Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.997
Filter
1.
Virulence ; 15(1): 2382762, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39092797

ABSTRACT

African swine fever (ASF) is a rapidly fatal viral haemorrhagic fever in Chinese domestic pigs. Although very high mortality is observed in pig farms after an ASF outbreak, clinically healthy and antibody-positive pigs are found in those farms, and viral detection is rare from these pigs. The ability of pigs to resist ASF viral infection may be modulated by host genetic variations. However, the genetic basis of the resistance of domestic pigs against ASF remains unclear. We generated a comprehensive set of structural variations (SVs) in a Chinese indigenous Xiang pig with ASF-resistant (Xiang-R) and ASF-susceptible (Xiang-S) phenotypes using whole-genome resequencing method. A total of 53,589 nonredundant SVs were identified, with an average of 25,656 SVs per individual in the Xiang pig genome, including insertion, deletion, inversion and duplication variations. The Xiang-R group harboured more SVs than the Xiang-S group. The F-statistics (FST) was carried out to reveal genetic differences between two populations using the resequencing data at each SV locus. We identified 2,414 population-stratified SVs and annotated 1,152 Ensembl genes (including 986 protein-coding genes), in which 1,326 SVs might disturb the structure and expression of the Ensembl genes. Those protein-coding genes were mainly enriched in the Wnt, Hippo, and calcium signalling pathways. Other important pathways associated with the ASF viral infection were also identified, such as the endocytosis, apoptosis, focal adhesion, Fc gamma R-mediated phagocytosis, junction, NOD-like receptor, PI3K-Akt, and c-type lectin receptor signalling pathways. Finally, we identified 135 candidate adaptive genes overlapping 166 SVs that were involved in the virus entry and virus-host cell interactions. The fact that some of population-stratified SVs regions detected as selective sweep signals gave another support for the genetic variations affecting pig resistance against ASF. The research indicates that SVs play an important role in the evolutionary processes of Xiang pig adaptation to ASF infection.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , African Swine Fever/virology , African Swine Fever/genetics , Swine , African Swine Fever Virus/genetics , Disease Resistance/genetics , Genetic Variation , Genome/genetics , Whole Genome Sequencing , Genomic Structural Variation , China , Sus scrofa
2.
BMC Plant Biol ; 24(1): 737, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095762

ABSTRACT

BACKGROUND: BAK1 (Brassinosteroid insensitive 1-associated receptor kinase 1) plays an important role in disease resistance in plants. However, the function of BAK1 family in cucumber and the decisive genes for disease-resistance remain elusive. RESULTS: Here, we identified 27 CsBAK1s in cucumber, and classified them into five subgroups based on phylogenetic analysis and gene structure. CsBAK1s in the same subgroup shared the similar motifs, but different gene structures. Cis-elements analysis revealed that CsBAK1s might respond to various stress and growth regulation. Three segmentally duplicated pairwise genes were identified in cucumber. In addition, Ka/Ks analysis indicated that CsBAK1s were under positive selection during evolution. Tissue expression profile showed that most CsBAK1s in Subgroup II and IV showed constitutive expression, members in other subgroups showed tissue-specific expression. To further explore whether CsBAK1s were involved in the resistance to pathogens, the expression patterns of CsBAK1s to five pathogens (gummy stem blight, powdery mildew, downy mildew, grey mildew, and fusarium wilt) reveled that different CsBAK1s had specific roles in different pathogen infections. The expression of CsBAK1-14 was induced/repressed significantly by five pathogens, CsBAK1-14 might play an important role in disease resistance in cucumber. CONCLUSIONS: 27 BAK1 genes were identified in cucumber from a full perspective, which have important functions in pathogen infection. Our study provided a theoretical basis to further clarify the function of BAK1s to disease resistance in cucumber.


Subject(s)
Cucumis sativus , Disease Resistance , Phylogeny , Plant Diseases , Plant Proteins , Cucumis sativus/genetics , Cucumis sativus/microbiology , Cucumis sativus/enzymology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Genes, Plant , Genome, Plant , Gene Expression Profiling
3.
BMC Genomics ; 25(1): 751, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090588

ABSTRACT

BACKGROUND: Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley and wheat. A diverse sexual Pgt population from the Pacific Northwest (PNW) region of the US contains a high proportion of individuals with virulence on the barley stem rust resistance (R) gene, Rpg1. However, the evolutionary mechanisms of this virulence on Rpg1 are mysterious considering that Rpg1 had not been deployed in the region and the gene had remained remarkably durable in the Midwestern US and prairie provinces of Canada. METHODS AND RESULTS: To identify AvrRpg1 effectors, genome wide association studies (GWAS) were performed using 113 Pgt isolates collected from the PNW (n = 89 isolates) and Midwest (n = 24 isolates) regions of the US. Disease phenotype data were generated on two barley lines Morex and the Golden Promise transgenic (H228.2c) that carry the Rpg1 gene. Genotype data was generated by whole genome sequencing (WGS) of 96 isolates (PNW = 89 isolates and Midwest = 7 isolates) and RNA sequencing (RNAseq) data from 17 Midwestern isolates. Utilizing ~1.2 million SNPs generated from WGS and phenotype data (n = 96 isolates) on the transgenic line H228.2c, 53 marker trait associations (MTAs) were identified. Utilizing ~140 K common SNPs generated from combined analysis of WGS and RNAseq data, two significant MTAs were identified using the cv Morex phenotyping data. The 55 MTAs defined two distinct avirulence loci, on supercontig 2.30 and supercontig 2.11 of the Pgt reference genome of Pgt isolate CRL 75-36-700-3. The major avirulence locus designated AvrRpg1A was identified with the GWAS using both barley lines and was delimited to a 35 kb interval on supercontig 2.30 containing four candidate genes (PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886). The minor avirulence locus designated AvrRpg1B identified with cv Morex contained a single candidate gene (PGTG_05433). AvrRpg1A haplotype analysis provided strong evidence that a dominant avirulence gene underlies the locus. CONCLUSIONS: The association analysis identified strong candidate AvrRpg1 genes. Further analysis to validate the AvrRpg1 genes will fill knowledge gaps in our understanding of rust effector biology and the evolution and mechanism/s of Pgt virulence on Rpg1.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Hordeum , Plant Diseases , Puccinia , Hordeum/microbiology , Hordeum/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Puccinia/pathogenicity , Puccinia/genetics , Virulence/genetics , Chromosome Mapping , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Genes, Plant , Phenotype
4.
Nat Commun ; 15(1): 6488, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103347

ABSTRACT

Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845-1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845-1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared to modern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.


Subject(s)
Disease Resistance , Phytophthora infestans , Plant Diseases , Solanum tuberosum , Phytophthora infestans/genetics , Phytophthora infestans/pathogenicity , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Virulence/genetics , Famine , Evolution, Molecular , Ireland , Alleles , Phylogeny , History, 19th Century
5.
BMC Genomics ; 25(1): 760, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103778

ABSTRACT

BACKGROUND: In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS). RESULTS: GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE). CONCLUSION: The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.


Subject(s)
Disease Resistance , Genome-Wide Association Study , Plant Diseases , Polymorphism, Single Nucleotide , Zea mays , Zea mays/genetics , Zea mays/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , India , Haplotypes , Plant Leaves/genetics , Plant Leaves/microbiology , Quantitative Trait Loci , Phenotype
6.
PLoS One ; 19(8): e0306263, 2024.
Article in English | MEDLINE | ID: mdl-39106250

ABSTRACT

Striga hermonthica (Sh) and S. asiatica (Sa) are major parasitic weeds limiting cereal crop production and productivity in sub-Saharan Africa (SSA). Under severe infestation, Striga causes yield losses of up to 100%. Breeding for Striga-resistant maize varieties is the most effective and economical approach to controlling the parasite. Well-characterized and genetically differentiated maize germplasm is vital to developing inbred lines, hybrids, and synthetic varieties with Striga resistance and desirable product profiles. The objective of this study was to determine the genetic diversity of 130 tropical and sub-tropical maize inbred lines, hybrids, and open-pollinated varieties germplasm using phenotypic traits and single nucleotide polymorphism (SNP) markers to select Striga-resistant and complementary genotypes for breeding. The test genotypes were phenotyped with Sh and Sa infestations using a 13x10 alpha lattice design with two replications. Agro-morphological traits and Striga-resistance damage parameters were recorded under a controlled environment. Further, high-density Diversity Array Technology Sequencing-derived SNP markers were used to profile the test genotypes. Significant phenotypic differences (P<0.001) were detected among the assessed genotypes for the assessed traits. The SNP markers revealed mean gene diversity and polymorphic information content of 0.34 and 0.44, respectively, supporting the phenotypic variation of the test genotypes. Higher significant variation was recorded within populations (85%) than between populations using the analysis of molecular variance. The Structure analysis allocated the test genotypes into eight major clusters (K = 8) in concordance with the principal coordinate analysis (PCoA). The following genetically distant inbred lines were selected, displaying good agronomic performance and Sa and Sh resistance: CML540, TZISTR25, TZISTR1248, CLHP0303, TZISTR1174, TZSTRI113, TZDEEI50, TZSTRI115, CML539, TZISTR1015, CZL99017, CML451, CML566, CLHP0343 and CML440. Genetically diverse and complementary lines were selected among the tropical and sub-tropical maize populations that will facilitate the breeding of maize varieties with Striga resistance and market-preferred traits.


Subject(s)
Polymorphism, Single Nucleotide , Striga , Zea mays , Zea mays/genetics , Zea mays/parasitology , Striga/physiology , Striga/genetics , Genetic Variation , Phenotype , Genotype , Plant Diseases/parasitology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Breeding , Plant Weeds/genetics , Tropical Climate , Genetic Markers
7.
Theor Appl Genet ; 137(9): 199, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110238

ABSTRACT

KEY MESSAGE: A new stripe rust resistance gene YrBDT in Chinese landrace wheat Baidatou was mapped to a 943.6-kb interval on chromosome arm 6DS and co-segregated with a marker CAPS3 developed from candidate gene TraesCS6D03G0027300. Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is a devastating foliar disease of wheat. Chinese landrace wheat Baidatou has shown high resistance to a broad spectrum of Pst races at both the seedling and adult-plant stages for decades in the Longnan region of Gansu province, a hot spot for stripe rust epidemics. Here, we report fine mapping and candidate gene analysis of stripe rust resistance gene YrBDT in Baidatou. Analysis of F1, F2 plants and F2:3 lines indicated that resistance in Baidatou to Pst race CYR31 was conferred by a single dominant gene, temporarily designated YrBDT. Bulked segregant exome capture sequencing (BSE-seq) analysis revealed 61 high-confidence polymorphic SNPs concentrated in a 5.4-Mb interval at the distal of chromosome arm 6DS. Several SNPs and InDels were also identified by genome mining of DNA sampled from the parents and contrasting bulks. The YrBDT locus was mapped to a 943.6-kb (4,658,322-5,601,880 bp) genomic region spanned by markers STS2 and STS3 based on IWGSC RefSeq v2.1, including five putative disease resistance genes. There was high collinearity of the target interval among Chinese Spring RefSeq v2.1, Ae. tauschii AL8/78 and Fielder genomes. The expression level of TraesCS6D03G0027300 showed significant association with Pst infection, and a gene-specific marker CAPS3 developed from TraesCS6D03G0027300 co-segregated with YrBDT suggesting this gene as a candidate of YrBDT. The resistance gene and flanking markers can be used in marker-assisted selection for improvement of stripe rust resistance.


Subject(s)
Chromosome Mapping , Disease Resistance , Genes, Plant , Plant Diseases , Polymorphism, Single Nucleotide , Triticum , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Triticum/genetics , Triticum/microbiology , Genetic Markers , Basidiomycota/pathogenicity , Puccinia/pathogenicity , Genetic Linkage , Phenotype
8.
BMC Plant Biol ; 24(1): 756, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39107683

ABSTRACT

BACKGROUND: Tobacco mosaic virus (TMV) is a highly infectious plant virus that affects a wide variety of plants and reduces crop yields around the world. Here, we assessed the effectiveness of using Ammi visnaga aqueous seed extract to synthesize silver nanoparticles (Ag-NPs) and their potential to combat TMV. Different techniques were used to characterize Ag-NPs, such as scanning and transmission electron microscopy (SEM, TEM), energy-dispersive X-ray spectroscopy (EDS), fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). RESULTS: TEM demonstrated that the synthesized Ag-NPs had a spherical form with an average size of 23-30 nm and a zeta potential value of -15.9 mV, while FTIR revealed various functional groups involved in Ag-NP stability and capping. Interestingly, the Pre-treatment of tobacco plants (protective treatment) with Ag-NPs at 100-500 µg/mL significantly suppressed viral symptoms, while the Post-treatment (curative treatment) delayed their appearance. Furthermore, protective and curative treatments significantly increased chlorophyll a and b, total flavonoids, total soluble carbohydrates, and antioxidant enzymes activity (PPO, POX and CAT). Simultaneously, the application of Ag-NPs resulted in a decrease in levels of oxidative stress markers (H2O2 and MDA). The RT-qPCR results and volcano plot analysis showed that the Ag-NPs treatments trigger and regulate the transcription of ten defense-related genes (SbWRKY-1, SbWRKY-2, JERF-3, GST-1, POD, PR-1, PR-2, PR-12, PAL-1, and HQT-1). The heatmap revealed that GST-1, the primary gene involved in anthocyanidin production, was consistently the most expressed gene across all treatments throughout the study. Analysis of the gene co-expression network revealed that SbWRKY-19 was the most central gene among the studied genes, followed by PR-12 and PR-2. CONCLUSIONS: Overall, the reported antiviral properties (protective and/or curative) of biosynthesized Ag-NPs against TMV lead us to recommend using Ag-NPs as a simple, stable, and eco-friendly agent in developing pest management programs against plant viral infections.


Subject(s)
Metal Nanoparticles , Nicotiana , Plant Diseases , Plant Extracts , Silver , Tobacco Mosaic Virus , Tobacco Mosaic Virus/physiology , Silver/pharmacology , Plant Diseases/virology , Plant Diseases/genetics , Plant Extracts/pharmacology , Nicotiana/genetics , Nicotiana/virology , Disease Resistance/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
9.
Sci Rep ; 14(1): 18561, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122809

ABSTRACT

Field pea (Pisum sativum L.) needs improvement to increase productivity due to its high price and demand. However, the incidence of powdery mildew (PM) disease limits its production. This study aimed to analyze the diversity of qualitative and quantitative traits against powdery mildew resistance by utilizing cluster and principal component analysis to explore PM resistance high-yield potential field peas. Shannon-Weaver's diversity index (H') displayed high intra-genotype diversity for quantitative and qualitative aspects. Heterogeneity was identified for resistance against powdery mildew infections. Eighty-five genotypes were divided into five groups using Mohalanobis generalized distance (D2) statistics. The highest inter-cluster D2 value was observed between clusters 2 and 3 (11.89) while the lowest value was found between clusters 3 and 4 (2.06). Most of the genotypes had noticeable differences, so these could be employed in a crossing scheme. Twelve genotypes were extremely resistant, 29 genotypes were resistant, 25 genotypes were moderately resistant, 18 genotypes were fairly susceptible, and 1 genotype was susceptible to powdery mildew disease. Among 29 resistant genotypes, BFP77, BFP74, BFP63, BFP62, BFP43, and BFP80 were high yielders and, could be used directly and/or transferred through hybridization to high-yielding disease-susceptible genotypes. Among the 25 moderately resistant genotypes, BFP78, BFP45, BFP79, and BFP48 were found to be high yielders. In principal component analysis (PCA), the first four PCs with Eigen values > 1 accounted for 88.4% variability for quantitative traits. Clustering sorted genotypes into five groups, where groups 1 to 5 assembled 37, 28, 1, 8, and 11 genotypes, respectively. Genotypes of cluster 4 were identified as high yielders with its attributes. Pearson correlation significantly and positively correlated across all traits except for PM. This variation suggested that there is a mechanism to select promising genotypes for field pea breeding. Considering all features, BFP78, BFP77, BFP74, BFP63, BFP62, BFP45, BFP79, and BFP80 could be preferred as high yielders and PM resistance owing to longer pod lengths, seeds per pod and pods per plant.


Subject(s)
Disease Resistance , Genotype , Phenotype , Pisum sativum , Plant Diseases , Pisum sativum/genetics , Pisum sativum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Ascomycota/genetics , Plant Breeding/methods , Principal Component Analysis , Quantitative Trait, Heritable , Genetic Variation
10.
Nat Commun ; 15(1): 6905, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134523

ABSTRACT

Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein. TaPIR1 ubiquitinates the lysine residues K131 and K136 in TaHRP1 to regulate its stability. TaHRP1 directly binds to the TaHRP1-binding site elements within the PhANGs promoter to activate their transcription via the histidine-rich domain of TaHRP1. PhANGs expression induces the production of chloroplast-derived ROS. Although knocking out TaHRP1 reduces Pst resistance, TaHRP1 overexpression contributes to photosynthesis, and chloroplast-derived ROS production, and improves disease resistance. TaPIR1 expression inhibits the downstream activation of TaHRP1 and TaHRP1-induced ROS accumulation in chloroplasts. Overall, we show that the TaPIR1-mediated ubiquitination and degradation of TaHRP1 alters PhANGs expression to disrupt chloroplast function, thereby increasing plant susceptibility to Pst.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplasts , Gene Expression Regulation, Plant , Photosynthesis , Reactive Oxygen Species , Ubiquitin-Protein Ligases , Ubiquitination , Chloroplasts/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Reactive Oxygen Species/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Disease Resistance/genetics , Proteolysis , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Plant Immunity/genetics , Nicotiana/metabolism , Nicotiana/genetics
11.
Nat Commun ; 15(1): 6906, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134551

ABSTRACT

The yield of pearl millet, a resilient cereal crop crucial for African food security, is severely impacted by the root parasitic weed Striga hermonthica, which requires host-released hormones, called strigolactones (SLs), for seed germination. Herein, we identify four SLs present in the Striga-susceptible line SOSAT-C88-P10 (P10) but absent in the resistant 29Aw (Aw). We generate chromosome-scale genome assemblies, including four gapless chromosomes for each line. The Striga-resistant Aw lacks a 0.7 Mb genome segment containing two putative CARLACTONOIC ACID METHYLTRANSFERASE1 (CLAMT1) genes, which may contribute to SL biosynthesis. Functional assays show that P10CLAMT1b produces the SL-biosynthesis intermediate methyl carlactonoate (MeCLA) and that MeCLA is the precursor of P10-specific SLs. Screening a diverse pearl millet panel confirms the pivotal role of the CLAMT1 section for SL diversity and Striga susceptibility. Our results reveal a reason for Striga susceptibility in pearl millet and pave the way for generating resistant lines through marker-assisted breeding or direct genetic modification.


Subject(s)
Genome, Plant , Lactones , Pennisetum , Striga , Striga/genetics , Lactones/metabolism , Pennisetum/genetics , Pennisetum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Chromosomes, Plant/genetics , Plant Diseases/parasitology , Plant Diseases/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Plant Weeds/genetics , Plant Weeds/metabolism , Disease Resistance/genetics , Plant Growth Regulators/metabolism
12.
Funct Plant Biol ; 512024 Aug.
Article in English | MEDLINE | ID: mdl-39137292

ABSTRACT

Two markers on Chromosome 2 of chickpea (Cicer arietinum ) are reportedly associated with resistance to race 4 Fusarium wilt, and are frequently used in breeding. However, the genes in this region that actually confer wilt resistance are unknown. We aimed to characterise them using both in silico approaches and marker trait association (MTA) analysis. Of the 225 protein-encoding genes in this region, 51 showed significant differential expression in two contrasting chickpea genotypes under wilt, with potential involvement in stress response. From a diverse set of 244 chickpea genotypes, two sets of 40 resistant and 40 susceptible genotypes were selected based on disease incidence and amplification pattern of the TA59 marker. All cultivars were further genotyped with 1238 single nucleotide polymorphisms (SNPs) specific to the 51 genes; only seven SNPs were significantly correlated with disease. SNP Ca2_24099002, specific to the LOC101498008 (Transmembrane protein 87A) gene, accounted for the highest phenotypic variance for disease incidence at 16.30%, whereas SNPs Ca2_25166118 and Ca2_27029215, specific to the LOC101494644 (ß-glucosidase BoGH3B-like) and LOC101505289 (Putative tRNA pseudouridine synthase) genes, explained 10.51% and 10.50% of the variation, respectively, in the sets with contrasting disease susceptibility. Together with the TA59 and TR19 markers, these SNPs can be used in a chickpea breeding scheme to develop wilt resistance.


Subject(s)
Cicer , Disease Resistance , Fusarium , Plant Diseases , Polymorphism, Single Nucleotide , Cicer/genetics , Cicer/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Chromosomes, Plant/genetics , Genotype , Genes, Plant
13.
Theor Appl Genet ; 137(8): 196, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105819

ABSTRACT

KEY MESSAGE: Integrating disease screening data and genomic data for host and pathogen populations into prediction models provides breeders and pathologists with a unified framework to develop disease resistance. Developing disease resistance in crops typically consists of exposing breeding populations to a virulent strain of the pathogen that is causing disease. While including a diverse set of pathogens in the experiments would be desirable for developing broad and durable disease resistance, it is logistically complex and uncommon, and limits our capacity to implement dual (host-by-pathogen)-genome prediction models. Data from an alternative disease screening system that challenges a diverse sweet corn population with a diverse set of pathogen isolates are provided to demonstrate the changes in genetic parameter estimates that result from using genomic data to provide connectivity across sparsely tested experimental treatments. An inflation in genetic variance estimates was observed when among isolate relatedness estimates were included in prediction models, which was moderated when host-by-pathogen interaction effects were incorporated into models. The complete model that included genomic similarity matrices for host, pathogen, and interaction effects indicated that the proportion of phenotypic variation in lesion size that is attributable to host, pathogen, and interaction effects was similar. Estimates of the stability of lesion size predictions for host varieties inoculated with different isolates and the stability of isolates used to inoculate different hosts were also similar. In this pathosystem, genetic parameter estimates indicate that host, pathogen, and host-by-pathogen interaction predictions may be used to identify crop varieties that are resistant to specific virulence mechanisms and to guide the deployment of these sources of resistance into pathogen populations where they will be more effective.


Subject(s)
Disease Resistance , Host-Pathogen Interactions , Plant Diseases , Zea mays , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Virulence/genetics , Host-Pathogen Interactions/genetics , Zea mays/genetics , Zea mays/microbiology , Models, Genetic , Phenotype , Plant Breeding/methods , Genome, Plant , Genomics/methods
14.
Curr Microbiol ; 81(9): 302, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115581

ABSTRACT

Understanding the resident microbial communities and their above and below ground interactions with plants will provide necessary information for crop disease protection and stress management. In this study, we show how diversity of core microbiome varies with disease susceptibility of a crop. To test this hypothesis, we have focused on identifying the core microbial species of cotton leaf curl disease (CLCuD) susceptible Gossypium hirsutum and CLCuD resistant Gossypium arboreum under viral infestation. Derivation of core membership is challenging as it depends on an occupancy threshold of microbial species in a sampling pool, whilst accounting for different plant compartments. We have used an abundance-occupancy distribution approach where we dynamically assess the threshold for core membership, whilst marginalizing for occupancy in four compartments of the cotton plant, namely, leaf epiphyte, leaf endophyte, rhizosphere, and root endophyte. Additionally, we also fit a neutral model to the returned core species to split them into three groups, those that are neutral, those that are selected by the plant environment, and finally those that are dispersal limited. We have found strong inverse relationship between diversity of core microbiome and disease susceptibility with the resistant variety, G. arboreum, possessing higher diversity of microbiota. A deeper understanding of this association will aid in the development of biocontrol agents for improving plant immunity against biotrophic pathogens.


Subject(s)
Disease Resistance , Gossypium , Microbiota , Plant Diseases , Gossypium/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Endophytes/classification , Endophytes/genetics , Endophytes/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Plant Roots/microbiology , Biodiversity , Rhizosphere , Soil Microbiology
15.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125985

ABSTRACT

Blackleg disease, caused by Leptosphaeria spp. fungi, is one of the most important diseases of Brassica napus, responsible for severe yield losses worldwide. Blackleg resistance is controlled by major R genes and minor quantitative trait loci (QTL). Due to the high adaptation ability of the pathogen, R-mediated resistance can be easily broken, while the resistance mediated via QTL is believed to be more durable. Thus, the identification of novel molecular markers linked to blackleg resistance for B. napus breeding programs is essential. In this study, 183 doubled haploid (DH) rapeseed lines were assessed in field conditions for resistance to Leptosphaeria spp. Subsequently, DArTseq-based Genome-Wide Association Study (GWAS) was performed to identify molecular markers linked to blackleg resistance. A total of 133,764 markers (96,121 SilicoDArT and 37,643 SNP) were obtained. Finally, nine SilicoDArT and six SNP molecular markers were associated with plant resistance to Leptosphaeria spp. at the highest significance level, p < 0.001. Importantly, eleven of these fifteen markers were found within ten genes located on chromosomes A06, A07, A08, C02, C03, C06 and C08. Given the immune-related functions of the orthologues of these genes in Arabidopsis thaliana, the identified markers hold great promise for application in rapeseed breeding programs.


Subject(s)
Brassica napus , Disease Resistance , Genome-Wide Association Study , Leptosphaeria , Plant Diseases , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Brassica napus/microbiology , Brassica napus/genetics , Brassica napus/immunology , Leptosphaeria/genetics , Genetic Markers , Brassica rapa/microbiology , Brassica rapa/genetics
16.
Int J Mol Sci ; 25(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39126086

ABSTRACT

Strigolactones (SLs) are plant hormones that regulate diverse developmental processes and environmental responses in plants. It has been discovered that SLs play an important role in regulating plant immune resistance to pathogens but there are currently no reports on their role in the interaction between Nicotiana benthamiana and the tobacco mosaic virus (TMV). In this study, the exogenous application of SLs weakened the resistance of N. benthamiana to TMV, promoting TMV infection, whereas the exogenous application of Tis108, a SL inhibitor, resulted in the opposite effect. Virus-induced gene silencing (VIGS) inhibition of two key SL synthesis enzyme genes, NtCCD7 and NtCCD8, enhanced the resistance of N. benthamiana to TMV. Additionally, we conducted a screening of N. benthamiana related to TMV infection. TMV-infected plants treated with SLs were compared to the control by using RNA-seq. The KEGG enrichment analysis and weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) suggested that plant hormone signaling transduction may play a significant role in the SL-TMV-N. benthamiana interactions. This study reveals new functions of SLs in regulating plant immunity and provides a reference for controlling TMV diseases in production.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Lactones , Nicotiana , Plant Diseases , Tobacco Mosaic Virus , Nicotiana/virology , Nicotiana/genetics , Nicotiana/immunology , Tobacco Mosaic Virus/physiology , Lactones/pharmacology , Disease Resistance/genetics , Plant Diseases/virology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Immunity/genetics , Plant Immunity/drug effects , Gene Silencing
17.
Int J Mol Sci ; 25(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39126085

ABSTRACT

Chitinase genes, as a class of cell wall hydrolases, are essential for the development and pathogenesis of Fusarium oxysporum f.sp. vasinfectum (F. ox) in cotton, but related research focused on chitinase genes are limited. This study explored two island cotton root secretions from the highly resistant cultivar Xinhai 41 and sensitive cultivar Xinhai 14 to investigate their interaction with F. ox by a weighted correlation network analysis (WGCNA). As a result, two modules that related to the fungal pathogenicity emerged. Additionally, a total of twenty-five chitinase genes were identified. Finally, host-induced gene silencing (HIGS) of FoChi20 was conducted, and the cotton plants showed noticeably milder disease with a significantly lower disease index than the control. This study illuminated that chitinase genes play crucial roles in the pathogenicity of cotton wilt fungi, and the FoChi20 gene could participate in the pathogenesis of F. ox and host-pathogen interactions, which establishes a theoretical framework for disease control in Sea Island cotton.


Subject(s)
Chitinases , Disease Resistance , Fusarium , Gossypium , Plant Diseases , Fusarium/pathogenicity , Fusarium/genetics , Gossypium/microbiology , Chitinases/genetics , Chitinases/metabolism , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Host-Pathogen Interactions/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Plant , Plant Roots/microbiology
18.
Theor Appl Genet ; 137(9): 203, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39134836

ABSTRACT

The common wheat line 4N0461 showed adult-plant resistance to leaf rust. 4N0461 was crossed with susceptible cultivars Nongda4503 and Shi4185 to map the causal resistance gene(s). Segregation of leaf rust response in F2 populations from both crosses was 9 resistant:7 susceptible, indicative of two complementary dominant resistance genes. The genes were located on chromosome arms 3BS and 4BL and temporarily named LrN3B and LrN4B, respectively. Subpopulations from 4N0461 × Nongda4503 with LrN3B segregating as a single allele were used to fine-map LrN3B locus. LrN3B was delineated in a genetic interval of 0.07 cM, corresponding to 106 kb based on the Chinese Spring reference genome (IWGSC RefSeq v1.1). Four genes were annotated in this region, among which TraesCS3B02G014800 and TraesCS3B02G014900 differed between resistant and susceptible genotypes, and both were required for LrN3B resistance in virus-induced gene silencing experiments. Diagnostic markers developed for checking the polymorphism of each candidate gene, can be used for marker-assisted selection in wheat breeding programs.


Subject(s)
Basidiomycota , Chromosome Mapping , Chromosomes, Plant , Disease Resistance , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Basidiomycota/pathogenicity , Basidiomycota/physiology , Chromosomes, Plant/genetics , Genetic Markers , Genotype , Alleles
19.
Theor Appl Genet ; 137(9): 201, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39127987

ABSTRACT

KEY MESSAGE: Developing genetically resistant soybean cultivars is key in controlling the destructive Sclerotinia Stem Rot (SSR) disease. Here, a GWAS study in Canadian soybeans identified potential marker-trait associations and candidate genes, paving the way for more efficient breeding methods for SSR. Sclerotinia stem rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is one of the most important diseases leading to significant soybean yield losses in Canada and worldwide. Developing soybean cultivars that are genetically resistant to the disease is the most inexpensive and reliable method to control the disease. However, breeding for resistance is hampered by the highly complex nature of genetic resistance to SSR in soybean. This study sought to understand the genetic basis underlying SSR resistance particularly in soybean grown in Canada. Consequently, a panel of 193 genotypes was assembled based on maturity group and genetic diversity as representative of Canadian soybean cultivars. Plants were inoculated and screened for SSR resistance in controlled environments, where variation for SSR phenotypic response was observed. The panel was also genotyped via genotyping-by-sequencing and the resulting genotypic data were imputed using BEAGLE v5 leading to a catalogue of 417 K SNPs. Through genome-wide association analyses (GWAS) using FarmCPU method with threshold of FDR-adjusted p-values < 0.1, we identified significant SNPs on chromosomes 2 and 9 with allele effects of 16.1 and 14.3, respectively. Further analysis identified three potential candidate genes linked to SSR disease resistance within a 100 Kb window surrounding each of the peak SNPs. Our results will be important in developing molecular markers that can speed up the breeding for SSR resistance in Canadian grown soybean.


Subject(s)
Ascomycota , Disease Resistance , Genotype , Glycine max , Plant Diseases , Polymorphism, Single Nucleotide , Glycine max/genetics , Glycine max/microbiology , Disease Resistance/genetics , Ascomycota/pathogenicity , Ascomycota/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Canada , Phenotype , Genome-Wide Association Study , Plant Breeding , Genetic Variation , Genetic Association Studies , Linkage Disequilibrium , Chromosome Mapping
20.
BMC Plant Biol ; 24(1): 743, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39095733

ABSTRACT

Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars. Seven SNP markers were found to be associated with ASR resistance through GWAS, with three of them defining haplotypes that efficiently distinguished the accessions based on their ASR resistance and source of the Rpp gene. These haplotypes were subsequently validated using a bi-parental population and a diverse set of Rpp sources, demonstrating that the GWAS markers co-segregate with ASR resistance. We then examined the presence of these haplotypes in a diverse set of soybean genomes worldwide, finding a few new potential sources of Rpp1/Rpp1-b. Further genomic sequence analysis revealed nucleotide differences within the genes present in the Rpp1 locus, including the ULP1-NBS-LRR genes, which are potential R gene candidates. These results provide valuable insights into ASR resistance in soybean, thus helping the development of resistant soybean varieties through genetic breeding programs.


Subject(s)
Alleles , Disease Resistance , Genome-Wide Association Study , Glycine max , Phakopsora pachyrhizi , Plant Diseases , Polymorphism, Single Nucleotide , Glycine max/genetics , Glycine max/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Phakopsora pachyrhizi/physiology , Phakopsora pachyrhizi/genetics , Haplotypes , Genes, Plant , Basidiomycota/physiology
SELECTION OF CITATIONS
SEARCH DETAIL