose metabolism, and stemness was examined using real-time polymerase chain reaction (PCR). RESULTS: Pre-treating GBM cells with Ril reduced Dex-induced cell migration and altered Dex-induced effects on cell invasion, stem cell, and glucose metabolism markers. Furthermore, Ril remained effective in killing GBM cells in combination with Dex. CONCLUSION: Ril, which acts as an anti-tumorigenic drug, mediates some of the negative effects of Dex; therefore, it could be a potential drug to manage the side effects of Dex therapy in GBM.


Subject(s)
Cell Movement , Dexamethasone , Glioblastoma , Riluzole , Riluzole/pharmacology , Humans , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Dexamethasone/pharmacology , Cell Movement/drug effects , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL