Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 730
Filter
1.
Trop Anim Health Prod ; 56(8): 314, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356340

ABSTRACT

Bovine viral diarrhea virus (BVDV) causes ongoing economic losses to cattle industries, directly through reduced herd performance or indirectly through control program costs. ELISA assays, one of the most widely used techniques due to their ease of implementation, have been a valuable tool for mass surveillance and detection of BVDV. In this study, we developed a new indirect ELISA (rE2-ELISA) for serologic detection of BVDV. The assay considers three recombinant E2 protein subtypes as antigens, allowing serologic diagnosis of BVDV-1b (high prevalence worldwide), BVDV-1d and 1e (high prevalence in southern Chile) sub-genotypes. Recombinant E2 (rE2) proteins were successfully expressed in stably transfected CHO cells. Conditions for rE2 ELISAs were established after determining appropriate concentrations of antigen, blocking agent, secondary antibody, and serum dilutions to achieve maximum discrimination between positive and negative serum samples. The developed rE2-ELISA showed a sensitivity of 92.86% and a specificity of 98.33%. Clinical testing of 180 serum samples from herds in southern Chile showed high accuracy (kappa > 0.8) compared to the commercial BVDV Total Ab kit (IDEXX), with 95.37% positive and 87.5% negative predictive value. In addition, the rE2 ELISA has shown the capability to detect anti-BVDV antibodies from naturally infected animals with sub-genotypes 1b, 1e, or undetermined. These results indicate that the developed indirect ELISA could serve as a valid, and efficient alternative for identifying BVDV-infected animals, thus contributing to the success of disease control and eradication programs.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Enzyme-Linked Immunosorbent Assay , Sensitivity and Specificity , Animals , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Cattle , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Bovine Virus Diarrhea-Mucosal Disease/blood , Bovine Virus Diarrhea-Mucosal Disease/virology , Chile , Genotype , Diarrhea Virus 1, Bovine Viral/immunology , Diarrhea Virus 1, Bovine Viral/isolation & purification , Diarrhea Viruses, Bovine Viral/immunology , Diarrhea Viruses, Bovine Viral/isolation & purification , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Antigens, Viral/immunology , Cricetulus , CHO Cells , Antibodies, Viral/blood , Recombinant Proteins/immunology
2.
Anim Sci J ; 95(1): e13995, 2024.
Article in English | MEDLINE | ID: mdl-39363599

ABSTRACT

Bovine viral diarrhea virus (BVDV), is widely spread, poses a considerable risk of infection in the majority of dairy farms, causing respiratory, gastrointestinal, and reproductive problems. The aim of this study was to determine the seroprevalence and the risk variables associated with the seroprevalence of BVDV infection in cattle in four Egyptian governorates. A total of 680 blood samples were collected from cattle and examined for the presence of antibodies against BVDV using indirect ELISA (iELISA). Reproductive and management factors were considered, and epidemiological surveys were conducted. The total seroprevalence of BVDV in cattle was 18.24% (124/680) and it was significantly higher in females 19.66% (116/590), cattle older than 8 years 22.14% (62/280), dairy animals 22.65% (94/514), introduction of new animals to herd 21.39% (89/416), breeding with artificial insemination 28.46% (74/260), animals with history of abortion 28.76% (49/357), or during lactation stage 23% (89/387). The present findings suggest that BVD is prevalent in Egyptian dairy cattle and has an impact on farm productivity and production. Therefore, older, lactating, and aborted animals should also be identified for the disease, pose a risk of infection, and be handled appropriately.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Viruses, Bovine Viral , Animals , Cattle , Egypt/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/blood , Seroepidemiologic Studies , Risk Factors , Female , Diarrhea Viruses, Bovine Viral/immunology , Diarrhea Viruses, Bovine Viral/isolation & purification , Male , Age Factors , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/veterinary , Insemination, Artificial/veterinary , Lactation , Abortion, Veterinary/epidemiology , Abortion, Veterinary/virology , Abortion, Veterinary/etiology , Sex Factors , Dairying
3.
Viruses ; 16(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39205275

ABSTRACT

Since the start of the mandatory nationwide bovine viral diarrhea (BVD) eradication program in Germany in 2011, the number of persistently infected (PI) animals has decreased considerably, resulting in a continuous decrease in seroprevalence. The increasingly BVD-naive cattle population could facilitate spillover infections with non-BVDV ruminant pestiviruses. Here, we report two cases in which novel pestiviruses were isolated from cattle; in both cases, the whole genome sequence showed the highest level of identity to strain "Pestivirus reindeer-1". Both novel viruses gave positive results in BVDV diagnostic test systems, confirming that cross-reactivity is an important issue in pestivirus diagnostics. In the first case, the pestivirus was probably transmitted from sheep kept with the affected cattle, suggesting that the co-housing of small ruminants and cattle is a risk factor. The source of infection could not be determined in the second case. The occurrence of these two cases in independent cattle holdings within a relatively short time frame suggests that it would be useful to determine the presence of pestiviruses in small ruminants or even wild ruminants to better assess risk factors, especially for BVDV-free populations.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Viruses, Bovine Viral , Pestivirus , Animals , Cattle , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Bovine Virus Diarrhea-Mucosal Disease/virology , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Pestivirus/genetics , Pestivirus/isolation & purification , Pestivirus/classification , Germany/epidemiology , Phylogeny , Seroepidemiologic Studies , Antibodies, Viral/blood , Pestivirus Infections/veterinary , Pestivirus Infections/virology , Pestivirus Infections/diagnosis , Genome, Viral , Sheep , Cross Reactions
4.
Sci Rep ; 14(1): 10169, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702375

ABSTRACT

Bovine viral diarrhea virus (BVDV) is considered to be the most common agent of severe diarrhea in cattle worldwide, causing fever, diarrhea, ulcers, and abortion. Bovine herpesvirus 1 (BoHV-1) is also a major bovine respiratory disease agent that spreads worldwide and causes extensive damage to the livestock industry. Recombinase polymerase amplification (RPA) is a novel nucleic acid amplification method with the advantages of high efficiency, rapidity and sensitivity, which has been widely used in the diagnosis of infectious diseases. A dual RPA assay was developed for the simultaneous detection of BVDV and BoHV-1. The assay was completed at a constant temperature of 37 °C for 30 min. It was highly sensitive and had no cross-reactivity with other common bovine viruses. The detection rate of BVDV RPA in clinical samples (36.67%) was higher than that of PCR (33.33%), the detection rate of BoHV-1 RPA and PCR were equal. Therefore, the established dual RPA assay for BVDV and BoHV-1 could be a potential candidate for use as an immediate diagnostic.


Subject(s)
Diarrhea Viruses, Bovine Viral , Herpesvirus 1, Bovine , Nucleic Acid Amplification Techniques , Recombinases , Animals , Cattle , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Bovine/isolation & purification , Nucleic Acid Amplification Techniques/methods , Recombinases/metabolism , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Sensitivity and Specificity , Bovine Virus Diarrhea-Mucosal Disease/virology , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/diagnosis , DNA, Viral/genetics
5.
Acta Trop ; 254: 107198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531427

ABSTRACT

Bovine viral diarrhea virus (BVDV) infection has a significant economic impact on beef and dairy industries worldwide. Fetal infection with a non-cytopathic strain may lead to the birth of persistently infected (PI) offspring, which is the main event in the epidemiological chain of BVDV infection. This report describes the birth of 99 BVDV-PI heifer calves within 52 days of birth in a regular BVDV-vaccinated Brazilian dairy cattle herd and the subgenotypes of the infecting field strains. This study was conducted in a high-yielding open dairy cattle herd that frequently acquired heifers from neighboring areas for replacement. The farm monitors the birth of PI calves by screening all calves born using an ELISA (IDEXX) for BVDV antigen detection. All calves aged 1-7 days were evaluated. For positive and suspected results, the ELISA was repeated when the calves were close to one month old. A total of 294 heifer calves were evaluated between February and March 2021. Of these, 99 (33.7 %) had positive ELISA results and were considered PI calves. To evaluate the predominant BVDV species and subgenotypes in this outbreak, whole blood samples were collected from 31 calves born during the study period. All samples were submitted to the RT-PCR assay for the partial amplification of the BVDV 5'-UTR region, and these amplicons were subjected to nucleotide sequencing. Phylogenetic analysis identified BVDV-1b and BVDV-1d in 16 and 13 heifer calves, respectively. In two calves, it was not possible to determine the BVDV-1 subgenotype. Detection of PI animals and monitoring of circulating BVDV subgenotype strains are central to disease control. This study shows that regular BVDV vaccination alone may be insufficient to prevent BVDV infection in high-yielding open dairy cattle herds. Other biosecurity measures must be adopted to avoid the purchase of cattle with acute infections by BVDV or BVDV-PI, which can cause a break in the health profile of the herd and economic losses.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Disease Outbreaks , Phylogeny , Animals , Cattle , Bovine Virus Diarrhea-Mucosal Disease/virology , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/prevention & control , Disease Outbreaks/veterinary , Female , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Virus 1, Bovine Viral/classification , Diarrhea Virus 1, Bovine Viral/isolation & purification , Diarrhea Virus 1, Bovine Viral/immunology , Brazil/epidemiology , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/classification , Diarrhea Viruses, Bovine Viral/isolation & purification , Diarrhea Viruses, Bovine Viral/immunology , Genotype , Viral Vaccines/immunology , Enzyme-Linked Immunosorbent Assay , Dairying , Vaccination/veterinary , Antibodies, Viral/blood
6.
Viruses ; 14(2)2022 02 02.
Article in English | MEDLINE | ID: mdl-35215904

ABSTRACT

The aim of the report was to present the circulation of BVDV (bovine viral diarrhea virus) in the cattle population and determine the cause of the failure of vaccination failure leading to the birth of the PI (persistently infected) calf. The case study was carried out at the BVDV-free animal breeding center and cattle farm, where the vaccination program against BVDV was implemented in 2012, and each newly introduced animal was serologically and virologically tested for BVDV. In this case, a blood sample was taken from a 9-month-old breeding bull. Positive RT-PCR and negative ELISA serology results were obtained. The tests were repeated at 2-week intervals, and the results confirmed the presence of the virus and the absence of specific antibodies, i.e., persistent infection. Additionally, sequencing and phylogenetic analysis were performed, and the BVDV-1d subgenotype was detected. The results of this study showed that pregnant heifers and cows that are vaccinated multiple times with the killed vaccine containing BVDV-1a may not be fully protected against infection with other subgenotypes of BVDV, including their fetuses, which can become PI calves.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/prevention & control , Diarrhea Viruses, Bovine Viral/immunology , Fetal Diseases/prevention & control , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Bovine Virus Diarrhea-Mucosal Disease/blood , Bovine Virus Diarrhea-Mucosal Disease/embryology , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Diarrhea Viruses, Bovine Viral/classification , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Female , Fetal Diseases/virology , Male , Persistent Infection/blood , Persistent Infection/virology , Phylogeny , Pregnancy , Vaccination , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology , Viral Vaccines/genetics
7.
PLoS One ; 17(2): e0247213, 2022.
Article in English | MEDLINE | ID: mdl-35143504

ABSTRACT

A cross-sectional prospective cohort study including 1026 heifers administered tulathromycin due to high risk of clinical signs of bovine respiratory disease (BRD), measured poor association between BRD clinical outcomes and results of bacterial culture and tulathromycin susceptibility from BRD isolates of deep nasopharyngeal swabs (DNS) and adequate association with viral polymerase chain reaction (PCR) results from nasal swabs. Isolation rates from DNS collected on day-0 and at 1st BRD-treatment respectively were: Mannheimia haemolytica (10.9% & 34.1%); Pasteurella multocida (10.4% & 7.4%); Mycoplasma bovis (1.0% & 36.6%); and Histophilus somni (0.7% & 6.3%). Prevalence of BRD viral nucleic acid on nasal swabs collected exclusively at 1st BRD-treatment were: bovine parainfluenza virus type-3 (bPIV-3) 34.1%; bovine viral diarrhea virus (BVDV) 26.3%; bovine herpes virus type-1 (BHV-1) 10.8%; and bovine respiratory syncytial virus (BRSV) 54.1%. Increased relative risk, at 95% confidence intervals, of 1st BRD-treatment failure was associated with positive viral PCR results: BVDV 1.39 (1.17-1.66), bPIV-3 1.26 (1.06-1.51), BHV-1 1.52 (1.25-1.83), and BRSV 1.35 (1.11-1.63) from nasal swabs collected at 1st BRD-treatment and culture of M. haemolytica 1.23 (1.00-1.51) from DNS collected at day-0. However, in this population of high-risk feeder heifers, the predictive values of susceptible and resistant isolates had inadequate association with BRD clinical outcome. These results indicate, that using tulathromycin susceptibility testing of isolates of M. haemolytica or P. multocida from DNS collected on arrival or at 1st BRD-treatment to evaluate tulathromycin clinical efficacy, is unreliable.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bovine Respiratory Disease Complex/pathology , Cattle Diseases/pathology , Disaccharides/pharmacology , Heterocyclic Compounds/pharmacology , Mannheimia haemolytica/drug effects , Pasteurella multocida/drug effects , Animals , Anti-Bacterial Agents/therapeutic use , Bovine Respiratory Disease Complex/drug therapy , Bovine Respiratory Disease Complex/microbiology , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/microbiology , Cross-Sectional Studies , DNA, Viral/genetics , DNA, Viral/metabolism , Diarrhea Viruses, Bovine Viral/drug effects , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Disaccharides/therapeutic use , Herpesvirus 1, Bovine/drug effects , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Bovine/isolation & purification , Heterocyclic Compounds/therapeutic use , Mannheimia haemolytica/isolation & purification , Microbial Sensitivity Tests , Nasopharynx/microbiology , Nasopharynx/virology , Pasteurella multocida/isolation & purification , Polymerase Chain Reaction , Prospective Studies , RNA, Viral/genetics , RNA, Viral/metabolism , Respiratory Syncytial Virus, Bovine/drug effects , Respiratory Syncytial Virus, Bovine/genetics , Respiratory Syncytial Virus, Bovine/isolation & purification , Risk Factors , Treatment Failure
8.
Biologicals ; 72: 33-41, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34092457

ABSTRACT

Porcine LFBKαVß6 cells have been successfully used for diagnostics and propagation of all FMDV serotypes/subtypes. Unfortunately, after initial characterization, these cells showed contamination with bovine viral diarrhea virus (BVDV), a non-cytopathic adventitious agent. Persistent infection with BVDV could interfere with diagnostic tests and, also prevent consideration for other uses, i.e., vaccine production. In this study, we developed a three-prong methodology to completely remove BVDV from LFBKαVß6 cells. Combined treatment with siRNA against BVDV NS5A, porcine interferon alpha and ribavirin resulted in the elimination of BVDV, as determined by immunohistochemistry analysis, quantitative RT-PCR and RNA sequencing. Importantly, elimination of BVDV from LFBKαVß6 did not affect FMDV growth and plaque phenotype from different serotypes isolated and propagated in the clean cell line, newly named MGPK αVß6-C5. Additionally, isolation of FMDV from field oro-pharyngeal samples, was successful at the same sensitivity as in BVDV-contaminated LFBKαVß6 cells. Our results identified a direct method to efficiently eliminate BVDV from porcine cells without altering FMDV permissiveness, diagnostic value, or potential for use in vaccine production. Furthermore, these cells may provide an improved platform for diagnostics and propagation of other viruses of interest in the veterinary field and the virology community at large.


Subject(s)
Cell Line/virology , Diarrhea Viruses, Bovine Viral , Foot-and-Mouth Disease Virus , Animals , Diarrhea Viruses, Bovine Viral/isolation & purification , Swine , Vaccines , Virus Cultivation
9.
J Vet Diagn Invest ; 33(3): 528-537, 2021 May.
Article in English | MEDLINE | ID: mdl-33666123

ABSTRACT

Bovine viral diarrhea virus (BVDV) causes significant economic loss in cattle. Detection of persistently infected (PI) animals is an important control measure, but persistence of maternal antibodies may result in false-negative test results. We assessed the sensitivity and specificity of 2 antigen ELISAs (Idexx BVDV Ag/Serum Plus and BVDV PI X2) and a reverse-transcription real-time PCR (RT-rtPCR; Idexx RealPCR BVDV) assay for detecting PI calves. Ear notch samples were collected from 1,030 calves ~3, 10, 24, and 38 d old (days 3, 10, 24, and 38). All day 38 samples were tested using 2 antigen ELISAs and RT-rtPCR, and any calf that tested positive by any of these tests was blood sampled at ~100 d old (day 100) for antigen and antibody testing by ELISA; samples collected on days 3, 10, and 24 were tested using the antigen ELISAs and PCR. Calves were defined as PI if they were test-positive on day 38 by either ELISA or PCR and were antigen-positive on day 100. Twenty-six calves were PCR BVDV test-positive and one was BVDV PI X2 ELISA-positive at day 38. Five calves were defined as PI, and all tested positive by ELISAs and RT-PCR assay on days 3, 10, and 24. The sensitivity and specificity were 100% for both antigen ELISAs and 96.7% and 100%, respectively, by RT-rtPCR. Test results were not affected by calf age, suggesting that testing for PI calves can be undertaken at any age.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Diarrhea Viruses, Bovine Viral/isolation & purification , Enzyme-Linked Immunosorbent Assay/veterinary , Polymerase Chain Reaction/veterinary , Age Factors , Animals , Antigens, Viral , Cattle , Female , Sensitivity and Specificity
10.
Arch Virol ; 166(4): 1163-1170, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33554289

ABSTRACT

The envelope glycoprotein E2 of pestiviruses is a major target for neutralizing antibodies. In this study, we analyzed the E2 DA domain of 43 pestiviruses from Southern Brazil. The isolates were identified as Bovine viral diarrhea virus (BVDV) subtypes 1a and 1b or BVDV-2b. Compared to reference strains, the BVDV-1 and -2 isolates had four and two mutations in the DA domain, respectively. All BVDV-2 isolates had a deletion of residues 724 and 725. All mutated amino acids in the BVDV isolates had the same aa substitution, and all were in previously identified antibody binding sites. It is possible that an immunity-mediated selection is acting on the pestiviruses circulating in Southern Brazil.


Subject(s)
Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Viral Envelope Proteins/genetics , Animals , Antigens, Viral/genetics , Binding Sites, Antibody/genetics , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/virology , Brazil/epidemiology , Cattle , Diarrhea Viruses, Bovine Viral/classification , Diarrhea Viruses, Bovine Viral/immunology , Mutation , Phylogeny , RNA, Viral/genetics , Viral Envelope Proteins/immunology
11.
Braz J Microbiol ; 52(2): 977-988, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33575990

ABSTRACT

Neonatal calf diarrhea (NCD) and mortality cause significant losses to the dairy industry. The preweaning dairy calf mortality risk in Uruguay is high (15.2%); however, causes for these losses are largely unknown. This study aimed to assess whether various pathogens were associated with NCD and death in Uruguayan dairy calves and whether these infections, diarrhea, or deaths were associated with the failure of transfer of passive immunity (FTPI). Contemporary diarrheic (n = 264,) and non-diarrheic (n = 271) 1- to 30-day-old calves from 27 farms were sampled. Feces were analyzed by antigen-capture ELISA for Cryptosporidium spp., rotavirus, bovine coronavirus, and Escherichia coli F5+, RT-PCR for bovine astrovirus (BoAstV), and bacterial cultures for Salmonella enterica. Blood/serum was analyzed by RT-PCR or antigen-capture ELISA for bovine viral diarrhea virus (BVDV). Serum of ≤ 8-day-old calves (n = 95) was assessed by refractometry to determine the concention of serum total proteins (STP) as an indicator of FTPI. Whether the sampled calves died before weaning was recorded. At least one pathogen was detected in 65.4% of the calves, and this percentage was significantly higher in diarrheic (83.7%) versus non-diarrheic (47.6%) calves. Unlike the other pathogens, Cryptosporidium spp. and rotavirus were associated with NCD. Diarrheic calves, calves infected with any of the pathogens, and calves infected with rotavirus had significantly lower concentrations of STP. Diarrheic calves had higher chances of dying before weaning than non-diarrheic calves. Diarrheic calves infected with S. enterica were at increased risk of mortality. Controlling NCD, salmonellosis, cryptosporidiosis, and rotavirus infections, and improving colostrum management practices would help to reduce calf morbi-mortality in dairy farms in Uruguay.


Subject(s)
Cattle Diseases/etiology , Cattle Diseases/mortality , Diarrhea/veterinary , Animals , Animals, Newborn , Astroviridae/isolation & purification , Case-Control Studies , Cattle , Cryptosporidium/isolation & purification , Dairying/methods , Diarrhea/etiology , Diarrhea/mortality , Diarrhea Viruses, Bovine Viral/isolation & purification , Enzyme-Linked Immunosorbent Assay/veterinary , Escherichia coli/isolation & purification , Feces/microbiology , Feces/parasitology , Feces/virology , Female , Immunization, Passive/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Rotavirus/isolation & purification , Salmonella enterica/isolation & purification , Surveys and Questionnaires , Syndrome , Uruguay/epidemiology
12.
BMC Vet Res ; 17(1): 87, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33607976

ABSTRACT

BACKGROUND: Bovine Viral Diarrhea virus (BVDV) is one of important diseases of cattle worldwide causing economic losses to the cattle industry primarily due to increased premature culling and decreased reproductive performance. The virus can cross the placenta during early pregnancy and result in the birth of persistently infected (PI) calves that are efficient transmitters of BVDV and serving as the primary reservoirs for BVDV. Relatively few studies have focused on understanding BVDV seroprevalence, virus detection, genotyping and its distribution in Africa. Most BVDV research in Ethiopia has involved serologic surveys in adult cattle, rather than the identification of PI calves, despite their role in viral shedding and recurring infections. A cross-sectional study was undertaken in three different livestock production systems of Ethiopia with the objective to estimate the prevalence of bovine abortion, calf mortality, and BVDV persistently infected calves. RESULTS: Ear notch samples (882) collected from calves in 349 households were tested for BVDV antigen using antigen capture enzyme-linked immunosorbent assay (ACE). All samples tested were negative for BVDV antigen. The overall animal level crude abortion and calf mortality prevalence were 4.0% (95% CI: 2.9-5.2) and 9.2% (95% CI: 7.7-11.0) respectively. The lower BVDV PI prevalence may be due to a lower effective contact rate between cattle reared in small-scale extensive production systems in Ethiopia. CONCLUSIONS: This is the first report of BVDV Ag test in Ethiopia and no PI was detected in calves in the study areas. Since BVDV is a disease of great economic importance, this study finding must be interpreted with care since absence of evidence is not evidence of absence and even a single BVDV infected animal can serve as source of infection and contribute to the persistent spread of the virus. Greater attention needs to be given to screening for PI animals through testing large number of animals and culling positive animals. Hence, future research should focus on regions and production systems with high BVDV seroprevalence followed by antigen ELISA or BVDV real-time PCR to detect persistently infected and acutely viremic animals.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Cattle Diseases/epidemiology , Diarrhea Viruses, Bovine Viral/isolation & purification , Abortion, Veterinary/epidemiology , Animal Husbandry , Animals , Antigens, Viral , Bovine Virus Diarrhea-Mucosal Disease/immunology , Cattle , Cattle Diseases/mortality , Cross-Sectional Studies , Diarrhea Viruses, Bovine Viral/immunology , Ethiopia/epidemiology , Female , Pregnancy , Prevalence , Seroepidemiologic Studies
13.
Vet Microbiol ; 252: 108949, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33338948

ABSTRACT

Bovine viral diarrhea viruses (BVDV) are significant pathogens of cattle, leading to losses associated with reproductive failure, respiratory disease and immune dysregulation. While cattle are the reservoir for BVDV, a wide range of domestic and wild ruminants are susceptible to infection and disease caused by BVDV. Samples from four American bison (Bison bison) from a captive herd were submitted for diagnostic testing due to their general unthriftiness. Metagenomic sequencing on pooled nasal swabs and serum identified co-infection with a BVDV and a bovine bosavirus. The BVDV genome was more similar to the vaccine strain Oregon C24 V than to other BVDV sequences in GenBank, with 92.7 % nucleotide identity in the open reading frame. The conserved 5'-untranslated region was 96.3 % identical to Oregon C24 V. Bosavirus has been previously identified in pooled fetal bovine serum but its clinical significance is unknown. Sequencing results were confirmed by virus isolation and PCR detection of both viruses in serum and nasal swab samples from two of the four bison. One animal was co-infected with both BVDV and bosavirus while separate individuals were positive solely for BVDV or bosavirus. Serum and nasal swabs from these same animals collected 51 days later remained positive for BVDV and bosavirus. These results suggest that both viruses can persistently infect bison. While the etiological significance of bosavirus infection is unknown, the ability of BVDV to persistently infect bison has implications for BVDV control and eradication programs. Possible synergy between BVDV and bosavirus persistent infection warrants further study.


Subject(s)
Antibodies, Viral/blood , Bovine Virus Diarrhea-Mucosal Disease/virology , Diarrhea Viruses, Bovine Viral/immunology , Parvoviridae Infections/veterinary , Parvovirus/immunology , Animals , Bison , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Cattle , Coinfection/veterinary , Diarrhea Viruses, Bovine Viral/isolation & purification , Parvoviridae Infections/microbiology , Parvovirus/isolation & purification , Polymerase Chain Reaction/veterinary , United States/epidemiology
14.
Braz J Microbiol ; 52(1): 467-475, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33237499

ABSTRACT

Bovine viral diarrhea (BVD) is a major worldwide disease with negative economic impact on cattle production. Successful control programs of BVD require the identification and culling of persistently infected (PI) animals with bovine viral diarrhea virus (BVDV). A variety of diagnostic tests are available to detect BVDV, but no comparison has been performed among those tests in Argentina. Sera collected from 2864 cattle, belonging to 55 herds from three Argentinean provinces, were analyzed by nested RT-PCR (RT-nPCR) to detect BVDV for diagnostic purposes. Additionally, this study evaluated the agreement of the RT-nPCR along with virus isolation, antigen-capture ELISA, and real-time RT-PCR for BVDV detection in archived bovine serum samples (n = 90). The RT-nPCR was useful for BVDV detection in pooled and individual serum samples. BVDV was detected in 1% (29/2864) of the cattle and in 20% (11/55) of the herds. The proportion of BVDV-positive sera was not statistically different among the tests. In addition, comparisons showed high agreement levels, with the highest values between both RT-PCR protocols. The frequency of BVDV infection at individual and herd level was lower than the reported values worldwide. Since follow-up testing was not performed, the frequency of PI cattle was unknown. Also, this study demonstrated that the four diagnostic tests can be used reliably for BVDV identification in individual serum samples. Further epidemiologically designed studies that address prevalence, risk factors, and economic impact of BVDV in Argentina will be necessary to implement effective control programs.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/blood , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Diarrhea Viruses, Bovine Viral/immunology , Molecular Diagnostic Techniques/standards , Molecular Diagnostic Techniques/veterinary , Serologic Tests/standards , Serologic Tests/veterinary , Animals , Argentina , Cattle , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/isolation & purification , Limit of Detection , Molecular Diagnostic Techniques/methods , Serologic Tests/methods , Serum
15.
Mol Biol Rep ; 47(12): 9959-9965, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33226564

ABSTRACT

In-vitro fertilization is a routine livestock-breeding technique widely used around the world. Several studies have reported the interaction of bovine viral-diarrhea virus (BVDV) with gametes and in-vitro-produced (IVP) bovine embryos. Since, gene expression in BVDV-infected IVP bovine embryos is scarcely addressed. The aim of this work was to evaluate the differential expression of genes involved in immune and inflammatory response. Groups of 20-25 embryos on Day 6 (morula stage) were exposed (infected) or not (control) to an NCP-BVDV strain in SOF medium. After 24 h, embryos that reached expanded blastocyst stage were washed. Total RNA of each embryo group was extracted to determine the transcription levels of 9 specific transcripts related with antiviral and inflammatory response by SYBR Green real time quantitative (RT-qPCR). Culture media and an aliquot of the last embryos wash on Day 7 were analyzed by titration and virus isolation, respectively. A conventional PCR confirmed BVDV presence in IVP embryos. A significantly higher expression of interferon-α was observed in blastocysts exposed to NCP-BVDV compared to the controls (p < 0.05). In this study, the upregulation of INFα and TLR7 genes involved in inflammatory and immune response in BVDV-infected IVP bovine embryos is a new finding in this field. This differential expression suggest that embryonic cells could function in a manner like immune cells by recognizing and responding early to interaction with viral pathogens. These results provide new insights into the action of BVDV on the complex molecular pathways controlling bovine early embryonic development.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle , Diarrhea Viruses, Bovine Viral/immunology , Embryonic Development/immunology , Gene Expression/immunology , Interferon-alpha , Animals , Bovine Virus Diarrhea-Mucosal Disease/embryology , Bovine Virus Diarrhea-Mucosal Disease/immunology , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle/embryology , Cattle/immunology , Diarrhea Viruses, Bovine Viral/isolation & purification , Embryo, Mammalian/immunology , Embryo, Mammalian/virology , Female , Fertilization in Vitro , Interferon-alpha/immunology , Toll-Like Receptor 7/immunology
16.
PLoS One ; 15(10): e0240113, 2020.
Article in English | MEDLINE | ID: mdl-33002072

ABSTRACT

Daily milk production and reproductive performance of cows vaccinated with a live double-deleted Bovine Viral Diarrhoea Virus (BVDV) vaccine were compared to those of non-vaccinated cows, cohabitating in endemic BVDV herds. All animals in the treatment group were vaccinated on study day 0 irrespective of lactation or gestation status, while control animals did not receive any treatment. 1463 animals were enrolled in the study from four different farms in three different countries (UK, Italy, France). Endemic presence of BVDV in study herds was demonstrated by the detection of BVDV in the bulk tank milk, and seroconversion was evaluated at the beginning of the study. For individual animals, the day of calving was taken to be the start of lactation for the calculation of days in milk (DIM). The standard lactation period of 305 days was divided into three periods: early lactation (EL, from DIM 8 to DIM 102), mid lactation (ML, from DIM 103 to DIM 204 and late lactation (LL, from DIM 205 to DIM 305). For each farm and each lactation period, a mixed model statistical analysis was performed with daily milk production as response, and group, day as well as the interaction between those two factors as fixed factors. Chi-square test was used to compare abortion rate and prolonged inter-oestrous interval rate between treatment and control groups. A significant increase in milk production in the vaccinated group was observed in farms 1 (1.023 L/day) and 3 (0.611 L/day) during EL (p<0.001) and in farm 2 (1.799 L/day) during ML (P<0.001). In addition, at farm 2, vaccinated cows produced more milk than non-vaccinated cows starting from 80 DIM. No differences were found between groups in abortion rates or prolonged inter-oestrous interval rates. Data demonstrate that cows in herds endemically infected with BVDV and vaccinated with live double-deleted BVDV vaccine produce more milk; the difference in milk production occurs during early lactation.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/prevention & control , Cattle/virology , Dairying , Diarrhea Viruses, Bovine Viral/isolation & purification , Vaccines, Attenuated/therapeutic use , Viral Vaccines/therapeutic use , Animal Husbandry , Animals , Cattle/physiology , Female , Lactation , Milk/virology
17.
Acta Trop ; 212: 105712, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32961168

ABSTRACT

The aim of this preliminary study was to determine the prevalence of Bovine Viral Diarrhea Virus (BVDV) and its association with reproductive problems in cattle in Timika, Southern Papua, Indonesia, an emerging area for beef production. Serum from 77 beef cattle was collected from four villages and tested, using both antibody and antigen ELISA kits for BVDV. Data of the villages of origin, age, breed, sex and the number of parities of the cattle were collected. The pregnancy status of the cattle was determined by rectal examination. Results showed that the prevalence of BVDV antibody in individual cattle in Timika was 11.7% (CI: 6.1 - 20.0%), while at the farm level the antibody prevalence was 18.4% (CI: 8.9 - 33.7%).). Seropositivity for BVDV increased with age (P=0.02), from 0% (CI: 0 - 37.2%) in less than two-years old to 28.6% (CI: 11.3 - 55.0%) in cattle older than eight years of age. BVDV antibody was 2.9 times more prevalent in non-pregnant cows than in antibody negative cows (CI: 1.02 - 8.14, P=0.04). BVD antigen was not detected in the present study. This study reported for the first time, evidence of infection with BVDV in cattle in Papua and indicated that BVDV infection may be associated with infertility.


Subject(s)
Antibodies, Viral/blood , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Diarrhea Viruses, Bovine Viral/isolation & purification , Diarrhea/virology , Animals , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Diarrhea/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Indonesia/epidemiology , Pregnancy , Reproduction
18.
Pesqui. vet. bras ; Pesqui. vet. bras;40(8): 593-597, Aug. 2020. tab
Article in English | LILACS, VETINDEX | ID: biblio-1135667

ABSTRACT

Reproductive tests in cattle are of great economic importance, given the impact it can have on the production system and may be caused by agents. Neospora caninum and Bovine Viral Diarrhea virus (BVDV) are considered of great importance as reproductive and should be considered responsible for keeping animals persistently infected. The present study included 479 calf serum samples for export in the state of Rio Grande do Sul (RS). All samples were screened for BVDV by an ELISA antigen. BVDV antigen-positive ELISA samples were isolated from BVDV in cell culture. An indirect immunofluorescence (IFT) technique was used to detect anti-N. caninum antibodies. Of the 479 export-treated serum samples, 361 were positive for BVDV antigens by ELISA and/or viral isolation test (361/479-75.36%), and 109 IFT-positive samples for N. caninum (109/479-22.75%). Despite detection of antibodies anti-N. caninum did not differ statistically between naturally infected BVDV and non-BVDV infected animals suggesting that there is no interference of BVDV infection on infection or detection rate of animals with N. caninum, positive animals in viral isolation and high DO in BVDV-Ag ELISA. may present active disease and consequent immunosuppression, contributing to a potential reactivation of N. caninum.(AU)


Testes reprodutivos em bovinos são de grande importância econômica, dado o impacto que podem ter no sistema de produção e podem ser causados por agentes. O Neospora caninum e o vírus da Diarreia Viral Bovina (BVDV) são considerados de grande importância como reprodutivos e devem ser considerados responsáveis por manter os animais persistentemente infectados. O presente estudo incluiu 479 amostras de soro de bezerro para exportação no estado do Rio Grande do Sul (RS). Todas as amostras foram rastreadas para BVDV por um antígeno ELISA. As amostras de ELISA positivas para o antigénio BVDV foram isoladas a partir de BVDV em cultura de células. Uma técnica de imunofluorescência indireta (IFT) foi utilizada para detectar anticorpos anti-N caninum. Das 479 amostras de soro tratadas para exportação, 361 foram positivas para antígenos de BVDV por ELISA e/ou teste de isolamento viral (361/479-75,36%) e 109 amostras positivas para IFT para N. caninum (109/479-22,75%). Apesar da detecção de anticorpos anti-N. caninum não diferiu estatisticamente entre animais infectados naturalmente BVDV e não BVDV sugerindo que não há interferência da infecção pelo BVDV na infecção ou taxa de detecção de animais com N. caninum, animais positivos em isolamento viral e alta DO em BVDV-Ag ELISA, pode apresentar doença ativa e consequente imunossupressão, contribuindo para uma potencial reativação de N. caninum.(AU)


Subject(s)
Animals , Cattle , Coccidiosis/veterinary , Diarrhea Viruses, Bovine Viral/isolation & purification , Neospora/isolation & purification , Coinfection/veterinary , Coinfection/epidemiology
19.
Vopr Virusol ; 65(2): 95-102, 2020.
Article in Russian | MEDLINE | ID: mdl-32515565

ABSTRACT

INTRODUCTION: Pestiviruses are the cause of reproductive problems, diseases of the gastrointestinal and respiratory tracts of animals. Three species are important for cattle: Pestivirus A, B, and H. Fast and reliable methods of differentiation of these pathogens are currently needed. Aims and objectives of the study: the development of multiplex real time PCR for the simultaneous detection and differentiation of three viruses. MATERIAL AND METHODS: The nucleotide sequences of the conserved regions of the 5´-UTR genes of pes tivirusesA, B, and H served as a target. RESULTS: The reaction showed high specificity, sensitivity, reproducibility and was able to detect virus RNA at a concentration of not less than 0.6-1.2 lg TCID50/cm3. Cross-reactions with other pestiviruses wer e not observed. Real time PCR confirmed the results obtained previously in RT-PCR with gel electrophoresis detection. In a parallel study of 1823 biological samples, the results of the two reactions were completely consistent. Pestivirus spp. was detectedin 76 samples, Pestivirus A was present in 73 samples, Pestivirus B - in 3 samples, and Pestivirus H was not detected. DISCUSSION: A two-step real time PCR was developed for the simultaneous detection and differentiation of three pestiviruses. Modified pan primers of S. Vilcek et al. were used for the first reaction, and primers and probes of our own design were used for virus typing, which resulted in high reaction efficiency. CONCLUSION: On the big dairy farms for livestock maintenance, there are favorable conditions for the circulation of pathogenic viruses. In this situation, rapid diagnostic methods are needed to quickly identify of several viruses. Real-time triplex analysis can be recommended as the rapid method for mass epidemiological studies, as well as for screening fetal calf serum used for virus cultivation in medicine and veterinary practice.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/genetics , Diarrhea Viruses, Bovine Viral/genetics , Real-Time Polymerase Chain Reaction , Animals , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle , Diarrhea Viruses, Bovine Viral/isolation & purification
20.
Viruses ; 12(6)2020 06 22.
Article in English | MEDLINE | ID: mdl-32580423

ABSTRACT

Infection of bulls with bovine viral diarrhoea virus (BVDV) can result in the development of virus persistence, confined to the reproductive tract. These bulls develop a normal immune response with high neutralizing antibody titres. However, BVDV can be excreted in the semen for a prolonged period. Although relatively rare, in this study we describe six separate cases in bulls being prepared for admission to artificial breeding centres. Semen samples were tested in a pan-Pestivirus-reactive real-time PCR assay and viral RNA was detected in semen from five of the bulls for three to eight months after infection. In one bull, virus was detected at low levels for more than five years. This bull was found to have one small testis. When slaughtered, virus was only detected in the abnormal testis. The low levels of BVDV in the semen of these bulls were only intermittently detected by virus isolation in cell culture. This virus-contaminated semen presents a biosecurity risk and confirms the need to screen all batches of semen from bulls that have been previously infected with BVDV. The use of real-time PCR is recommended as the preferred laboratory assay for this purpose.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/transmission , Diarrhea Viruses, Bovine Viral/isolation & purification , Semen/virology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Bovine Virus Diarrhea-Mucosal Disease/diagnosis , Cattle , Male , Reverse Transcriptase Polymerase Chain Reaction , Testis/virology , Viremia/virology
SELECTION OF CITATIONS
SEARCH DETAIL